
AMPL (A Mathematical Programming Language) at the University of
Michigan

Documentation (Version 2)
D. Holmes dholmes@engin.umich.edu

23 June 1992
Updated 16 November, 1994
Updated 18 August, 1995

Contents

1 Introduction 1

2 AMPL: A Brief Description 2
2.1 The Model Section : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

2.1.1 Sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.1.2 Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3
2.1.3 Variables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
2.1.4 Objective : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
2.1.5 Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
2.1.6 An example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.2 The Data section : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7
2.3 Using AMPL interactively : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9
2.4 Controlling the solver from within AMPL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3 AMPL at the University of Michigan 10
3.1 Using the IOE AMPL/Solver package AMPLUM : : : : : : : : : : : : : : : : : : : : : : : : : 10
3.2 Using solvers directly : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4 Technical Details 13
4.1 How AMPL interfaces with solvers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
4.2 The AMPL package : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
4.3 AMPLUM details. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16



1 Introduction

AMPL (A Mathematical Programming Language) [6] is a high-level language for describing mathematical
programs. AMPL allows a mathematical programming model to be speci�ed independently of the data
used for a speci�c instance of the model. AMPL's language for describing mathematical programs closely
follows that used by humans to describe mathematical programs to each other. For this reason, modelers
may spend more time improving the model and less time on the tedious details of data manipulation and
problem solution.

A functional diagram of how AMPL is used is shown below. To start, AMPL needs a mathematical
programmingmodel, which describes variables, objectives and relationships without refering to speci�c data.
AMPL also needs an instance of the data, or a particular data set. The model and one (or more) data �les are
fed into the AMPL program. AMPL works like a compiler: the model and input are put into an intermediate
form which can be read by a solver. The solver actually �nds an optimal solution to the problem by reading
in the intermediate �le produced by AMPL and applying an appropriate algorithm. The solver outputs the
solution as a text �le, which can be viewed directly and cross-referenced with the variables and constraints
speci�ed in the model �le.

AMPL

MPS (Text)
or Binary

File

Data File 1Model
File

Data File 2

OSL
Linear,
Integer

Programs

MINOS
Linear,

Nonlinear
Programs

ALPO
Linear,

Quadratic
Programs

Solution
File

AMPL

Solver

A commercial version of AMPL has been ported to most UNIX workstations at the University of Michi-
gan's Computer Aided Engineering Network (CAEN). AMPL may be used with several di�erent mathe-
matical program solvers, including MINOS version 5.4 ([1]), ALPO ([8]), CPLEX citecplex) and OSL ([5])
version 2. AMPL may be used interactively or may be used in batch mode. Used interactively, a modeler
may selectively modify both the model and its data, and see the changes in the optimal solution instan-
taneously. Used in batch mode, a modeler may obtain detailed and well-formatted solutions to previously
de�ned mathematical programs. A shell script that may be used on any UNIX platform has been developed
to simplify batch operation. Using this script, one can directly see the optimal solution to an AMPL problem
without knowing UNIX or the details of the CAEN network.

This documentation is arranged into two sections. The �rst gives a brief introduction to the AMPL
mathematical programming language. A more detailed description may be found in [6]. In addition, a

1



tutorial by the authors of AMPL is available ([7]). The second section describes the use of AMPL and
various solution packages on the CAEN network. Supporting technical details of the local AMPL interface
are also presented.

2 AMPL: A Brief Description

AMPL stands for \A Mathematical Programming Language", and is a high level language that translates
mathematical statements that describe a mathematical program into a format readable by most optimization
software packages. The version of AMPL implemented here at the University of Michigan will currently
model linear, mixed-integer, and nonlinear programs. The following description of the AMPL programming
language presupposes some knowledge of the format and nature of mathematical programs.

A complete description of a speci�c mathematical program requires both a functional description of the
relationships between problem data and the problem data itself. AMPL separates these two items into
separate sections, the model section and the data section. These sections are usually in separate �les (i.e. a
separate model �le and a data �le), but may be combined into one or multiple �les. The data section must
always follow the model section.

NOTE: The following sections describe the most important features of AMPL. Many fea-
tures of AMPL described in the referenced documentation are not described here. A complete
reference may be found in the appendix of [6] available from the Engineering Library, call num-
ber QA402.5 F695

2.1 The Model Section

The general form for a linear program considered by AMPL is

max
X
i2I

cixi (1)

st
X
i2I

aijxi � bj 8j 2 J (2)

Here, ci; aij; and bj are all parameters, I and J are Sets,
P

i2I cixi is the objective, and
P

i2I aijxi �
bj are constraints.

The form of an AMPL model �le closely follows that of the mathematical program stated above. Specif-
ically, a model �le is arranged into the following sections.

� Declarations using the following keywords:

set

param

var

arc

� Objectives declared with:

maximize

minimize

� Constraints

subject to

node

A prototype and example of each item is given below, followed by a full example of an AMPL model
�le. For the purposes of explanation, we will consider a production planning model. Speci�cally, we wish
to �nd an optimal production schedule for a group of products given known demands, known (linear) costs,
and known requirements for raw materials for each unit of product produced. The example considered is
provided with the AMPL programming package.

