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Goal

• Solve a dynamic strategic game with discrete states and
continuous choices (similar to the one that Karl Schmedders
presented)

• Introduce complementarity conditions
• Consider this dynamic strategic game as the second stage of a

leader-follower game (planner in 1st state, duopoly in the 2nd)
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Environment

• 2 big polluters⇒ compete in a dynamic Cournot game
• There is another sector with small polluters
• Firms produce goods and need to back up emissions with

pollution permits
• The 2 big polluters have market power in both the sectoral good

market and the permits market
• Emissions depend on output and the emissions rate represented

by θi ⇒ this is our state variable
• Firms can invest to be cleaner in the future
• Transition to next state depends on investment
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Game

• Firm’s production qi

• Demand function P(Q) = A− b(q1 + q2)

• Profit function of firm i in period t is:

Πit = ptqit − ct [θitqit − zit ]− dx2
it

where
ct : cost of pollution permit

ct = γ(qf +
∑

ei − z f −
∑

zi )

qf : emissions of small polluters before introducing permits
z f : permits given to small polluters
zit : permits given to big polluters
xit : investment
dx2

it : cost of investment
θit : efficiency
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Dynamics

• States are j = 1..S
• θi = Θ(j−1)/(S − 1) for some Θ ε [0,1]

• Transition probabilities depend on investment and current state
• We constrain the transition to contiguous states

. Prob of going to lower state (more efficient - lower emission rate)
⇒ θx

1+θx+(1−θ)

. Prob of staying⇒ 1
1+θx+(1−θ)

. Prob of going to a higher state⇒ (1−θ)
1+θx+(1−θ)

• Note that investment affects mainly the probability of reducing a
firm’s emissions rate



Dynamic Game (2nd stage) Social Planner (1st stage) Results Extensions Conclusions

Equations

• Bellman equation
• FOC with respect to quantities qi

• xi ≥ 0 ⊥ dV
dxi
≤ 0

• Three equations and one complementarity per firm per state
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LOG FILE WITH PATH SOLVER

Major Iteration Log
major minor func grad residual step type prox inorm (label)
0 0 3 3 7.1624e-01 I 0.0e+00 1.0e-01 (_scon[1200])
1 1 4 4 5.9071e-03 1.0e+00 SO 0.0e+00 1.1e-03 (_scon[798])
2 1 5 5 2.3457e-06 1.0e+00 SO 0.0e+00 5.3e-07 (_scon[1199])
3 1 6 6 4.0926e-10 1.0e+00 SO 0.0e+00 2.5e-10 (_scon[285])

Major Iterations. . . . 3
Minor Iterations. . . . 3
Restarts. . . . . . . . 0
Crash Iterations. . . . 2
Gradient Steps. . . . . 0
Function Evaluations. . 6
Gradient Evaluations. . 6
Basis Time. . . . . . . 0.438000
Total Time. . . . . . . 0.657000
Residual. . . . . . . . 4.092554e-10
Path 4.7.01: Solution found.
5 iterations (2 for crash); 3 pivots.
6 function, 6 gradient evaluations.
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Social Planner Problem

• Since there is market power in the permits market, initial
allocation matters

• The planner uses the initial allocation as a policy instrument to
maximize welfare

• A completely “non-parametric” rule is too highly dimensional (at
least for us and by now)

• We solve for an optimal rule of thumb that depends on a single
parameter ρ

• The planner sets for the optimal rule of thumb at time 0 and
forever (taking into account strategic behavior of the firms)

zi (θi , θ−i ) =
θ−i + ρ

θi + θ−i + 2ρ
Z

where Z is the total number of permits
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Social Planner Problem cont

maxρ W (θ0; ρ)

s.t . W (θ; ρ) = CSbig(θ; ρ) + CSsmall (θ; ρ) . . .

· · · − d
∑

i

xi (θ; ρ)2 + β
∑

s

Pr(θ′|θ, x ; ρ)W (θ′; ρ) ∀i , θ

V (θ; ρ) = Π(θ; ρ) + δ
∑

s

Pr(θ′|θ, x ; ρ)V (θ′; ρ) ∀i , θ

dV
dq

= 0 ∀i , θ

x ≥ 0 ⊥ dV
dx
≤ 0 ∀i , θ
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Some computational issues

• Given that PATH was very efficient in the second stage, we
thought of using the solver in this context as well

• However, the PATH solver does not allow for an objective
function, so we need to move to KNITRO

• Luckily, KNITRO solves the optimization very rapidly and
converges to our optimal rule of thumb

• We check SOC conditions
• We do a grid to evaluate our function and it seems well behaved.

The maximum coincides with the solver solution.
• A starting value helps. We solve for the model for a fixed ρ using

PATH in less than one second and then use it as an initial guess
to solve the MPEC
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Our Experiment

We consider three different hypothetical cases:
1. The social planner gives no permits for free
2. The social planner distributes all permits to the oligopolists

symmetrically
3. The social planner follows the optimal rule of thumb
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A more flexible rule of thumb

• We consider two possibilities to make our rule of thumb more
flexible:

1. Make the formula of the rule of thumb more non-parametric adding
higher order terms (normalize c1 to 1) - simulation with linear and
squared terms solves well with KNITRO.

zi(θ) =
c0 + c1θ−i + c2θi + c3θ

2
−i + c4θ

2
i

2c0 + (c1 + c2)(θi + θ−i) + (c3 + c4)(θ2
i + θ2

−i)
Z

2. Express the complete game as a complementarity problem by
deriving the FOC conditions of the planner - taking policy functions
into account. Solve using PATH.

• The polynomial approach works, and results suggest that other
rules of thumb might perform better. To add more terms we
should move to more adequate approximation functions

• We have tried to push the second approach, but we did not quite
get there
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Conclusions

• We have presented a dynamic game with complementarities
within a leader-follower framework

• The dynamic game with complementarities worked efficiently
with the PATH solver

• The leader-follower game did not work with the PATH solver but
worked with KNITRO

• The fact that the solvers have different purposes highlights the
importance of understanding the details (or looking for
optimization people)

• In our application, we solved for an optimal rule of thumb to
allocate pollution permits that performed well

• It could be interesting to see if we can allow for a more flexible
rule that accommodates more parameters
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