
DYNAMIC PROGRAMMING: AN OVERVIEW

Kenneth L. Judd

Hoover Institution

May 10, 2010

1



DYNAMIC PROGRAMMING:

DEFINITIONS AND EXAMPLES

2



Discrete-Time Dynamic Programming

• Objective:

E

{

T
∑

t=1

π(xt, ut, t) +W (xT+1)

}

,

— X: set of states

— D: the set of controls

— π(x, u, t) payoffs in period t, for x ∈ X at the beginning of period t, and control u ∈ D is

applied in period t.

— D(x, t) ⊆ D: controls which are feasible in state x at time t.

— F (A;x, u, t) : probability that xt+1 ∈ A ⊂ X conditional on time t control and state

• Value function

V (x, t) ≡ sup

U(x,t)

E

{

T
∑

s=t

π(xs, us, s) +W (xT+1)|xt = x

}

.

• Bellman equation

V (x, t) = sup

u∈D(x,t)

π(x, u, t) + E {V (xt+1, t + 1)|xt = x, ut = u}

• Existence: boundedness of π is sufficient

• Notational convenience: drop u ∈ D(x, t) constraints and encode them in payoff function.

3



Autonomous, Infinite-Horizon Problem:

• Objective:

max
u

E

{

∞
∑

t=1

β
t
π(xt, ut)

}

— X: set of states

— D: the set of controls

— D(x) ⊆ D: controls which are feasible in state x.

— π(x, u) payoff in period t if x ∈ X at the beginning of period t, and control u ∈ D is applied

in period t.

— F (A;x, u) : probability that x
+
∈ A ⊂ X conditional on current control u and current state

x.

• Value function definition: if U(x) is set of all feasible strategies starting at x.

V (x) ≡ sup

U(x)

E

{

∞
∑

t=0

β
t
π(xt, ut)

∣

∣

∣

∣

∣

x0 = x

}

,

4



• Bellman equation for V (x)

V (x) = sup

u

π(x, u) + βE

{

V (x
+
)|x, u

}

≡ (TV )(x),

• Optimal policy function, U(x), if it exists, is defined by

U(x) ∈ arg max
u

π(x, u) + β E

{

V (x
+
)|x, u

}

• Standard existence theorem:

Theorem 1 If X is compact, β < 1, and π is bounded above and below, then the map

TV = sup

u

π(x, u) + βE

{

V (x
+
) | x, u

}

is monotone in V , is a contraction mapping with modulus β in the space of bounded functions, and has

a unique fixed point.

5



Applications

• Economics

— Life-cycle decisions on labor, consumption, education

— Business investment

— Portfolio problems

— Economic policy

• Operations Research

— Scheduling, queueing

— Inventory management

• Climate change

— Business response to climate policies

— Optimal policy response to climate change

6



Simple Deterministic Growth Example

• Problem:

V (k0) = maxc

∑

∞

t=0
β
t
u(ct),

kt+1 = F (kt)− ct

k0 given

• Bellman equation

V (k) = max
c

u(c) + βV (F (k)− c).

• First-order condition

0 = u
′

(c)− βV
′

(F (k)− c)

• Solution is a policy function C(k) and a value function V (k) satisfying

V (k) = u(C(k)) + βV (F (k)−C(k)) (1)

0 = u
′

(C(k))− βV
′

(F (k)− C(k)) (2)

— Eqn.(2) defines value function for any policy function

— Eqn (1) defines policy function in terms of the value function.

7



General Stochastic Accumulation

• Multidimensional Problem:

V (k, θ) = max
c ,!

E

{

∞
∑

t=0

β
t

u(ct, $t, θt)

}

kt+1 = F (kt, $t, θt)− ct

θt+1 = g(θt, εt)

k0 = k, θ0 = θ.

• State variables:

— k: productive capital stocks, endogenous (could include lags, human capital, etc.)

— θ: productivity and taste states, exogenous

• Intratemporal Choices

— Consumption and leisure here

— Could be allocation of time to education, and other activities

• The dynamic programming formulation is

V (k, θ) = max
c,!

u(c, $) + βE{V (F (k, $, θ)− c, θ
+
)|θ}, (12.1.21)

where θ
+
is next period’s θ realization

8



Dynamic Asset Allocation Problem

• Initial wealth W0; wealth at beginning of time t is a random variable Wt; all assets at time t = T ,

WT , liquidated and valued at u (WT ).

• Bt is bond investment at end of time t with safe return (1 + r)

• Si,t is investment in stock i with random return Ri,t, for 1 ≤ i ≤ n

• Budget constraint at time t

Wt = Bt +

n
∑

i=1

Sit

• Wealth at time t+ 1

Wt+1 = (1 + r)Bt +

n
∑

i=1

RitSit

• Objective:

maxE {u(WT )}

9



DYNAMIC PROGRAMMING:

STANDARD METHODS

10



Discrete State Space Problems

• Discretize the state

— Approximates continuous states

— Use value function iteration

• Performance;

— Algorithm always works for finite-horizon problems but ....... slowly

— Algorithm only works for infinite-horizon problems if you are very patient

— Discretize states is impractical for multidimensional problems

• Bellman equation: time t value function is

V
t

i
= max

u

[π(xi, u, t) + β

n
∑

j=1

q
t

ij
(u)V

t+1

j
], i = 1, · · · , n

• Bellman equation can be directly implemented.