2



2.1.1 Sets

Sets are arbitrary collections of objects that are assigned to variables or constraints. For example, in a
production planning example, a set may be a group of raw materials or products. AMPL also allows sets of
indexed integers to be used for the purposes of describing constraints or objectives. The prototype is:

set [set name]

For example, a production planning model optimizes production of a set of products that are made from a
set if raw materials. AMPL groups these products and raw materials using the declarations

set P; # Products

set R; # Raw Materials

Note that a # comments out the rest of the AMPL line.
Let setexp be any valid set expression. Optional phrases that may be used when describing sets are

Keyword Meaning
dimen n De�nes the dimension of the set
within (setexp) Checks that declared set is a subset of (set expr.)
:= (setexp) Speci�es a value for the set.
default (setexp) Speci�es default value for set.
ordered [ by [ reversed ] set ] The de�ned set has an order (possibly de�ned by set).
circular [ by [ reversed ] set ] The de�ned set has a circular order (possibly de�ned by set).

The set used in the ordered keyword described above may be a real valued interval or an integral interval,
using the set description interval[a,b] or integer[a,b]. Several functions that de�ne and operate on
sets are available, including union, diff, symdiff, inter(section), cross (cartesian product), first(S),
last(S), and card(S).

More detailed examples of sets are given below.

set U; set A := 1..n;

set B := i..j by k; set C ordered

set D:= {i in C: x[i] in U}; set E := D diff U

set V within interval[i,j); set W ordered by integer(a,b);

2.1.2 Parameters

Parameters are scalars, vectors, or matrices of known data. These may include limits of index sets, rhs
coe�cients, matrix entries, etc. The prototype declaration for parameters is

param [name] f index1, index2, ... g attributes.. ;

where [name] is a required identi�er, index1, index2, ... are optional sizes or ranges for subscripts on
the data, and attributes states attributes the parameter must have, such as the possible range of values
the parameter may take. AMPL allows parameters to be de�ned in terms of other (previously de�ned)
parameters.

The attributes assigned to a parameter may be speci�ed using the following keywords:

Keyword Meaning

binary Parameter must be either 0 or 1.
integer Parameter must be an integer.
symbolic Allows non-numeric parameters.
< <= = != > >= expression Parameter must satisfy expression.
default expression Default in case parameter not de�ned in data section.
in setexp Parameter must be in setexp

Examples relevant to our production planning problem include:
3



param T > 0; # number of production periods

param M > 0; # Maximum production per period

param a{R,P} >= 0; # units of raw material i to manufacture

# 1 unit of product j

param b{R} >= 0; # maximum initial stock of raw material i

param c{P,1..T}; # estimated profit per unit of product in period t

param d{R}; # storage cost per period per unit of raw material

param f{R}; # estimated remaining value per unit of raw material

# after last period

Note that a set of indices 1; 2; : : :; T may be written as {1..T}. Also note that the conditions >= 0 may
be used to restrict the ranges parameters may take.

Parameters may also be recursively de�ned, as long as a parameter de�nition only involves the results
of previously de�ned parameters. For example, the number of combinations of n items taken k at a time,�

n

k

�
, may be de�ned using

param comb {n in 0..N, k in 0..n} :=

if k = 0 or k = n then 1 else comb[n-1,k-1] + comb[n-1,k];

Piecewise linear terms may also be speci�ed using AMPL. The prototype is << breakpoints ; slopes
>> var. There must be one more slope than the number of breakpoints, and the variable is de�ned as
below. For more information, please see the AMPL reference manual ([6]).

2.1.3 Variables

The decision variables of a problem are speci�ed using the same conventions as parameters. The prototype
declaration is

var [name] f index1, index2, ... g fattributes

;
The attributes that a variable may have include those speci�ed in the following table:

Keyword Meaning
binary Variable must be either 0 or 1.
integer Variable must be an integer.
<= >= = expression Variable must satisfy expression (bound).
:= expression Variable has initial guess expression.
coeff constraint Speci�es coe�cient for a previously de�ned constraint.

Used for column generation. See AMPL reference manual ([6]).

Two examples that arise from a production planning problem are:

var x{P,1..T} >= 0, <= M; # units of product manufactured in period

var s{R,1..T+1} >= 0; # stock of raw material at beg. of period

Networks may be modeled explicitly using AMPL. A special type of variable is the arc, which carries

ow and connects two nodes. The prototype of an arc de�nition is

arc [name] f index1,.. g from f index1,.. g node
to f index1,.. g node expression obj f index1,.. g objective expression

where the expression after to and obj de�nes the change in capacity along the arc or the cost (or pro�t) of
a unit of 
ow along that arc. For example, suppose we were managing a portfolio of investments and wanted
to minimize variable transaction costs along an arc describing a 
ow of money from one investment held for
one period to another in the following period. The arc may be described using

