
Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Condor: Supercomputing Without a
Super-Budget

Greg Thain and Steve Wright

uw-logo

University of Wisconsin
Department of Computer Sciences

Institute for Computational Economics, 2008

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Outline
1 Introduction to Condor

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

2 Condor Recipes
Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

3 Master-Worker: Parallel Programming Using Condor
Master-Worker
An MW Example: Value Function Iteration
The World of Condor

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Outline
1 Introduction to Condor

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

2 Condor Recipes
Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

3 Master-Worker: Parallel Programming Using Condor
Master-Worker
An MW Example: Value Function Iteration
The World of Condor

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Why Condor
Computation is cheap

Amazon.com EC2: 10 cents/hour
Academic computing: 4 cents/hour
Opportunistic computing: even cheaper

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Condor is a cluster computing manager for HTC
HTC: High Throughput Computing

High Throughput Computing, not
High Performance Computing

Dedicated Clusters
Cycle scavanging from desktops
Clusters of Clusters (The Grid)

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

HTC and the grid

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Installing Condor

Call your IT department!

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Typical Condor pool

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Three steps to cluster computing

Prepare your job and inputs
Write a submit_file

Run and manage your job

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Step 1: Prepare your job

Like going on vacation – pack carefully!
Check for library and other dependencies
Run condor_compile for checkpointed
Gather all inputs together

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Step 2: Write a submit file
Submit file describes your jobs to Condor

submit_file
universe = vanilla

executable = /usr/bin/matlab
arguments = gonkulate.m

transfer_input_files = gonkulate.m
should_transfer_files = yes
when_to_transfer_output = always

output = out
error = err
log = log
queue 1

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Step 3: Submit your job(s)

Shell prompt
condor_submit submit_file
Submitting job(s).....
Logging submit event(s).....
1 job(s) submitted to cluster 11.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

Step 3a: Manage your job(s)

Shell prompt
condor_rm my_job_number
condor_hold my_job_number
condor_release my_job_number

condor_q
condor_q -run

condor_status

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Outline
1 Introduction to Condor

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

2 Condor Recipes
Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

3 Master-Worker: Parallel Programming Using Condor
Master-Worker
An MW Example: Value Function Iteration
The World of Condor

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Long running jobs

What if you need to run a job that takes a month to run?
And the machine crashes?
Or loses power?
Or gets rebooted?

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Long running jobs

Solution: Checkpointing!
Condor can periodically save the whole state of the job
And restore it on a another machine, if needed

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Running Standard Universe Jobs

condor_compile your code
condor_compile gcc -o solver solver.c
condor_compile f77 -o executable source.f

indicate Standard universe in your submit file
Submit as normal
If execute machine dies, Condor restarts the job elsewhere
If submit machine dies, Condor restarts the job elsewhere

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Example: Statistical Bootstrapping
A Parameter Sweep

{z1, z2, z3, z4, z5, ...} Distribution {z2, z2, z5, ...} Sample

Resamp {z2, z5, z7, ...} Resamp {z5, z7, z9, ...} Resamp {z7, z7, z9, ...}

Analyze Analyze Analyze

Coalesce

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Example: Statistical Bootstrapping
A Parameter Sweep

{z1, z2, z3, z4, z5, ...} Distribution {z2, z2, z5, ...} Sample

Resamp {z2, z5, z7, ...} Resamp {z5, z7, z9, ...} Resamp {z7, z7, z9, ...}

Analyze Analyze Analyze

Coalesce

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Example: Statistical Bootstrapping
A Parameter Sweep

{z1, z2, z3, z4, z5, ...} Distribution {z2, z2, z5, ...} Sample

Resamp {z2, z5, z7, ...} Resamp {z5, z7, z9, ...} Resamp {z7, z7, z9, ...}

Analyze Analyze Analyze

Coalesce

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Example: Statistical Bootstrapping
A Parameter Sweep

{z1, z2, z3, z4, z5, ...} Distribution {z2, z2, z5, ...} Sample

Resamp {z2, z5, z7, ...} Resamp {z5, z7, z9, ...} Resamp {z7, z7, z9, ...}

Analyze Analyze Analyze

Coalesce

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Example: Statistical Bootstrapping
A Parameter Sweep

{z1, z2, z3, z4, z5, ...} Distribution {z2, z2, z5, ...} Sample

Resamp {z2, z5, z7, ...} Resamp {z5, z7, z9, ...} Resamp {z7, z7, z9, ...}

Analyze Analyze Analyze

Coalesce

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Statistical Bootstrapping
A Condor/Matlab implementation

Driver Creates distribution.
Driver Creates submit file.
Driver Runs

condor_submit.
Workers Analyzes subset

Driver Processes results.

driver.m
dist_size = 100000;
d = rand(dist_size, 1) .* 500;
subset = d(floor(rand(1000,1) .*
100000));
save "subset" subset;

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Statistical Bootstrapping
A Condor/Matlab implementation

Driver Creates distribution.
Driver Creates submit file.
Driver Runs

condor_submit.
Workers Analyzes subset

Driver Processes results.

