
Parallel Dynamic Programming

Kenneth L. Judd, Hoover Institution
Yongyang Cai, Hoover Institution

Greg Thain, University of Wisconsin-Madison
Stephen Wright, University of Wisconsin-Madison

May 29, 2012

Parallel DP Algorithm

I Parallelization in Maximization step in NDP: Compute

vi = max
a

ut(xi , a) + βE{V̂ (x+;b+)|xi , a},

for each xi ∈ X , 1 ≤ i ≤ m.
I Condor Master-Worker system: distributed parallelization, two

entities: Master processor, a cluster of Worker processors.

Parallel DP Algorithm for Master

Initialization. Set up V̂ (x , θ;bT) and initial guesses of actions a, for all
θ ∈ Θ = {θj = (θj1, . . . , θjk) : 1 ≤ j ≤ N}. Choose the
approximation nodes, Xt = {x t

i = (x t
i1, . . . , x

t
id) :

1 ≤ i ≤ mt} for t = 0, 1, . . . ,T − 1. Let t = T − 1.
Step 1. Separate the maximization step into N tasks, one task

per θj ∈ Θ = {θj = (θj1, . . . , θjk) : 1 ≤ j ≤ N}. Each task
contains the parameters bt+1, and initial guesses of
actions a for all xi ∈ Xt with a given θj . Then send these
tasks to the workers.

Step 2. Wait until all tasks are done by the workers. Then
collect the parameters bt

j and optimal actions a∗ij from the
workers, for 1 ≤ i ≤ mt and 1 ≤ j ≤ N.

Step 3. Stop if t = 0; else go to step 1.

Parallel DP Algorithm for Worker

Step 1. Receive the parameters b+ and initial guesses for
actions for one specific θj from the master.

Step 2. For θj , compute

vij = max
a

u(xi , θj , aij) + βE{V̂ (x+
i , θ

+
j ;b+) | xi , θj , a},

for each xi ∈ Xt , 1 ≤ i ≤ mt .
Step 3. Using an appropriate approximation method, compute

the bj , such that V̂ (x , θj ;bj) approximates {(xij , vij):
1 ≤ i ≤ mt}.

Step 4. Send bj and optimal actions a∗ij for 1 ≤ i ≤ mt , to the
master.

Parallelization in Optimal Growth Problems

I Problem size: 4D continuous state k , 4D discrete state θ with
64 = 1296 values

I Performance:

Wall clock time for all 3 VFIs 65 hours
Total time workers were up (alive) 1487 hours
Total cpu time used by all workers 1358 hours
Minimum task cpu time 557 seconds
Maximum task cpu time 4,196 seconds
Number of (different) workers 25
Overall Parallel Performance 93.56%

Parallelization in Optimal Growth Problems

Parallel efficiency for various number of worker processors

Worker Parallel Average task Total wall clock
processors efficiency CPU time (minute) time (hour)

25 93.56% 21 65
54 93.46% 25 33
100 86.73% 25 19

Parallelization in Dynamic Portfolio Problems

Problem size: 6 stocks plus 1 bond, transaction cost, number of
task = 3125.

I Performance:

Wall clock time for all 6 VFIs 1.56 hours
Total time workers were up (alive) 295 hours
Total cpu time used by all workers 248 hours
Minimum task cpu time 2 seconds
Maximum task cpu time 395 seconds
Number of (different) workers 200
Overall Parallel Performance 87.2%