4



arc xaction {t in 1..T, i in investments[t], j in investments[t+1]} >= 0

from i to j (Return[i,t]) obj cost (XactionCost[i,j]*Discount[t]);

An example of the same arc with piecewise linear costs would be

arc xaction {t in 1..T, i in investments[t], j in investments[t+1]} >= 0

from i to j (Return[i,t]) obj cost << cutoff[i] ; (LoXactionCost[i,j]*

Discount[t]), HiXactionCost[i,j]*Discount[t]) >> xaction ;

2.1.4 Objective

The objective in a linear program is an inner product describing the function to be optimized. The AMPL
prototype for a linear program is:

maximize [objective name] : sum f [index] in [Index Set] g [Parameter] * [Variable] + ... ;

More generally, nonlinear objectives, or objectives formed via column-generation may be formed. As an
example, consider

maximize profit:

sum {t in 1..T} ( sum {j in P} c[j,t]*x[j,t] - sum {i in R} d[i]*s[i,t] )

+ sum {i in R} f[i] * s[i,T+1];

# total over all periods of estimated profit - storage costs

# + value of raw materials left after last period

2.1.5 Constraints

Constraints are speci�ed in much the same way as the objective function. However, the names of the
constraints may be subscripted. A prototype of a linear constraint declaration is:

subject to [constraint name] f [index] in Index Set:
sum f [index] in [Index Set] g [Parameter] * [Variable] + ... f <= , >= ,= g [Parameter]

The semantics of linear constraints are best seen by examples. Using the production planning example,
a balance constraint relating the inventory in one period to the next would be

stock {i in R, t in 1..T}:

s[i,t+1] = s[i,t] - sum {j in P} a[i,j] * x[j,t];

# stock in next period = present period - raw materials

More generally, a prototype of a general constraint is

subject to name indexing [ initial dual ] constraint expression

where initial dual is a guess as to the initial dual value of the constraint. Any linear or nonlinear expression
involving any number of variables or parameters may be used. Several built in functions are available, includ-
ing all trigonometric functions, other transcendental functions, and random number generation functions.
1

Network constraints may be speci�ed using the node keyword. Most nodes are transshipment nodes, i.e.
their 
ow in must equal their 
ow out. These nodes are simply declared using node. However, a source
or sink node must be declared di�erently. A node with exogenous 
ow in or out must also be declared
di�erently. Flow in and out of these nodes is identi�ed using the net_in and net_out keywords. For
example, a transshipment problem with one factory, two customers, and several transshipment points would
be declared using

1Distributions available are Beta, Cauchy, Exponential, Gamma, UniformInteger[0;224), Normal, Poisson, and Uniform.
5



node Factory: 0 <= net_in <= Max_production;

node Xshipnode { XShip_pts };

node Customer_node{ CustomerSet } : min_req <= net_out ;

There are many other constructs in the AMPL language which are not covered here. For a complete reference,
please consult [6].

2.1.6 An example

Putting the examples presented in the previous sections together, a complete AMPL model �le describing
the production planning model would be:

# From Bob Fourer's TOMS paper, June 1983

# A factory can manufacture some number of different products

# over the next T production periods. Each product returns a

# characteristic estimated profit per unit, which varies from

# period to period. The factory's size imposes a fixed upper

# limit on the total units manufactured per period. Additionally,

# each product requires fixed characteristic amounts of certain

# raw materials per unit.

#

# Limited quantities of raw materials must be stored now for use in

# the next T periods. Each raw material has a fixed characteristic

# storage cost per unit period. Any material still unused after

# period T has a certain estimated remaining value.

#

# What products should be manufactured in what periods to maximize

# total expected profit minus total storage costs, adjusted for

# the remaining value of any unused raw materials?

set P; # Products

set R; # Raw materials

param T > 0; # number of production periods

param M > 0; # Maximum production per period

param a{R,P} >= 0; # units of raw material i to manufacture

# 1 unit of product j

param b{R} >= 0; # maximum initial stock of raw material i

param c{P,1..T}; # estimated profit per unit of product in period t

param d{R}; # storage cost per period per unit of raw material

param f{R}; # estimated remaining value per unit of raw material

# after last period

var x{P,1..T} >= 0; # units of product manufactured in period

var s{R,1..T+1} >= 0; # stock of raw material at beginning of period

maximize profit:

sum {t in 1..T} ( sum {j in P} c[j,t]*x[j,t] - sum {i in R} d[i]*s[i,t] )

+ sum {i in R} f[i] * s[i,T+1];

# total over all periods of estimated profit - storage costs

# + value of raw materials left after last period

subject to

prod {t in 1..T}:

sum {j in P} x[j,t] <= M;

# production in each period less than maximum

stock1 {i in R}:

6



s[i,1] <= b[i];

# stock in period 1 less than maximum

stock {i in R, t in 1..T}:

s[i,t+1] = s[i,t] - sum {j in P} a[i,j] * x[j,t];

# stock in next period = present period - raw materials

2.2 The Data section

Since the same model may be used for many di�erent instances of data, AMPL reads data speci�c to a
problem from a separate section, denoted by the data; keyword. Data required by AMPL includes the
names of all de�ned sets and the values of each parameter declared in the model section. The general form
for an AMPL data �le is

data;

set [set name] := [item 1], f item 2g, fitem 3 g ... ;

param [parameter name] := [value1] ... ;

end;

As an example of a set declaration, suppose three di�erent types of beer (lite, bud, and mich) were to be
produced in the above production planning example. The data �le statement to declare these items is

set P := lite bud mich ;

set R := malt hops ;

Parameter data may be given to AMPL in many convenient formats. A parameter may be speci�ed as
a scalar, a vector, a matrix, or a \matrix slice".