Generated submit_file
universe = vanilla
executable = worker.m
transfer_files = true
when_to_transfer_output = on_exit
transfer_input_files = subset
output = mean.$(PROCESS)
log = log
queue 5

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Statistical Bootstrapping
A Condor/Matlab implementation

Driver Creates distribution.
Driver Creates submit file.
Driver Runs

condor_submit.
Workers Analyzes subset

Driver Processes results.

driver.m
system("condor_submit file");
system("condor_wait log");

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Statistical Bootstrapping
A Condor/Matlab implementation

Driver Creates distribution.
Driver Creates submit file.
Driver Runs

condor_submit.
Workers Analyzes subset

Driver Processes results.

worker.m – All in parallel
load "subset" subset;
subset =
subset(floor(rand(10,1) .* 1000));
printf("%f ", mean(subset));

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Statistical Bootstrapping
A Condor/Matlab implementation

Driver Creates distribution.
Driver Creates submit file.
Driver Runs

condor_submit.
Workers Analyzes subset

Driver Processes results.

driver.m
while (jobs– > 0)
tmp = sprintf("mean.%d", jobs);
f = fopen(tmp, "rb", "native");
val = fscanf(f, "%f");
results(jobs + 1) = val;
endwhile
result = mean(results);

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Running the example

Shell prompt
$./driver.m
Submitting job(s).....
Logging submit event(s).....
5 job(s) submitted to cluster 565262.

5 minutes later...

All jobs done.
mean of mean is 161.014978

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
DAGMan: Directed Acyclic Graph Manager

Often there are dependencies between the individual jobs
that make up your application.
One job’s output is another’s input.
The relationships between the different jobs are known a
priori, and not generated dynamically during execution.
Possibly there are many such relationships in your
application.

DAGMan is intended for applications like this.
Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
Example problem

Example
2-D Matrix of Condor jobs
Each job has two inputs

From leftmost neighbor
From lower neighbor

Initial conditions known
Desire maximum
concurrency 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
Example problem

Example
2-D Matrix of Condor jobs
Each job has two inputs

From leftmost neighbor
From lower neighbor

Initial conditions known
Desire maximum
concurrency 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
Example problem

Example
2-D Matrix of Condor jobs
Each job has two inputs

From leftmost neighbor
From lower neighbor

Initial conditions known
Desire maximum
concurrency 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
Example problem

Example
2-D Matrix of Condor jobs
Each job has two inputs

From leftmost neighbor
From lower neighbor

Initial conditions known
Desire maximum
concurrency 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
Example problem

Example
2-D Matrix of Condor jobs
Each job has two inputs

From leftmost neighbor
From lower neighbor

Initial conditions known
Desire maximum
concurrency 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMan
Example problem

Example
2-D Matrix of Condor jobs
Each job has two inputs

From leftmost neighbor
From lower neighbor

Initial conditions known
Desire maximum
concurrency 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

DAGMAN description file

JOB section names each node and its submit file
PARENT section describes dependencies
VARS section names variable to expand in submit file

DAG file
JOB Node_1_1 node.sub
JOB Node_2_1 node.sub
JOB Node_2_2 node.sub
. . .
PARENT Node_1_2 Node_2_1 CHILD Node_2_2
. . .
VARS Node_2_2 in1="f12"
VARS Node_2_2 in1="f21"
VARS Node_2_2 out="f22" . . .

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

submit
universe = vanilla

executable = sum.pl
arguments = $(IN1) $(IN2) $(IN3)

should_transfer_files = yes
when_to_transfer_output = on_exit

transfer_input_files = $(IN1), $(IN2), $(IN3)

output = $(OUT)
log = log

Notification = never
queue

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Running dagman

submit
$ condor_dag_submit grid.dag

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Condor and GAMS
Using the Grid support within GAMS

A new feature of GAMS!
GAMS itself writes submit files, calls condor_submit
Uses Condor script to glue the pieces together

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Condor and GAMS
Example code

New GAMS Commands
<model>.solvelink = 3
;do not wait for solve, just submit

<model>.handle (set by the ’submitting’ solver)

HandleStatus(handle) =
0 bad handle
1 model ready to solve but no solution
2 solution ready to be extracted

executeloadhandle model
; loads all equ and var info

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

Condor and GAMS
Running it

Shell Prompt
gamskeep transgrid10.gms

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Outline
1 Introduction to Condor

Why Condor
Condor Overview
Running your first Condor job
Managing Condor jobs

2 Condor Recipes
Automatic checkpoint of long-running codes
Statistical Bootstrapping
DAGMAN: Coordinating dependent jobs
Condor and GAMS

3 Master-Worker: Parallel Programming Using Condor
Master-Worker
An MW Example: Value Function Iteration
The World of Condor

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Two Condor Shortcomings

Condor doesn’t run short jobs well.
lots of time required to schedule jobs in the pool;
time needed to transmit the executable/data/results.

