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Motivation
IV problems are often done with a “small” amount 

f l f ( k/ )of sample information (weak/many instruments).

It would seem natural to apply a small amount of 
i  i f ti   i  l ti iti   lik l  prior information, e.g. price elasticities are unlikely 

to be outside (-1,-5). 

Another nice example instruments are not exactly Another nice example– instruments are not exactly 
valid.  They have some small direct correlation with 
the outcome/unobservables. 

BUT, Bayesian methods (until now) are tightly 
parametric.  Do I always have to make the 
efficiency/consistency tradeoff as in std IV?
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efficiency/consistency tradeoff as in std IV?



Overview
Consider parametric (normal) model first

Consider finite mixture of normals for error dist

Make the number of mixture components random p
and possibly “large” 

Conduct sampling experiments and compare to 
state of the art classical methods of inference

Consider some empirical examples where being a 
i  B i  h l !non-parametric Bayesian helps!

Show how a Bayesian would deal with instruments 
that are not strictly valid
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that are not strictly valid.



The Linear Case
Linear Structural equations (perhaps in latent 

) l l d k lvars) are central in applied work.  Many examples 
in both marketing and economics literatures. 
Derived Demand from referees!

This is a relevant and simple ex:
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The Linear Case – IV Illustrated
A simple example
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Identification Problems – “Weak” instruments

Suppose            . = 0δS pp

=
= +
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Priors

Which parameterization should you use? p y

Are independent priors acceptable?

( ) ( ) ( ) ( )δ β δ βΣ = Σ, ,p p p p

( ) ( ) ( ) ( )π π π πΩ = Ω, ,x y x yp p p p
reference 
prior situation
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A Gibbs Sampler

( ) Σ1 , , , ,x y zβ δ( )
( )
( )

Σ

Σ

, , , ,

2 , , , ,

3

y

x y z

x y z

β

δ β

δ β

Tricks (rivGibbs in bayesm):

( ) Σ3 , , , ,x y zδ β

(1) given δ, convert structural equation into 
standard Bayes regression. We “observe”      
Compute           . 

1ε
2 1ε εCo pute

(2) given β, we have a two regressions with same 
coefficients or a restricted MRM.

2 1
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Mixtures of Normal for Errors

Consider the instrumental variables model with 

= + '
1x zδ ε

mixture of normal errors with K components:
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A Gibbs Sampler

( ) { }Σ,1 , , , , ,k kind x y zβ δ μ{ }
( ) { }
( ) { }

Σ

Σ

,2 , , , , ,

3

k kind x y z

i d

δ β μ

δ β

Tricks:

( ) { }Σ,3 , , , , ,k kind x y zμ δ β

Need to deal with fact that errors have non-
zero mean

Cluster observations according to ind draw 
and standardize using appropriate comp 

t
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Fat-tailed Example

Standard outlier model:

( )=' .95, .05p

( ) ⎡ ⎤
Σ Σ = ⎢ ⎥

⎣ ⎦
1 1

1 .8
comp 1: '~ 0,

.8 1
Nε

( )
( )

Σ Σ = Σ

>>>
2 2 1comp 2 : '~ 0,N M

M Var z

ε
δ( )

What if you specify thin tails (one comp)?
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Number of Components

If I only use 2 components  I am cheating! If I only use 2 components, I am cheating! 

One practical approach, specify a relative large 
number of components, use proper priors.p , p p p

What happens in these examples?

Can we make number of components dependent Can we make number of components dependent 
on data?
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Dirichlet Process Model: Two Interpretations

1)  DP model is very much the same as a mixture of 1). DP model is very much the same as a mixture of 
normals except we allow new components to be 
“born” and old components to “die” in our 

l ti  f th  t iexploration of the posterior.

2). DP model is a generalization of a hierarchical 
model with a shrinkage prior that creates model with a shrinkage prior that creates 
dependence or “clumping” of observations into 
groups, each with their own base distribution.
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Outline of DP Approach

How can we make the error distribution flexible?  How can we make the error distribution flexible?  

Start from the normal base, but allow each error to 
have it’s own set of parms:p

ε
#
1 ε

#
1 ( )θ μ= Σ1 1 1,

( )θ μ= Σ,ε
#

#
i ε

#

i ( )θ μ= Σ,i i i

ε
#

n ε
#

n ( )θ μ= Σ,n n n
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Outline of DP Approach

This is a very flexible model that accomodates: This is a very flexible model that accomodates: 
non-normality via mixing and a general form of 
heteroskedasticity. 

However, it is not practical without a prior 
specification that ties the {θi } together.

We need shrinkage or some sort of dependent 
prior to deal with proliferation of parameters (we 
can’t literally have n independent sets of can t literally have n independent sets of 
parameters).

