Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	0000	0	0

An Optimal Rule of Thumb for Pollution Permits Allocation

Evangelina Dardati and Mar Reguant

ICE 08

August 2008

- Solve a dynamic strategic game with discrete states and continuous choices (similar to the one that Karl Schmedders presented)
- Introduce complementarity conditions
- Consider this dynamic strategic game as the second stage of a leader-follower game (planner in 1st state, duopoly in the 2nd)

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
0000	0000	0000	0	0

Environment

- 2 big polluters \Rightarrow compete in a dynamic Cournot game
- There is another sector with small polluters
- Firms produce goods and need to back up emissions with pollution permits
- The 2 big polluters have market power in both the sectoral good market and the permits market
- Emissions depend on output and the emissions rate represented by θ_i ⇒ this is our state variable
- Firms can invest to be cleaner in the future
- Transition to next state depends on investment

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
○●○○○	0000	0000	O	O
	Gar	ne		

- Firm's production q_i
- Demand function $P(Q) = A b(q_1 + q_2)$
- Profit function of firm *i* in period *t* is:

$$\Pi_{it} = p_t q_{it} - c_t [\theta_{it} q_{it} - z_{it}] - dx_{it}^2$$

where

ct: cost of pollution permit

$$c_t = \gamma (q^f + \sum e_i - z^f - \sum z_i)$$

q^f: emissions of small polluters before introducing permits

- z^{f} : permits given to small polluters
- zit: permits given to big polluters
- *x_{it}*: investment
- dx_{it}^2 : cost of investment
- θ_{it} : efficiency

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
	00000	0000	0	U

Dynamics

- States are *j* = 1..*S*
- $\theta_i = \Theta^{(j-1)}/(S-1)$ for some $\Theta \in [0,1]$
- Transition probabilities depend on investment and current state
- We constrain the transition to contiguous states
 - . Prob of going to lower state (more efficient lower emission rate) $\Rightarrow \frac{\theta x}{1 + \theta x + (1 - \theta)}$
 - . Prob of staying $\Rightarrow \frac{1}{1+\theta x+(1-\theta)}$
 - . Prob of going to a higher state $\Rightarrow \frac{(1-\theta)}{1+\theta x+(1-\theta)}$
- Note that investment affects mainly the probability of reducing a firm's emissions rate

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	0000	0	0

- Bellman equation
- FOC with respect to quantities q_i
- $x_i \ge 0 \perp \frac{dV}{dx_i} \le 0$
- Three equations and one complementarity per firm per state

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
0000	0000	0000	0	0

LOG FILE WITH PATH SOLVER

```
Major Iteration Log
 major minor func grad residual step type prox inorm (label)
   0
         0 3 3 7.1624e-01
                                         I 0.0e+00 1.0e-01 (_scon[1200])
         1 4 4 5.9071e-03 1.0e+00 SO 0.0e+00 1.1e-03 ( scon[798])
   1
   2
         1 5 5 2.3457e-06 1.0e+00 SO 0.0e+00 5.3e-07 ( scon[1199])
   3
         1
              6 6 4.0926e-10 1.0e+00 SO 0.0e+00 2.5e-10 (_scon[285])
Major Iterations. . . 3
Minor Iterations. . . . 3
Restarts. . . . . . . 0
Crash Iterations. . . 2
Gradient Steps. . . . 0
Function Evaluations. 6
Gradient Evaluations. . 6
Basis Time. . . . . . 0.438000
Total Time. . . . . . 0.657000
Residual. . . . . . . 4.092554e-10
Path 4.7.01: Solution found.
5 iterations (2 for crash); 3 pivots.
6 function, 6 gradient evaluations.
```

