◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Portfolio Choice with Borrowing Constraints

INSTITUTE OF COMPUTATIONAL ECONOMICS

Heng Chen - University of Zurich

Fabian Kinderman - University of Würzburg

Robert Sarama - Ohio State University

Daniel Shoag - Harvard University

Xuan Tam - University of Virginia

Introduction	Model	Calibration	Results
Model Predict	ions		

SHARE OF RISKY ASSETS IN PORTFOLIO DECREASES OVER THE LIFE-CYCLE WHEN THERE IS LABOR INCOME UNCERTAINTY.

CORRELATION BETWEEN LABOR INCOME FLUCTUATIONS AND RISKY ASSET RETURN FLUCTUATIONS INDUCES AGENTS TO HOLD MORE SAFE ASSETS.

Introduction	Model	Calibration	Results
Basic Idea			

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Life-cycle model
- Partial equilibrium
- Retirement with no bequest motive
- Life begins at age 20 and ends at age 80

Introduction	Model	Calibration	Results
Timing			

t+1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

↑

AGENTS OBSERVE: Wealth: W_t Age: t Income: Y_t

Introduction	Model	Calibration	Results
Timina			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

AGENTS CHOOSE: Consumption: Ct Risky Asset Holding: At Risk Free Asset Holding: St t+1 AGENTS OBSERVE: Wealth: W_t Age: t Income: Y_t

Introduction	Model	Calibration	Results
Timina			

AGENTS CHOOSE:	
Consumption: C _t	
Risky Asset Holding: At	
Risk Free Asset Holding: St	
\downarrow	
t	—— t+1
\uparrow	\uparrow
AGENTS OBSERVE:	STATES EVOLVE:
Wealth: W_t	$W_{t+1} = (1 + r_f)S_t + (1 + r_t^a)A_t$
Age: t	$\mathbf{r}_{t+1}^{a} = f(\mathbf{r}_{t}^{a}, \epsilon^{a})$
Income: Y _t	$Y_{t+1} = f(Y_t, \epsilon^{y})$

・ロト・日本・モート モー うべの

Introduction	Model	Calibration	Results
Households			

Period Utility	$u(C_t, K_t) = \frac{(C_t)^{1-\gamma}}{1-\gamma}$
Budget Constraint	$C_t + A_t + S_t = W_t + Y_t$
Nonnegativity Constraint	$C_t \geq 0$
Borrowing Constraint	$S_t \geq \underline{S}$
Short-selling Constraint	$A_t \geq 0$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ ○ ◆ ○ ◆

Introduction	Model	Calibration	Results
State Transiti	ons		

$$W_{t+1} = (1 + r_f)S_t + (1 + r_t^a)A_t$$
$$r_{t+1}^a = f(r_t^a, \epsilon^a)$$
$$Y_{t+1} = f(Y_t, \epsilon^y)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Dynamic Decision Problem

 In period t the agent chooses a vector x = [S_t A_t]' to maximize expected life-time utility given a state vector s:

$$V_t(\mathbf{s}) = \max_{x} u_t(\mathbf{x}, \mathbf{s}) + \beta \int \hat{V}_t(\mathbf{s}'; \mathbf{a}) dF(\mathbf{s}'|\mathbf{s}, \mathbf{x})$$

- One continuous state: Wealth (W)
- Two discrete states: Risky asset return (r^a) and Labor Income (Y)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Value Function Approximation

• Approximate using *n* Chebyshev nodes *z* and *n* Chebyshev basis functions *T*:

$$\hat{V}_t = \sum_{i=0}^n a_i T_i(z)$$

Introduction	Model	Calibration	Results
Method			

- We approximate the value function and solve the problem via backward recursion using AMPL software.
- Within AMPL we call the KNITRO nonlinear optimization solver to compute the optimal policy functions of the agents in each period.
- We run Monte Carlo simulations and generate graphics in MATLAB.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Baseline Calibration

PARAMETER	VALUE	DESCRIPTION
γ	3.000	Coefficient of relative risk aversion
r _f	0.025	Risk free rate
β	0.990	Time discount factor
n	35	Order of approximation
<u>S</u>	0.000	Borrowing constraint

Discrete states r^a and Y take on two values each with i.i.d. shocks.

Income in First Period

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Deterministic Pre-retirement Income Stream

Sac

Income Risk and Retirement Payments

Borrowing Against Risky Asset Allowed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Correlation between Labor Income and Asset Risk