Two ways: 1. make them correlated 2. “clump”
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Outline of DP Approach

Consider generic hierarchical situation:Consider generic hierarchical situation:

ε θ β δ, ,i i
ε (errors) are conditionally 
i d d t   l ε θ β δ

θ λ 0

, ,

~
i i

i G
independent, e.g. normal 
with 

One component normal 

( )θ μ= Σ,i i i

One component normal 
model: ( )θ μ= Σ,i

β δDAG:

λ θ ε

β δ,
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DP prior

Add another layer to hierarchy – DP prior for thetaAdd another layer to hierarchy DP prior for theta

DAG:

λ θ

β δ,

G

α

G is a Dirichlet Process – a distribution over other 

λ θi εiG

distributions. Each draw of G is a Dirichlet 
Distribution. G is centered on        with tightness 
parameter α

0G
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DPM

Collapse the DAG by integrating out GCollapse the DAG by integrating out G

DAG:
ηα

θi εiλ

{ }θ θ…1, , n are now dependent with a mixture of 
DP distribution.  Note: this distribution 
is not discrete unlike the DP.  Puts 
positive probability on continuous 
distributions  
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DPM: Drawing from Posterior

Basis for a Gibbs Sampler:Basis for a Gibbs Sampler:

θ ε θ θ ε θ− −=, ,j j j j j

Why?  Conditional Independence!

This is a simple update:

There are “n” models for       each of the other θ j
values of theta and the base prior.  This is very 
much like mixture of normals draw of indicators.

j
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DPM: Drawing from Posterior

n models and prior probs:n models and prior probs:
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DPM: Drawing from Posterior

( ) ( ) ( ) ( )∫ d( ) ( ) ( ) ( )

( ) ( )

ε ε θ θ λ θ

αε θ θ λ θ

= = ×

= ×

∫

∫

0 0 0j j j j jq p M p p d p M

p G d( ) ( ) ( )

( ) ( )
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∫ 0 1
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j j j jp G d
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q p M p( ) ( ) ( )
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+ −1i i j j iq p M p
n

Note: q need to be normalized!  Conjugate priors 
can help to compute q0.
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Assessing the DP prior

Two Aspects of Prior:p

α-- influences the number of unique values of θ

G  λ govern distribution of proposed values G0, λ -- govern distribution of proposed values 
of θ

e ge.g.

I can approximate a distribution with a large 
number of “small” normal components or a p
smaller number of “big” components.
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Assessing the DP prior: choice of α

There is a relationship between α and the number p
of distinct theta values (viz number of normal 
components).  Antoniak (74) gives this from MDP.

( ) ( )
( )
αα
α

Γ
= =

Γ +
* ( )Pr k k

nI k S
n

S are “Stirling numbers of First Kind.”  Note: S 
cannot be computed using standard recurrence 

l h f 0 h flrelationship for n > 150 without overflow! 

( )
( )

( )( )γ −Γ
+� 1( ) ln

kk
n

n
S n

k
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Assessing the DP prior: choice of α
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Assessing the DP prior: Priors on α

Fixing may not be reasonable.  Prior on number of g y
unique theta may be too tight.

“Solution:”  put a prior on alpha.p p p

Assess prior by examining the priori distribution of 
number of unique theta.

( ) ( ) ( )α α α= ∫* *p I p I p d

( ) ( )
( )

φ
α αα
α α

⎛ ⎞−
∝ −⎜ ⎟−⎝ ⎠

1p
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Assessing the DP prior: Priors on α
Prior on alpha Implied Prior on Istar
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Assessing the DP prior: Choice of  λ

( ) ( ) ( ) αε ε θ θ λ θ= = ×∫q p M p G d( ) ( ) ( ) ( )
ε ε θ θ λ θ

α
= = ×

+ −∫0 0 0 1j j j j jq p M p G d
n

Both α and λ determine the probability of a “birth ” Both α and λ determine the probability of a birth.  

Intuition:

1. Very diffuse settings of λ reduce model prob.

2. Tight priors centered away from y will also 
d  d l breduce model prob.

Must choose reasonable values.  Shouldn’t be very 
sensitive to this choice
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Assessing the DP prior: Choice of  λ

( ) ( )μ μ υ− Σ Σ1: ~ ; ~G N a IW V( ) ( )μ μ υΣ Σ0 : , ; ,G N a IW V

Choice of λ made easier if we center and  scale both Choice of λ made easier if we center and  scale both 
y and x by the std deviation.  Then we know 
much of mass  ε distribution should lie in [-2,2] x 
[-2,2].