Condor doesn’t deal directly with parallel algorithms.
Can have the process on the user’s workstation generating
waves of “worker” jobs to run in parallel, but

each worker job must be scheduled anew in the Condor
pool, and
the master application has to handle all the details of
scheduling, rescheduling after faults, managing input and
outputs to workers, etc.

Master-Worker (MW) addresses these issues!

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Master-Worker: Basic Ideas

Master assigns tasks to the workers
Workers perform tasks, and report results back to master
Workers do not communicate (except through the master)

Simple!
Fault-tolerant
Dynamic
Programming model reusable across many applications.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Other Important Features!

Data common to all tasks is sent to workers only once
(Try to) Retain workers until the whole computation is
complete—don’t release them after a single task is done.

These features make for much higher parallel efficiency.
We now need to transmit much less data between master
and workers.
We avoid the overhead of putting each task on the condor
queue and waiting for it to be allocated to a processor.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

MW

Three abstractions in the master-worker paradigm: Master,
Worker, and Task.
The MW package encapsulates these abstractions

C++ abstract classes
User writes 10 functions (Templates and skeletons supplied
in distribution)
The MWized code will adapt transparently to the dynamic
and heterogeneous environment

The back side of MW interfaces to resource management
and communications packages:

Condor/PVM, Condor/Files
Condor/Unix Sockets
Single processor (useful for debugging)
In principle, could use other platforms.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

MW Classes

MWMaster
get_userinfo()
setup_initial_tasks()
pack_worker_init_data()
act_on_completed_task()

MWTask
(un)pack_work
(un)pack_result

MWWorker
unpack_worker_init_data()
execute_task()

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

But wait there’s more!

User-defined checkpointing of master. (Don’t lose the
whole run if the master crashes.)
(Rudimentary) Task Scheduling

MW assigns first task to first idle worker
Lists of tasks and workers can be arbitrarily ordered and
reordered
User can set task rescheduling policies

User-defined benchmarking
A (user-defined) task is sent to each worker upon
initialization
By accumulating normalized task CPU time, MW computes
a performance statistic that is comparable between runs,
though the properties of the pool may differ between runs.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

MW Applications

MWFATCOP (Chen, Ferris, Linderoth) – A branch and cut code
for linear integer programming

MWQAP (Anstreicher, Brixius, Goux, Linderoth) – A
branch-and-bound code for solving the quadratic assignment
problem

MWATR (Linderoth, Shapiro, Wright) – A trust-region-enhanced
cutting plane code for two-stage linear stochastic programming
and statistical verification of solution quality.

MWKNAP (Glankwamdee, Linderoth) – A simple
branch-and-bound knapsack solver

MWAND (Linderoth, Shen) – A nested decomposition-based
solver for multistage stochastic linear programming

MWSYMCOP (Linderoth, Margot, Thain) – An LP-based
branch-and-bound solver for symmetric integer programs

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Wealth Accumulation

Given initial capital stock x0, find V (x0)

V (x0) =

{
max
(ct ,lt)

∑∞
t=0 βtu(ct , lt)

s.t . xt+1 = xt + f (xt , lt)− ct

ct and lt are consumption and labor supply at time t
capital evolves according to xt+1 = xt + f (xt , lt)− ct

β is the discount factor and u(ct , lt) is the utility given
consumption ct and labor supply lt
V (x) is the value function for x0 = x

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Dynamic Programming

An optimization problem with infinitely many variables: ct , lt , xt ,
t = 0, 1, 2, . . . , so it’s hard to attack it directly.
But we can use the dynamic programming principle, because
the optimal objective V (x0) depends only on x0 - not on any
“past history” of x .
At the optimal values of xt , ct , lt we have

V (x0) = u(c0, l0) + β

∞∑
t=0

βtu(ct+1, lt+1)

= u(c0, l0) + βV (x1)

= u(c0, l0) + βV (x0 + f (x0, l0)− c0).

We can use this formula to find V for many different values of
x0 simultaneously.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Bellman Equation for V (x)

We look for a function V that satisfies this relationship (for all x):

V (x) = max
(c,l)

u(c, l) + βV (x + f (x , l)− c).

This is the Bellman equation.

The function V is unknown
Parametric dynamic programming: Approximate V (x) by
V̂ (x ; a), and solve for the parameters a using the Bellman
equation.

simplest representation: V̂ (x ; a) =

p∑
j=0

ajx j

find a ∈ Rp+1 such that V̂ (x ; a) “approximately” satisfies the
Bellman equation, on a finite grid of x values: x1, x2, . . . , xn.
(Data Fitting.)

