Risk, Diversification and Growth ICE08 Project

Martí Mestieri Tarik Ocaktan Thom Sampson David Wiczer

August 7, 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

The Model

Results

The Model

- Acemoğlu and Zilibotti (JPE 1997)
- OLG economy: each generation lives for two periods.

- No population growth.
- Production sector consists of two sectors.

Production sector consists of two sectors:

Final goods sector with Cobb-Douglas production function

$$Y(t) = K(t)^{\alpha} L(t)^{1-\alpha}$$
(1)

with full capital depreciation $\delta = 1$.

Intermediate sector transforms savings s(t - 1) into capital k(t) to be used for production at time t. Sector consists of a continuum [0, 1] of intermediates, and stochastic elements only affect this sector. There is a riskless asset X(t).

The Model

Production Sector

Intermediate sector:

- Possible states of nature are also within the unit interval. Intermediate sector *j* ∈ [0, 1] pays a positive return only in state *j* and nothing in any other state.
- Each sector has a minimum size requirement M(j) such that there are positive returns only if aggregate investment, I(j, t), in sector exceeds M(j)

$$M(j) = \max\left\{0, \frac{D}{1-\gamma}(j-\gamma)\right\}$$
(2)

► Intermediate sectors j ≤ γ have no minimum size requirement.

The Model

Production Sector

Figure: Minimum size requirements, M(j), of different sectors and demand for assets, $I^*(n)$

The Model Household Sector

Preference of household from a generation born at time t

$$E_t U(c_1(t), c_2(t+1)) = U(c_1(t)) + \beta \int_0^1 U(c_2(j, t+1)) dj$$

 Each household has 1 unit of labor when young and no labor endowment when old

The Model Timing of Events

Figure: Life cycle of a typical household

▲口>▲□>▲目>▲目> 目 ろんの

The Model Capital Stock

In state j, the aggregate stock of capital is

$$K(j,t+1) = \int_{h\in\mathcal{H}_t} \left(q X^h(t) + Q I^h(j,t) \right) dh$$

I^h(j, t): amount of savings invested by young agent h ∈ H_t in sector j at time t

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

> $X^{h}(t)$: amount invested in the safe intermediate sector

The Model Equilibrium Factor Prices

Wage equation

$$w(j,t+1) = (1-\alpha)K(j,t+1)^{\alpha}$$

= $(1-\alpha)\left(\int_{h\in\mathcal{H}_t} (qX^h(t)+Ql^h(j,t))dh\right)^{\alpha}$

Return to investment

$$R(j, t+1) = \alpha K(j, t+1)^{\alpha-1}$$

= $\alpha \left(\int_{h \in \mathcal{H}_t} (qX^h(t) + QI^h(j, t)) dh \right)^{\alpha-1}$

The Model

Representative Household Problem

Households take prices and the set of available securities at time *t* as give. The problem of the representative household $h \in \mathcal{H}_t$ is given by

(日) (日) (日) (日) (日) (日) (日) (日)

Outline

The Model

Results

▲□▶▲□▶▲□▶▲□▶ □ シタの

Method

Different Approaches to Solve the Problem

 Maximization problem by stating value function and market clearing constraints.

- First order condition: useful to characterize interior solutions.
- Complementarity conditions: to try complete characterization but PATHAMPL lacks appropriate algorithm.

Policy Functions

Policy Functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Chebyshev Coefficients

	0 5 4 4 0 4
1	0.54481
2	0.02682
3	-0.00581
4	0.00266
5	-0.00152
6	0.00098
7	-0.00068
8	0.00049
9	-0.00037
10	0.00028
11	-0.00022
12	0.00017
13	-0.00014
14	0.00011
15	-0.00009
16	0.00007
17	-0.00005
18	0.00003
19	-0.00002
20	0.00002
20	0.00001

Chebyshev Approximation Residuals

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Approximation Accuracy

Safe Investment

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Chebyshev Approximation at the Kink

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の久(で)

Chebyshev Approximation at the Kink

◆□ → < 個 → < 目 → < 目 → < 目 → < 0 へ ○</p>

Simulated Trajectory

Year 1970	(*)
Per capita GDP mean for rich countries (A)	13 863
Per capita GDP mean for emerging countries (B)	2 075
Ratio (A/B)	6.68
Ratio of capital	225
Sample 1970-2006 Mean GDP growth rate in rich countries Mean GDP growth rate in emerging countries Average variance in rich countries Average variance in emerging countries	2.24% 2.22% 0.05% 0.17%

Data

Simulating Moments

- ► Back of the envelope calculation using a Cobb-Douglas production $y = k^{\alpha} 1^{1-\alpha}$ function with parameter $\alpha = 0.35$, implies that an average developing country has only a .5% stock of capital of the richest.
- Fixing the coefficient or risk aversion to 4 and the share of risky activities without no fix cost in the economy to 10%. Fixing q = 1, given that what matters is the relative payment Q/q, we have have simulated the moments that our model predicts for different levels of D and Q.
- We have tried to match two moments: the average growth and variance of emerging countries relative to the developed. We have 2 free variables to match 2 moments. The solution seems to be around D = .85, Q = 5.5.