— Called value function iteration

— It is only choice for finite-horizon problems because each period has a different value function.

11



Policy Iteration (a.k.a. Howard improvement)

• Value function iteration is a slow process

— The only possible method for finite-horizon problems

— Slow for infinite-horizon problems since error is

∥

∥

V
k

− V
∗

∥

∥ ≤

1

1− β

∥

∥

V
k+1

− V
k

∥

∥

— Linear convergence at rate β; convergence very slow if β is close to 1.

• Policy iteration is faster

12



Piecewise Linear Interpolation for Continuous-State Problems

• Bellman equation:

V (x) = max

u∈D(x)

π(u, x) + βE{V (x
+
)|x, u)} ≡ (TV )(x). (12.7.1)

— Discretization essentially approximates V with a step function

— Piecewise linear approximation is more natural if true V is continuous; is method taught in

kindergarten.

• Performance;

— Algorithm always works for finite-horizon problems, faster than discetizing the state space, but

still....... slow!

— Piecewise linear interpolation is hard for two- and three-dimensional problems; messy and

intractable in high dimensions

13



Linear Programming Approach

• If both states and actions are finite, we can reformulate dynamic programming as a linear pro-

gramming problem.

• Bellman equatoin is equivalent to the linear program

minV

∑

n

i=1
Vi

s.t. Vi ≥ π(xi, u) + β

∑

n

j=1
qij(u)Vj, ∀i, u ∈ D,

(12.4.10)

• Computational considerations

— No iteration — nice!

• The LP probem may be huge, but perhaps tractable.

14



DYNAMIC PROGRAMMING:

COMPUTATIONAL ISSUES AND SOLUTIONS

15



Mathematical Formulation of DP

• Problem: Given current situation x (the state), what actions a do I take today to maximize payoff?

— Portfolio problems: stocks versus bonds

— Life-cycle problems

— Inventory management

• Canonical mathematical problem: find function V : R
k
×N

m
→ R expressing expected discounted

payoff and solves the fixed-point problem in a Banach space of functions V

V (x) = max

u∈D(x)

π(u, x) + β

∫

V (f (x, u, z))dµ (z) ≡ (TV )(x)

— x: state of system; typically x in a bounded subset of R
k
×N

m

— u ∈ D(x): feasible choices when state is x.

— z: random disturbances

— f : tomorrow’s state given today’s state, today’s choice, and random shock.

— β < 1: discount factor

• V encodes all information about the solution

16



General Parametric Approach: Approximating T

• For each xj, (TV )(xj) is defined by

vj = (TV̂ )(xj) = max

u∈D(x )

π(u, xj) + β

∫

V̂ (x
+
; a)dF (x

+
|xj, u) (12.7.5)

• In practice, we compute the approximation T̂

vj = (T̂V )(xj)
.
= (TV )(xj)

— Integration step: for ωj and xj for some numerical quadrature formula

E{V̂ (x
+
; a)|xj, u)} =

∫

V̂ (x
+
; a)dF (x

+
|xj, u)

— Maximization step: for xi ∈ X, evaluate

vi = (T̂ V̂ )(xi)

— Fitting step:

∗ Data: (vi, xi), i = 1, · · · , n

∗ Objective: find an a ∈ R
m
such that V̂ (x; a) best fits the data

∗ Methods: determined by V̂ (x; a)

17



General Parametric Approach: Value Function Iteration

guess a −→ V̂ (x; a)

−→ (vi, xi), i = 1, · · · , n

−→ new a

• Convergence

— Useful theory fact: T is a contraction mapping

— Computational challenge: constructing T̂ so that it is monotonic and/or a contraction mapping

∗ Not easy

∗ Is it necessary?

18



• Computational Problem I: Approximating V (x)

— Choose a finite-dimensional parameterization:

V (x)
.
= V̂ (x; a), a ∈ R

m
(3)

— Choose a finite number of states:

X = {x1, x2, · · · , xn}, (4)

— Objective: find coefficients a ∈ R
m
such that V̂ (x; a) “approximately” satisfies the Bellman

equation for x ∈ X.

— Standard methods

∗ discrete states, step functions,

∗ piecewise linear functions

∗ ordinary polynomials and splines

— Can we find better? YES!

19



• Computational Problem II: Integration step

— Use some quadrature rule Q to approximate

∫

V (f (x, u, z))dµ (z)
∼
= Q (V (f (x, u, z)), µ (z))

— Standard methods

∗ product rules

∗ Monte Carlo

— Can we do better? YES!

20



• Computational Problem III: Maximization step

• For each xi on some grid, numerically solve

vi = max

u∈D(x)

π(u, xi) + βQ (V (f (xi, u, z)), µ (z)) (5)

— Standard methods

∗ bisection, Nelder-Mead

∗ fmincon

∗ use a single processor

— Can we do better? YES!

21



• Computational Problem IV: Fitting step

— Construct data to find an a ∈ R
m
such that V̂ (x; a) fits the data

— Standard methods

∗ Piecewise linear interpolation

∗ Multilinear interpolation

∗ Polynomials and splines: often unstable!

— Can we do better? YES!

22



• How do we find better methods?

— Learn and use methods from approximation, quadrature, optimization, and computer science

literatures

— Construct our own methods!

23