Dynamic Game (2nd stage) 00000

Social	Planner	(1st	stage)
•000	2		

Results 0000 Extensions O Conclusions O

Social Planner Problem

- Since there is market power in the permits market, initial allocation matters
- The planner uses the initial allocation as a policy instrument to maximize welfare
- A completely "non-parametric" rule is too highly dimensional (at least for us and by now)
- We solve for an optimal rule of thumb that depends on a single parameter ρ
- The planner sets for the optimal rule of thumb at time 0 and forever (taking into account strategic behavior of the firms)

$$Z_i(heta_i, heta_{-i}) = rac{ heta_{-i}+
ho}{ heta_i+ heta_{-i}+2
ho}Z$$

where Z is the total number of permits

e (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
	0000	0000	0	0

Social Planner Problem cont

$$\max_{\rho} \quad W(\theta_0; \rho)$$

s.t.
$$W(\theta; \rho) = CS_{big}(\theta; \rho) + CS_{small}(\theta; \rho) \dots$$
$$\dots - d\sum_{i} x_{i}(\theta; \rho)^{2} + \beta \sum_{s} Pr(\theta'|\theta, x; \rho)W(\theta'; \rho) \quad \forall i, \theta$$
$$V(\theta; \rho) = \Pi(\theta; \rho) + \delta \sum_{s} Pr(\theta'|\theta, x; \rho)V(\theta'; \rho) \quad \forall i, \theta$$
$$\frac{dV}{dq} = 0 \quad \forall i, \theta$$
$$x \ge 0 \perp \frac{dV}{dx} \le 0 \quad \forall i, \theta$$

(2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
	0000	0000	0	0

Some computational issues

- Given that PATH was very efficient in the second stage, we thought of using the solver in this context as well
- However, the PATH solver does not allow for an objective function, so we need to move to KNITRO
- Luckily, KNITRO solves the optimization very rapidly and converges to our optimal rule of thumb
- We check SOC conditions
- We do a grid to evaluate our function and it seems well behaved. The maximum coincides with the solver solution.
- A starting value helps. We solve for the model for a fixed ρ using PATH in less than one second and then use it as an initial guess to solve the MPEC

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000		0000	O	O

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	•000	O	O

Our Experiment

We consider three different hypothetical cases:

- 1. The social planner gives no permits for free
- 2. The social planner distributes all permits to the oligopolists symmetrically
- 3. The social planner follows the optimal rule of thumb

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	○●○○	O	O

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	0000	0	0

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	000●	O	O

Dynamic	Game	(2nd	stage)
00000			

Social	Planner	(1st	stage)
0000)		

Results

Conclusions O

A more flexible rule of thumb

- We consider two possibilities to make our rule of thumb more flexible:
 - Make the formula of the rule of thumb more non-parametric adding higher order terms (normalize c₁ to 1) - simulation with linear and squared terms solves well with KNITRO.

$$z_i(\theta) = \frac{c_0 + c_1\theta_{-i} + c_2\theta_i + c_3\theta_{-i}^2 + c_4\theta_i^2}{2c_0 + (c_1 + c_2)(\theta_i + \theta_{-i}) + (c_3 + c_4)(\theta_i^2 + \theta_{-i}^2)}Z$$

- 2. Express the complete game as a complementarity problem by deriving the FOC conditions of the planner taking policy functions into account. Solve using PATH.
- The polynomial approach works, and results suggest that other rules of thumb might perform better. To add more terms we should move to more adequate approximation functions
- We have tried to push the second approach, but we did not quite get there

Dynamic Game (2nd stage)	Social Planner (1st stage)	Results	Extensions	Conclusions
00000	0000	0000	0	•

Conclusions

- We have presented a dynamic game with complementarities within a leader-follower framework
- The dynamic game with complementarities worked efficiently with the PATH solver
- The leader-follower game did not work with the PATH solver but worked with KNITRO
- The fact that the solvers have different purposes highlights the importance of understanding the details (or looking for optimization people)
- In our application, we solved for an optimal rule of thumb to allocate pollution permits that performed well
- It could be interesting to see if we can allow for a more flexible rule that accommodates more parameters