Consider the production planning example described above. We wish to describe the parameters a and
b, which give the number of raw material units necessary for the production of each unit of �nished product
and their respective limits. Suppose the data is:

Finished Product
Raw Material Lite Bud Mich Limit

Malt 5 3 1 400
Hops 1 2 3 275

This data may be given to AMPL using the following formats:

1. Scalars: Each parameter element may be enumerated using its full identi�er enclosed within brackets.
For example, the parameter a may be given as:

param a [malt,lite] 5 ;

param [malt,bud] 3 ;

param [malt,mich] 1 ;

param [hops,lite] 1 ;

param [hops,bud] 2 ;

param [hops,mich] 3 ;

param b [malt] 400 [hops] 275 ;

2. Vectors: Parameters indexed by a single subscript may be declared using one parameter statement.
For example, the parameter b may be declared as

param b [malt] 400 [hops] 275 ;

7



3. Matrices: Perhaps the most convenient method for supplying matrix coe�cients is through a table.
Tables of data may be entered directly into a data �le using an editor or may be generated using a
spread sheet. Tables are organized into columns and rows, with the relevant index names adjacent to
each. Using the above data, the parameter a may be given as

param a : lite bud mich :=

malt 5 3 1

hops 1 2 3 ;

It is also possible to describe the transpose of a matrix by including the (tr) modi�er after the param-
eter name. This option is most useful when rows of a matrix are too long to work with conveniently.
For example, the parameter a may also be speci�ed as

param a (tr) :

malt hops :=

lite 5 1

bud 3 2

mich 1 3 ;

4. Matrix \Slices": Matrices of dimensions greater than 2 are di�cult to specify conveniently using
the approach outlined above. So, it is possible to specify data along a \slice" of a matrix, or a speci�c
entry along one (or two) of the matrix's dimensions. AMPL recognizes these slices by substituting an
index name for a place holder (*) in the parameter name. The parameter a in the production planning
problem may be speci�ed as

param a :=

[malt,*] lite 5 bud 3 mich 1

[hops,*] lite 1 bud 2 mich 3 ;

More than one place holder may be used in the declaration of a parameter. For example, a also could
have been speci�ed as

param a :=

[*,*] malt,lite 5 malt,bud 3 malt,mich 1

hops,lite 1 hops,bud 2 hops,mich 3 ;

Many other options for the description of data are available with the AMPL package. For a complete
description, see the AMPL documentation ([6]). A complete data �le for the production planning problem
given above might look like:

data;

set P := lite bud mich ;

set R := malt hops ;

param T 3 ;

param M 40 ;

param a [malt,lite] 5 [malt,bud] 3 [malt,mich] 1

[hops,lite] 1 [hops,bud] 2 [hops,mich] 3 ;

param b [malt] 400 [hops] 275 ;
8



param c [lite,1] 25 [lite,2] 20 [lite,3] 10

[bud,1] 50 [bud,2] 50 [bud,3] 50

[mich,1] 75 [mich,2] 80 [mich,3] 100 ;

param d [malt] 0.5 [hops] 2.0 ;

param f [malt] 15 [hops] 25 ;

end;

2.3 Using AMPL interactively

AMPL also includes many commands which may be used to organize and solve a model, and to customize
AMPL's operation. When used interactively, AMPL's commands may be used to display the results of
intermediate calculations or intermediate solutions to a sequence of mathematical programming problems.

To run AMPL interactively, copy the �le ampl_interactive from the IOE area to your current directory
by typing

azure% cp /afs/engin.umich.edu/group/engin/ioe/ampl/ampl_interactive .

and type ampl_interactive. You should receive an ampl: prompt. At this prompt, either quit ampl using
quit; or you can use one of the following commands:

Keyword Meaning
model; Forces AMPL to accept model de�nitions.
data; Forces AMPL to accept data.
end; Forces AMPL to accept no more input for the current model.

include �lename Read in a separate �le �lename.
display, print arglist Display or print a list of expressions.

option envname, envvalue Change an option de�ned by envname to envvalue.
See AMPL reference manual for list of options.

solve Solve the currently de�ned problem.
solution �lename Loads a solver's solution from �lename.

write; Writes an MPS �le or AMPL stub �les.
drop, add cons. name Instructs AMPL not to transmit (transmit)

given constraint or objective.
shell ' command line ' ; Performs shell command.

reset; Clear all model declarations and data.
quit Exit without writing any �les.