Set μ= =2 and 0V vI

We need assess υ, v, a with the goal of spreading 
components across the support of the errors.  
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Assessing the DP prior: Choice of  λ

Look at marginals of μ and σ1 Look at marginals of μ and σ1 

( )υChoose , ,v a

[ ]σ
∋

< < =1Pr .25 3.25 .8

[ ]μ− < < =Pr 10 10 .8

υ⇒ = = =2.004, .17, .016v a

Very Diffuse!
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Draws from G0
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Gibbs Sampler for DP in the IV Model 

{ }
{ }

β δ θ

δ β θ

, , , ,

, , , ,

i

i

x y z

x y z

Same as for Normal 
Mixture Model{ }

{ }
{ }

β

θ δ β

θ δ β*

, , , ,

, , , ,
i

i

y

x y z

i d “R i ” St

Doesn’t Vectorize

{ }θ δ β

α *

, , , , ,i ind x y z

I

“Remix” Step

Trivial (discrete)

q computations and conjugate draws are can 
b  t i d (if t d i  d  f  
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Sampling Experiments 

1 How well do DP models accommodate 1. How well do DP models accommodate 
departures to normality?

2 How useful are the DP Bayes results for those 2. How useful are the DP Bayes results for those 
interested in “standard” inferences such as 
confidence intervals? 

3. How do conditions of many instruments or weak 
instruments affect performance?
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Sampling Experiments Choice of Non normal Sampling Experiments – Choice of Non-normal 
Alternatives 

Let’s start with skewed distributions   Use a Let s start with skewed distributions.  Use a 
translated log-normal. Scale by inter-quartile 
range.
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Sampling Experiments Strength of Sampling Experiments – Strength of 
Instruments- F stats 

Normal Errors Log-normal Errors
0

40
Normal Errors

30

Log normal Errors

Moderate

0
20

30

0
20

weak

k=10

0.5 1 1.5

0
10

0.5 1 1.5
0

1

strong

delta delta

Weak case is bounded away from zero.  Our 
simulated datasets have information!
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Sampling Experiments- Alternative Procedures

Classical Econometrician: “We are interested in Classical Econometrician: We are interested in 
inference.  We are not interested in a better point 
estimator.”

Standard asymptotics for various K-class estimators

“Many” instruments asymptotics (bound F as k, N Many  instruments asymptotics (bound F as k, N 
increase) 

“Weak” instrument asymptotics (bound F and fix k as y p
N increases) Kleibergen (K), Modified Kleibergen 
(J), and Conditional Likelihood Ratio(CLR) 
(Andrews et al 06)  
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Sampling Experiments Coverage of “95%” Sampling Experiments- Coverage of 95%  
Intervals

N=100; based on 400 reps

error dist BayesDP TSLS-STD Fuller-Many CLR
weak

Normal 0.83 0.75 0.93 0.92
L N l 0 91 0 69 0 92 0 96LogNormal 0.91 0.69 0.92 0.96

strong
Normal 0.92 0.92 0.95 0.94
LogNormal 0.96 0.90 0.96 0.95

7% (normal) | 42 % (log-normal) 
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Bayes Vs  CLR (Andrews 06) Bayes Vs. CLR (Andrews 06) 
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Bayes Vs  Fuller-ManyBayes Vs. Fuller Many
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A Metric for Interval Performance

Bayes Intervals don’t “blow-up” – theoretically some Bayes Intervals don t blow up  theoretically some 
should.  However, it is not the case that > 30 
percent of reps have no information! 

Smaller and located closer to the true beta.

Scalar measure: 

( )

[ ] ∫

~ ,
1U

X Unif L U

[ ]β β− = −
−∫
1U

L
E X x dx

U L
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Interval Performance

error dist BayesDP TSLS-STD Fuller-Many CLR-Weak
weak

Normal 0 26 0 27 0 35 0 75Normal 0.26 0.27 0.35 0.75
LogNormal 0.18 0.37 0.61 1.58

strong
N l 0 09 0 09 0 09 0 10Normal 0.09 0.09 0.09 0.10
LogNormal 0.07 0.14 0.14 0.16
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Estimation Performance - RMSE

Error Dist
BayesNP BayesDP TSLS F1

weak

Estimator

Normal 0.24 0.24 0.26 0.29
LogNormal 0.35 0.16 0.37 0.43

strongstrong
Normal 0.07 0.07 0.08 0.08
LogNormal 0.11 0.05 0.12 0.12
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Estimation Performance - Bias

BayesNP BayesDP TSLS F1
weak

Normal 0 17 0 18 0 20 0 05Normal 0.17 0.18 0.20 0.05
LogNormal 0.26 0.09 0.28 0.09

strong
N l 0 02 0 02 0 02 0 00Normal 0.02 0.02 0.02 0.00
LogNormal 0.04 0.01 0.06 0.01
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An Example: Card Data 

y is log wage.  y is log wage.  

x education (yrs)

z is proximity to 2 and 4 year collegesz is proximity to 2 and 4 year colleges

N=3010. 

