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Abstract

We propose and estimate a model of dynamic oligopoly with durable

goods and endogenous innovation. Firms make dynamic pricing and in-

vestment decisions while taking into account the dynamic behavior of con-

sumers who anticipate the product improvements and price declines. The

distribution of currently owned products is a state variable that affects cur-

rent demand and evolves endogenously as consumers make replacement pur-

chases. Our work extends the dynamic oligopoly framework of Ericson and

Pakes (1995) to incorporate durable goods. We propose an alternative ap-

proach to bounding the state space that is less restrictive of frontier firms and

yields an endogenous steady-state rate of innovation. Using a simulated min-

imum distance estimator, we estimate the model for the PC microprocessor

industry and perform counterfactuals to measure the benefits of competi-

tion. Consumer surplus is 4.1 percent higher ($17 billion per year) with

AMD than if Intel were a monopolist. Innovation, however, would be higher

without AMD. We also show that prices and profits are substantially higher

when firms correctly account for the dynamic nature of demand, compared to

an alternative scenario in which they mistakenly ignore the effect of current

prices on future demand. Finally, equilibrium prices, profits, innovation, and

consumer surplus are all increasing in the consumer’s discount factor.
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1 Introduction

Competition benefits consumers for two reasons—lower prices and higher quality. High-

tech aficionados often espouse the benefit of having Advanced Micro Devices (AMD) as

a competitor to the giant chip-maker Intel. Some argue that without AMD, consumers

would be paying twice as much for computer processors half the speed, even though

AMD’s market share is typically less than twenty percent. In this paper we assess

the importance of competition in high-tech industries in terms of its effect on prices,

innovation, profits, and consumer surplus.

The analysis is complicated by the fact that most high-tech goods are durable. In

durable goods markets sellers face a dynamic trade-off: selling more today reduces

demand tomorrow. One strategy used by firms to mitigate this aspect of durable

good demand is to continually improve product quality to give consumers an incen-

tive to upgrade. Despite the importance of dynamic demand and product innovation

in oligopolistic, durable goods markets, the equilibrium implications of firms’ and con-

sumers’ strategies in such markets remain unclear. We therefore construct a model of

dynamic oligopoly with durable goods and endogenous innovation.

In our model firms make dynamic pricing and investment decisions while taking into

account the dynamic behavior of consumers. In turn, consumers account for the fact

that firms’ strategies lead to higher quality products and lower prices when considering

whether to buy now or to delay their purchase. Since each consumer’s demand de-

pends on which product they currently own (if any), the distribution of currently owned

products affects aggregate demand in each period. We explicitly model the endogenous

evolution of this distribution and its effect on equilibrium behavior. In particular, we

show that accounting for product durability and the distribution of consumer ownership

has significant implications for prices, innovation, profits, and consumer surplus.

We use a minimum simulated distance estimator to estimate the model with data

from the PC microprocessor industry. This industry is well-suited for the analysis be-

cause it is a duopoly, with Intel and AMD controlling about 95 percent of the market, and
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sales have been driven by rapid technological innovation and intense price competition.

While our quantitative results are specific to this industry, we believe the qualitative

insights are relevant for any durable goods market where innovation and obsolescence

drive product replacement.

To assess the importance of competition in durable good markets, we compare social

surplus across three exogenous market structures: monopoly, duopoly, and a planner who

maximizes social surplus. For our estimated model, the duopoly yields 84.7 percent of

the planner’s social surplus whereas the monopoly yields 83.5 percent. We also compare

consumer surplus, which is $435 billion per year with AMD and $419 billion per year

without AMD. Social surplus under monopoly and duopoly is lower than the planner’s

level for two reasons: the planner innovates more and charges less. Innovation in the

duopoly is about 76 percent as frequent as under the planner.

We find that competition does not lead to higher innovation in the PC micropro-

cessor industry. This finding highlights the “competing-with-itself” aspect of being

a monopolist of a durable good: the monopolist must innovate to stimulate demand

through upgrades. We find the rate of return on investment to be higher in monopoly

than in duopoly because the monopolist’s pricing power enables it to extract much of

the surplus generated by innovations.1 Gilbert (2005) reports that the potential effect of

competition on innovation is increasingly cited as a concern by the Federal Trade Com-

mission, despite the absence of conclusive theoretical or empirical evidence. Our model

can generate either a positive or a negative relationship between competition and inno-

vation. Since this relationship can vary across industries, we feel that the importance of

innovation issues in a particular merger case is an empirical question.

To assess the importance—for firms and researchers—of accounting for a product’s

durability when modeling demand, we compute equilibrium prices and investment un-

der the hypothetical scenario in which firms ignore the effect of current prices on future

demand. We find that prices and profits are substantially higher when firms correctly ac-

count for the dynamic nature of demand. One implication of this result is that marginal

1In a nondurable goods setting, Macieira (2007) finds competition increases innovation in the super-
computer industry.
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costs of durable goods derived from static first-order conditions will be too high: the

prices are high to preserve future demand, not because costs are high. The dynamic na-

ture of demand for durable goods also reverses the well-known “inverse elasticity rule”

of optimal pricing, which establishes that firms maximize static profits by setting price

such that it’s markup equals the inverse of the demand elasticity.2 In our model demand

is more elastic the higher is the level of demand. When demand is high, firms price

much higher than if they were static optimizers since consumers who do not buy today

will likely be buyers next period. Hence, optimal pricing of durable goods leads to a

positive relationship between markups and elasticity.