Other commands may be found in the appendix of [6]. The display may be used to display or print any
data from either the model or the solution. Pieces of constraints and solutions may be obtained using dot
notation, which is very similar to structure notation in C. The dot notation for data is generically given as
constraint name.su�x or variable name.su�x. Su�xes for variables include init, lb, ub, val, rc, and slack,
while su�xes for constraints include body, dinit, dual, lb, lslack, and uslack. The slacks are always
de�ned with respect to the bounds on the variables and on the constraints. For example, any constraint
may be described as lb � body � ub, so body.lslack is body� lb. These values may also be used within the
context of column or row generation schemes.

2.4 Controlling the solver from within AMPL

Solving particularly large or di�cult problems may require a new algorithm (solver) or changes to the
particular parameters used by a solver. To change solvers (from the default) type

ampl: option solver solver ;

where solver is usually one of the following options:

9



Hardware Program Used for Solver name to input
RS/6000 OSL Integer, Linear Programs $ioe/ampl/solvers_AIX/osl

RS/6000 MINOS Nonlinear, Linear Programs $ioe/ampl/solvers_AIX/minos

Sun CPLEX Linear, Integer Programs $ioe/ampl/solvers_SunOS/cplex

Sun MINOS Nonlinear, Linear Programs $ioe/ampl/solvers_SunOS/minos

HP CPLEX Linear, Integer Programs $ioe/ampl/solvers_HP-UX/cplex 2

where $ioe is /afs/engin.umich.edu/group/engin/ioe.
Most solvers are very 
exible. Almost all of the parameters they use can be changed while using AMPL

interactively. From the ampl: prompt (or within the model or data �le), solver parameters can be changed
by typing (for example)

option osl_options " option 1, option 2,..., ";

Options are dependent on the particular solver used. For example, to limit the number of iterations used by
OSL and to show solution times, the AMPL input line should be used:

ampl: option osl_options "maxiter 1000 timing 1";

Options for OSL and MINOS can be found in the following �les:

/afs/engin.umich.edu/group/engin/ioe/ampl/doc/README.osl

/afs/engin.umich.edu/group/engin/ioe/ampl/doc/README.minos

/afs/engin.umich.edu/group/engin/ioe/ampl/doc/README.cplex

3 AMPL at the University of Michigan

AMPL is available for two popular workstations on the CAEN network (Suns and IBMS). This section will
�rst describe a system that automates the use of AMPL.We will then describe how to run AMPL interactively
or as stand alone package, and then how to use the solvers available with AMPL to �nd optimal solutions
to the AMPL models. This section will be of particular interest to those who do not wish to bother with
the operational details of the AMPL package or of the solver packages. However, familiarity with the CAEN
system and some Unix exposure is assumed.

3.1 Using the IOE AMPL/Solver package AMPLUM

For those who do not wish to concern themselves with the technicalities of AMPL or of a particular opti-
mization package, a shell script has been written to automate the generation of an optimal solution from a
AMPL model and data �les. This shell does the following:

1. calls AMPL to process the model and data �le into an intermediate format.

2. calls a solver to actually �nd an optimal solution or determine infeasibility in the model.

3. calls a script which translates the solution obtained by the solverback to the original AMPL variable
and constraint names.

(The technical details of this implementation are given in the next section.)
The shell script is named amplum and resides in the AFS directory afs/engin.umich.edu/group/engin/ioe/ampl.

The prototype for the shell script amplum may be obtained by simply typing amplum without any arguments.
Doing so gives:

amplum ampl_files.. output_file [-m] [-s solver] [-o output] [-d debug]

where:

ampl_files.. is a list of [readable] model and/or data files.

output_file is an output file. [must not previously exist].

10



[solver]

= minos : Default on all others. Solves LPs, NLPs.

= alpo : Available on all platforms. Solves LPs.

= cplex : Available on suns.

= ip : OSL Integer Programming

= lpsens : OSL Linear sensitivity analysis

= lpintpt : OSL LP w/ Barrier Method & Simplex

= lpintptnosw : OSL LP w/ Barrier Method

[output] = 0 : No solution file, keep stub files.

= 1 : Solution file, remove stub files [default].

= 2 : Solution file, keep stub files.

= 3 : Solution file w/ Sensitivity analysis, remove stub files. [OSL only]

= 4 : Solution file w/ Sensitivity analysis, keep stub files. [OSL only]

[debug] = 0 : AMPLUM passes critical information and soln [default]

= 1 : AMPLUM passes all information from solver

-m : MPS files and stub files only.

NOTE: stub files are used by AMPL's output processor.

shank%

NOTE: Some solvers may not be able to solve all types problems. In addition, not all solvers are available
on all machine types. If a solver is chosen which is not available on the machine you are logged into, the
following message is shown:

amplum mod.mod mod.dat oo -s osl

Option Not supported...