Evidence from standard models is a negative 
correlation between errors (contrary to the old ability 
omitted variable interpretation).omitted variable interpretation).
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An Example: Card Data 

Norm Errors DP Errors
20

00
25

00

20
00

10
00

15
00

10
00

15
00

0
50

0

[ ] 0
50

0
[ ]

posterior mean =  0.185
beta

0.0 0.1 0.2 0.3 0.4 0.5

0 [ ]

posterior mean =  0.105
beta

0.0 0.1 0.2 0.3 0.4 0.5

0 [ ]

47



An Example: Card Data 
Error Density

1
2

Non-normal and 
low dependence

0
1

e2

low dependence.

Implies “normal” 
error model results 

-1

error model results 
may be driven by 
small fraction of 
data

-2 -1 0 1 2

-2

data.
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An Example: Card Data 

One Component Normal

One-component 
model is “fooled” 

2

p

model is fooled  
into believing 
there is a lot 
“ d i ”

1

“endogeneity”0e2

-2
-1
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Summary Bayes DP IV

BayesDP IV works well under the rules of the BayesDP IV works well under the rules of the 
classical instruments literature game. 

BayesDP strictly dominates BayesNPBayesDP strictly dominates BayesNP

Do you want much shorter intervals (more efficient 
use of sample information) at the expense of use of sample information) at the expense of 
somewhat lower coverage in very weak 
instrument case? 
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“Plausibly Exogenous” Instruments

Many IV analyses use instruments that are can be Many IV analyses use instruments that are can be 
viewed as “approximately” exogenous but that 
we might argue are not “strictly” exogeneous –

 h l l  i  i  i  th  k t  e.g. wholesale prices, prices in other markets, 
other characteristics …

Yet these analyses impose strict exogeneity in Yet these analyses impose strict exogeneity in 
estimation.  Careful workers use other informal 
methods for assessing exogeneity such as 

b blregressing instruments on observables …

Can we help?
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“Plausibly Exogenous” Instruments

Our goal: provide operational definition of Our goal: provide operational definition of 
“plausible” or approximate exogeneity

β γ ε= + +
= Π +

Y X Z
X Z V

γ is an unidentified parameter – models the 
relationship between instruments Z and structural p
error.

γ is a measure of the “direct” effect of instruments
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“Plausibly Exogenous” Instruments

Standard approach (dogmatic prior): γ = 0Standard approach (dogmatic prior): γ 0

Our approach: 

Put a prior on γ.

Sources of Prior information: 

“direct” effect of instruments (e.g. A&K direct 
effect of qtr of birth)

prior beliefs that  γ is small relative to  β

Answers the question: “How bad do the instruments 
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“Plausibly Exogenous” Instruments

Given some prior information on γ  how should we Given some prior information on γ, how should we 
conduct inference?

Full Bayes (using straightforward extensions of what y ( g g
we have done for strict exogeneity case.

Approximate Bayes:pp

prior-weighted frequentist intervals

intervals constructed via a “local” form of intervals constructed via a local  form of 
asymptotic experiment

Details: Conley, Hansen, Rossi, “Plausibly 

54

y, , , y
Exogenous” SSRN



“Plausibly Exogenous” Examples

Aggregate Share Model for Margarine Demand 

( ) ( )β λ γ= + + +log logshare retail price X Z u

gg g g
(inspired by Chintagunta, Dube, Goh, 2003)

( ) ( )β λ γ= + + +log logshare retail price X Z u

Wholesale price is “plausibly exogeneous” driven p p
more by cost shocks then manufacturer-
sponsored “demand” shocks.

P   d  ff  f h l l   l  h  Prior:  direct effects of wholesale price less than 
price elasticity,

( )γ β δ β2 2~ 0,N
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“Plausibly Exogenous” Examples

Small Sample: 
117117

intervals are 
insensitive to a β insensitive to a 
large range of δ

values

β
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“Plausibly Exogenous” Examples

Angrist and Krueger (1991)

( ) ( )β λ γ= + + +log logwage school X Z u

g g

I t t  t  f bi thInstruments: quarter of birth

Controls: year of birth/state dummies

Bound, Jaeger and Baker argue Q of B is not 
exogeneous and that direct effect could be of 
the order of 1 per cent   This motivates our the order of 1 per cent.  This motivates our 
choice of prior: ( )γ σ =2 2~ 0, (.005)N
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“Plausibly Exogenous” Examples

Large Sample: 
329 509329,509

Intervals are 
sensitive to the β sensitive to the 
assumption of 

exogeneity

β
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Conclusions

A “true” Bayesian IV approach is possible   Works A true  Bayesian IV approach is possible.  Works 
well relative to “state of the art” frequentist 
methods

Prior information is important and prior sensitivity 
analysis is an excellent way to measure sample 
i f i  information 

59