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Value Function Iteration

Step 0. Initialization. Choose functional form for V̂ (x ; a) and
approximation grid X = {x1, . . . , xn}.
Make initial guess V̂ (x ; a0) and choose ε > 0.

Step 1. Maximization step. Fix ak = (ak
j)p

j=1.
For i = 1, . . . , n, compute
vi = TV̂ k (xi , ak) = max

(ci ,li)
u(ci , li) + βV̂ (xi + f (xi , li)− ci , ak)

Step 2. Data Fitting for a: Fix c, l . Find ak+1 s.t.
ak+1 = arg min a ‖V̂ (x , a)− v‖2

Step 3. Convergence. If ‖V̂ (x , ak+1)− V̂ (x , ak)‖∞ > ε, set
k ← k + 1 and go to Step 1; otherwise stop and report
solution.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

Value Function Iteration in MW

MASTER: Initialization. Choose functional form for V̂ (x ; a) and
approximation grid X = {x1, . . . , xn}.
Make initial guess V̂ (x ; a0) and choose ε > 0.

WORKER: Maximization: Fix ak = (ak
j)p

j=1.
For i = 1, . . . , n, compute (in parallel)
vi = TV̂ k (xi , ak) = max

(ci ,li)
u(ci , li) + βV̂ (xi + f (xi , li)− ci , ak)

MASTER: Data Fitting: Fix c, l . Find ak+1 s.t.
ak+1 = arg min a ‖V̂ (x , a)− v‖2

MASTER: Convergence. If ‖V̂ (x , ak+1)− V̂ (x , ak)‖∞ > ε, set
k ← k + 1 and go to Step 1; otherwise stop.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

MW Implementation

Each task finds the optimal (ci , li) for a batch of xi ’s.
Calls a simple FORTRAN code (to demonstrate that we
can!) to do minimizations.
Hot starting: the optimal (ci , li) is usually a great starting
point for (ci+1, li+1)—so report these values to the master
for use at the next iteration.
The task wrapper (C++) and the FORTRAN code
communicate via files.

Good algorithms are still vitally important!
A smart, hard-to-parallelize algorithm often beats a dumb,
pleasantly parallel algorithm.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

act_on_complete_task() on the Master stores the vi ’s
(and the ci and li values) as they arrive from the workers. When
all workers have reported, it solves the least-squares problem
(fitting step) to find ak+1.

Could still take a fitting step without waiting for all tasks to
report (partial information) to avoid hangups if some
workers go down.
Could adapt size of task (number of xi ’s in each task) to
accommodate workers of different speeds.

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

How Big Can These Get?

Judd: These models can get very big!!!
Investment Portfolio

d assets in the portfolio
Xj = {xj1, . . . , xjn} represents j-th asset’s position
state space: X = X1 × X2 · · · × Xd
transaction cost occurs when adjusting asset positions

Dynamic Principal-Agent Problem
the CEO’s performance is evaluated by multiple measures,
e.g. stock price, annual profits, etc.
the company decides the CEO’s compensation package

Many other economic applications

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

Master-Worker
An MW Example: Value Function Iteration

MWGAMS
Running short-lived GAMS as a MW task

MWGAMS is a MW application which runs GAMS in the
worker
Good for jobs with a lot of short optimization problems
User writes entirely in GAMS – no C++ code at all

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

The World of Condor

Summary

Condor can easily manage dedicated and desktop
machine
Idle workstations can provide lots of compute cycles
Master - Worker is a good way to run massively parallel
applications

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

The World of Condor

Condor team

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

The World of Condor

Condor in the US

pgflastimage

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

The World of Condor

Condor in Europe

pgflastimage

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

The World of Condor

Condor in the World

pgflastimage

Greg Thain and Steve Wright Supercomputing with Condor

Introduction to Condor
Condor Recipes

Master-Worker: Parallel Programming Using Condor
Summary

The World of Condor

For more information

Talk to Greg or Steve!
gthain@cs.wisc.edu

Condor web site: http://www.cs.wisc.edu
Condor-users mailing list (see web site)
Condor Week
(If all else fails) 600 page condor manual
Talk to Miron re: collaboration

Greg Thain and Steve Wright Supercomputing with Condor

	Introduction to Condor
	Why Condor
	Condor Overview
	Running your first Condor job
	Managing Condor jobs

	Condor Recipes
	Automatic checkpoint of long-running codes
	Statistical Bootstrapping
	DAGMAN: Coordinating dependent jobs
	Condor and GAMS

	Master-Worker: Parallel Programming Using Condor
	Master-Worker
	An MW Example: Value Function Iteration

	Summary
	The World of Condor