................. UM AMPL solver shell ................

Sorry, your choices are not currently supported. The

available solvers are given in the following table.

Machine Solver-> osl minos alpo cplex

----------------------------------------------------

RS/6000 LP,MIP LP,NLP LP

SunOS LP,NLP LP LP,MIP

----------------------------------------------------

Valid output options 0 - 4 0 - 2 0 - 2

Please rerun shell with appropriate combinations

amplum attempts to insure that the appropriate solver is called for the type of problem being solved, but
cannot distinguish di�cult (i.e. nonlinear) models. For example, is there are binary or integer variables in
the formulation, CPLEX or OSL are the only solvers which may be used. Likewise, MINOS is the only solver
which will solve nonlinear problems.

For illustrative purposes, consider the production planning example given above and suppose the model
and data sections are given in the �les mod.mod and mod.dat, respectively. Then a solution to the AMPL
�le may be obtained by emulating (here, from a Sun) the sample shown below. Note that the CPLEX solver
is being used.

shank% amplum mod.mod mod.dat mod.out

................. UM AMPL solver shell ................

Solver: cplex

Stub : a_418.xxx

Output file: mod.out

Ampl files : mod.mod mod.dat
11



........... AMPL of 03Aug1995 times ..............

.... AMPL: Processing MPS Files for formatter ....

................ LP/IP: CPLEX times .....................

umcplex: Input file: a_418.mps Output file a_418.cpx

1.9 real 0.0 user 0.2 sys

shank%

cat mod.out

Selected Objective Sense: MINIMIZE

Selected Objective Name: R0012

Selected RHS Name: B

Problem Name a_418.mps

Objective Value -140

Status Optimal

Iteration 2

Objective profit (MIN)

RHS B

Ranges

Bounds

ROWS

NUMBER ......ROW...... AT ...ACTIVITY... SLACK ACTIVITY ..LOWER LIMIT. ..UPPER LIMIT. .DUAL ACT

1 profit BS -140 140 -1.01E+75 1.01E+75 1

2 prod[1] BS 0 40 -1.01E+75 40 -0

3 prod[2] BS 0 40 -1.01E+75 40 -0

4 prod[3] UL 40 0 -1.01E+75 40 3.5

5 stock1[malt] BS 200 200 -1.01E+75 400 -0

6 stock1[hops] BS 40 235 -1.01E+75 275 -0

7 stock[malt,1] EQ 0 0 0 0 -0.5

8 stock[malt,2] EQ 0 0 0 0 -1

9 stock[malt,3] EQ 0 0 0 0 -1.5

10 stock[hops,1] EQ 0 0 0 0 -2

11 stock[hops,2] EQ 0 0 0 0 -4

12 stock[hops,3] EQ 0 0 0 0 -6

COLUMNS

NUMBER .....COLUMN.... AT ...ACTIVITY... ..INPUT COST.. ..LOWER LIMIT. ..UPPER LIMIT. .REDUCED

13 x[lite,1] LL 0 25 0 1.01E+75 20.5

14 x[lite,2] LL 0 20 0 1.01E+75 11

15 x[lite,3] BS 40 10 0 1.01E+75 0

16 x[bud,1] LL 0 50 0 1.01E+75 44.5

17 x[bud,2] LL 0 50 0 1.01E+75 39

18 x[bud,3] LL 0 50 0 1.01E+75 37

19 x[mich,1] LL 0 75 0 1.01E+75 68.5

20 x[mich,2] LL 0 80 0 1.01E+75 67

21 x[mich,3] LL 0 100 0 1.01E+75 84

22 s[malt,1] BS 200 -0.5 0 1.01E+75 0

23 s[malt,2] BS 200 -0.5 0 1.01E+75 0

24 s[malt,3] BS 200 -0.5 0 1.01E+75 0

25 s[malt,4] LL 0 15 0 1.01E+75 13.5

26 s[hops,1] BS 40 -2 0 1.01E+75 0

12



27 s[hops,2] BS 40 -2 0 1.01E+75 0

28 s[hops,3] BS 40 -2 0 1.01E+75 0

29 s[hops,4] LL 0 25 0 1.01E+75 19

shank%

As can be seen above, the shell script substantially simpli�es the modeling process, and provides quite
readable output. Anyone is free to make changes to amplum for their own purposes, but does so at
their own risk. AMPL is governed by a site license with AT&T (Scienti�c Press), however, so is there
are any questions concerning AMPL's use or quoting its results, please check with the IOE department
(ckonrad@engin.umich.edu).

As always, any comments or improvements to the shell script given above or any other aspect of the use
of AMPL at the University of Michigan are greatly appreciated.

3.2 Using solvers directly

For particularly large or di�cult problems, it may be desirable to exercise more control over a solver or to
change the slgorithm (or solver) used. Most solvers use the MPS �le format, which is an industry standard
text-based format for specifying linear, integer, quadratic and stochastic programming problems.

To get an MPS �le from an AMPL model, use amplum with the -m option. This �le can be input directly
with any solver that accepts MPS format �les. (See the �gure on Page 2.) For example, there is a completely
customizeable front-end for OSL [3] which can be used with an MPS �le. For the remainder of this section,
let $ioe be /afs/engin.umich.edu/group/engin/ioe.

A front end also exists for MINOS. On line documentation for these front ends are in:

$ioe/osl/doc/localosl.ps
$ioe/minos/minos.README

Further technical details regarding the AMPL-solver interface are given in the next section.
Variable and constraint names in MPS �les are limited to 8 characters each. So, AMPL replaces each

\natural language" variable in the model �le with a generic column name of the form (e.g.) C0000001. (Rows
are also treated in this way). Any solution given by a solver will also refer to these pseudo-column names.
To translate the row and column names in a solution �le back to AMPL names, copy the �les shown below
to your working directory

Solver Directory File
OSL $ioe/ampl/perls format_osl.perl

MINOS $ioe/ampl/perls format_minos.perl

CPLEX $ioe/ampl/perls format_gen.perl

and type (e.g.)

buteos% perl format_m.perl <Output �le> <stub name> > <output �lename>

where stub name is the name used as an output �le when amplum was called. (Note: format_m.perl should
also work for most other solvers.)

4 Technical Details

This section will describe some technical details necessary to customize AMPL or understand (or modify)
the scripts associated with amplum.

4.1 How AMPL interfaces with solvers

AMPL has been linked directly to several production-quality mathematical programming solvers, including
cplex, osl, minos (version 5.4), and alpo. AMPL may also be used to generate industry-standard MPS-
format input �les for use with other solvers that haven't been explicitly linked to AMPL.

When the solver is called with the solve command or as a separate program, AMPL writes the translated
model and data into several stub �les, each of which contains data describing the mathematical program.
Stub �les have the form stub.xxx, and are among those listed below:

13



File Description File Description
stub.adj constant adde to objective values. stub.col AMPL variable names.
stub.env environment data. stub.fix Eliminated (�xed) variables.
stub.spc MINOS \specs" �le. stub.row AMPL row names.
stub.slc Eliminated constraints. stub.unv Unused variables.
stub.mps MPS model �le. stub.nl Nonlinear data.

Directing AMPL which �les to produce is covered in the next section.
Once the stub �les have been written, AMPL passes the stub name followed by -AMPL to the solver.

The solver is then expected to write a �le stub.sol containing the optimal primal and dual solutions to the
problem. AMPL then reads these in for further processing.

4.2 The AMPL package

AMPL is available on all Sun and RS/6000 AFS machines. The program is called amplx, and is located in
one of the following directories.

Platform Location
RS/6000 afs/engin.umich.edu/group/engin/ioe/ampl/ampl_AIX

Sun afs/engin.umich.edu/group/engin/ioe/ampl/ampl_SunOS

NOTE: If you want to run AMPL repeatedly, putting the line (e.g.)
setenv ampl = afs/engin.umich.edu/group/engin/ioe/ampl/ampl_AIX in your .cshrc �le allows amplx
to be run by typing $ampl/amplx.

amplx may be run with several options. These options may be seen at any time from the UNIX prompt
by typing amplx "-?", and are shown below.

dice% cp /afs/engin.umich.edu/group/engin/ioe/ampl/ampl_AIX/amplx ./

dice% amplx "-?"

Usage: amplx [options] [file [file...]]

No file arguments means read from standard input, as does - by itself.

Options: * = sets option keyletter_op (e.g. C_op for -C)

-Cn {0 = suppress Cautions; 1 = default; 2 = treat as error;}*

-D {print data read in (debug option)}

-F {force generation of := sets (debug option)}

-G {print generated data (debug option)}

-L {fully eliminate linear definitional constraints and var = decls}*

-M {print model (debug option)}

-O {print compiled model (debug option)}

-P {skip presolve -- same as "option presolve 0;" }

-S {substitute out definitional constraints (var = expression)}*

-T {show genmod times for each item}*

-enn {exit at nn-th error: default 10 or, for stdin, 0 (no exit)}*

-f {do not treat unavailable functions of constant args as variable}*

-ooutopt {specify -o? for details}*

-pnn {use nn decimal places in converting numbers to symbols}

-q {always quote output literals (under -D, -G, -M, -O)}

-s[seed] {seed for random numbers; -s means current time}*

-t {show times}*

-v {show version; -v? shows other -v options}

-z {lazy mode -- treat := as default (evaluate only as needed)}*

dice%

Output �les (see the section \How AMPL interfaces with solvers" above) are written by specifying an -o

option to the amplx program. At any time, the output options may be obtained by typing amplx "-o?".

14



dice% amplx "-o?"

-o0 {no output}

-o! {no genmod and no output}

-obstub {generic binary format -- line -og, but binary

after the first 10 lines}

-oestub {nonlinear equations format (to be withdrawn -- superceded by -o b and -og)}

-ogstub {generic ASCII format: no MPS file, no .spc file,

full Jacobian in .nl file, otherwise like -omstub}

-om {MPS format to stdout, no other files written}

-omstub {MPS format to stub.mps,

names to stub.row & stub.col,

fixed vars to stub.fix,

unused vars to stub.unv

slack constraints to stub.slc

objective adjustments to stub.adj,

nonlinearities to stub.nl

MINOS SPECS to stub.spc}

-onstub {MPS format to <stdout>, otherwise like -omstub}

dice%

amplx may be run either interactively or in batch mode. However, a solver must be de�ned before problems
can be solved. A list of the available solvers is given below.

Platform Location Solvers
RS/6000 afs/engin.umich.edu/group/engin/ioe/ampl/solvers_AIX OSL, MINOS, ALPO
Sun afs/engin.umich.edu/group/engin/ioe/ampl/solvers_SunOS CPLEX3 , MINOS, ALPO
HP afs/engin.umich.edu/group/engin/ioe/ampl/solvers_HP-UX MINOS, ALPO

The best way to inform AMPL as to which solver to use is to use the setenv command. For example, if
an RS/6000 is being used with OSL, the command

setenv solver afs/engin.umich.edu/group/engin/ioe/ampl/solvers_AIX/osl

may be used to specify osl as the solver of choice for all future amplx runs. A sample interactive session that
solves the problem developed in the previous sections is shown below. Comments are also provided.

dice% amplx ( Set solver, note quotes )

ampl: option solver "/afs/engin.umich.edu/group/engin/ioe/ampl/solvers_AIX/osl"`

ampl: include mod.mod ( Read in model file )

ampl: include mod.dat ( Read in data file )

ampl: solve;

OSL: optimal solution

primal objective 10564

14 simplex iterations

ampl: display prod[1].dual; ( Display parts of the solution )

prod[1].dual = 0

ampl: display stock.dual;

stock.dual :=

hops 1 25

hops 2 27

hops 3 29

malt 1 11

malt 2 11.5

malt 3 12

;

15



ampl: quit

dice%

The best way to get a feel for how this works is to obtain the reference documentation and to try it out.

4.3 AMPLUM details.

amplum is a shell script which completely processes AMPL input �les using an appropriate solver. Assuming
that enough �les are speci�ed on amplum's command line, the script performs the following actions (in order):

1. Determine which �les are input �les and which is meant to be the output �le. (Generally speaking the
output �le is always the last �le in the command line list). Also process other arguments.

2. Determine the most appropriate solver to call, depending on the architecture amplum is being run on
and the nature of the problem. (Note: this code in the script is a bit messy).

3. Prepend option auxfiles rc; to the model �le and call the relevant version of amplx. If the -m

option is speci�ed, stop with AMPL MPS output.

4. Call the relevant solver (OSL LP, OSL IP, MINOS, ALPO) for the architecture being run on. 4

5. Call an output Perl script (format_osl.perl or format_minos.perl, in .../ioe/ampl/perls) to
translate the column and row names assigned by AMPL (for the solver) back to the \natural language"
variable and cconstraint names speci�ed in the model �le.

All intermediate �les (e.g. stub �les) are of the form a_xxxx, where xxxx is the process number of the
amplum script (determined at runtime). Unless the -o 2 option is speci�ed on the amplum command line,
these �les are deleted after the model has been solved.

As mentioned in the previous section, tranlating the solver results to natural languange (AMPL) identi-
�ers is accomplished using Perl scripts located in .../ioe/ampl/perls. These scripts read in the relevant
.col and .row stub �les and substitute in the names found in those �les where necessary in the solver output
�le. Further details can be found in the comments in each perl script.

References

[1] B.A. Murtaugh and M.A. Saunders, 1983. \MINOS 5.1 User's Guide," Technical Report SOL-83-20R,
Systems Optimization Laboratory, Stanford University, Stanford, California.

[2] CPLEX User's Manual, 1995. CPLEX Corp., Incline Villange, NV.

[3] D. Holmes, 1991. \Optimization Subroutine Library at the University of Michigan (Documentation)."

[4] International Business Machines Corporation, 1990. \Optimization Subroutine Library," Licensed Pro-
gram Numbers 5688-137, 5601-469, 5621-013.

[5] International Business Machines Corporation, 1990. \Optimization Subroutine Library Guide and Ref-
erence Manual," Publication SC23-0519.

[6] R. Fourer, D. Gay, and B. Kernighan, 1990. AMPL: A Mathematical Programming Language,
Scienti�c Press, San Francisco, CA.

[7] D. Gay, 1992. \A Production Model: Maximizing Pro�ts," tutorial available with AMPL package (Print
using makedoc in the AMPL subdirectory).

[8] R. J. Vanderbei, \ALPO: Another Linear Programming Optimizer," ORSA J. Computing, to appear.

4Note:(11 November 1994). OSL does not appear to recognize general integer variables without specifying them in the
BOUNDS section. The Perl script fixip.perl is called prior to problem solution to �x the MPS �le to match the intent of the
modeler.-dfh

16