A natural application of our model is the evaluation of mergers and antitrust policy

for industries with durable goods. We consider a series of counterfactuals in which we

vary the portion of the market in which one firm has monopoly status. This policy

simulation is motivated by the recent antitrust lawsuit filed by AMD alleging that Intel

has engaged in anti-competitive practices that effectively excluded AMD from part of

the market.3 We find that excluding AMD from 30 percent of the market decreases

consumer surplus by 1.9 percent, social surplus by 1.6 percent, and innovation by 1.4

percent. Though these percentage changes are small, the lost consumer surplus is still

$8 billion per year.

Our work incorporates durable goods into the dynamic oligopoly framework devel-

oped by Ericson and Pakes (1995) and applied to non-durable differentiated products by

Pakes and McGuire (1994). To use numerical solution techniques the state space must

be finite, which requires defining product qualities relative to some base product since

quality improves over time, and then ensuring that relative qualities are bounded. In the

Ericson-Pakes framework (hereafter, EP) consumer preferences are concave in quality

measured relative to the outside good, so that a firm’s benefit to innovation goes to zero

regardless of its competitors’ qualities. This specification bounds relative qualities, but

it also implies the industry’s steady-state innovation rate equals the exogenous rate at

2Markup is defined here as (p−mc)/p, where p is price and mc is marginal cost.
3See Singer, M. and D. Kawamoto, “AMD Files Antitrust Suite Against Intel,” CNet News.com,

June 28, 2005.
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which the outside alternative’s quality improves. Since we are interested in assessing the

effect of competition on both pricing and innovation, we propose an alternative approach

to bounding the state space in which the industry’s innovation rate is endogenous.

Related Literature: The EP framework has been applied to a variety of durable

goods markets. In his study of learning-by-doing, Benkard (2004) allows the market size

for airplanes to change stochastically based on current sales to mimic the dynamic im-

plications of forward-looking consumers. Markovich (forthcoming) and Markovich and

Moenius (2005) have consumers that look two periods into the future in an oligopoly

model of network effects. Dubé, Hitsch, and Chintagunta (2007) investigate indirect

network effects in the video game console market. Esteban and Shum (2007) consider

the effects of durability and secondary markets on equilibrium prices in the automo-

bile industry, taking durability as fixed. Chen, Esteban, and Shum (2008) assess the

competitive effect of secondary markets for automobiles. Finally, Song (2006) studies

investment behavior in a model of the PC industry with static consumers of non-durable

goods. Our focus on innovation when consumers are forward-looking is unique in this

dynamic oligopoly literature.4

Our work also connects to the large theoretical literature on durable goods which is

reviewed nicely by Waldman (2003). Early work focused on obtaining analytical results

that often required strict assumptions. The most prominent of these assumptions is that

old and new goods are perfect substitutes (in some proportion), that the infinite dura-

bility of the goods eliminates the need for replacement, and that the markets are either

monopolies or perfectly competitive. Later work typically investigated the robustness of

the original conclusions to the relaxation of some of these assumptions.

4Our work also relates to recent empirical models of dynamic demand that take firm behavior as
exogenous. Most of these papers consider high-tech durables, but restrict their attention to the initial
product adoption decision. Melnikov (2001) develops a model of demand for differentiated durable goods
that he applies to the adoption of computer printers. Carranza (2005) and Song and Chintagunta (2003)
apply similar models to examine the introduction of digital cameras. More recently, Gordon (2008)
and Gowrisankaran and Rysman (2007) have developed models that allow consumers to replace their
products over time. By estimating supply as well as demand, we are able to compute equilibrium
outcomes under counterfactual scenarios of interest.
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Two strands of this literature are most relevant. The first area, starting with the

works of Kleiman and Ophir (1966), Swan (1970), and Sieper and Swan (1973), asks

whether a durable goods monopolist would provide the same level of durability as com-

petitive firms and whether such a firm would choose the socially optimal level of durabil-

ity. The so-called “Swan Independence Result” states that a monopolist indeed provides

the socially optimal level of durability, though under strict assumptions. Rust (1986)

shows that the monopolist provides less than the socially optimal level of durability

when consumers’ scrappage rates are endogenous. Waldman (1996) and Hendel and

Lizzeri (1999) show that Swan’s independence result fails to hold when new and used

units are imperfect substitutes that differ in quality.

In our model the good’s depreciation rate (i.e., durability) is exogenous (and set to

zero for our application to computer processors). Firms do, however, choose innovation

rates which in turn determine the rate at which goods become obsolete. Though durabil-

ity and obsolescence are similar, they have a potentially important difference: durability

entails commitment since the good is produced and sold with a given durability, while

a product’s obsolescence depends on the firm’s future innovations.

The second area, beginning with Coase (1972) and followed by Stokey (1981) and

Bulow (1982), among others, considers the time inconsistency problem faced by a durable

goods monopolist—it would like to commit to a fixed price over time, but after selling

to today’s buyers it will then want to lower the price to sell to those consumers who

were unwilling to buy at the supposedly fixed price.5 Bond and Samuelson (1984) show

that depreciation and replacement sales reduce the monopolist’s price cutting over time.

Since our model is in discrete time, the degree to which a firm can commit to a given

price is exogenously specified by the length of our period. That is, firms are assumed to

commit to fixed prices within periods, but not across periods.6

5A related area studies the problem of a monopolist pricing a new product, such as the next gener-
ation of a durable good. See, for example, Levinthal and Purohit (1989), Fudenberg and Tirole (1998),
and Lee and Lee (1998). More recently, Nair (2007) estimates consumers’ initial adoption strategies
and then numerically solves for the monopolist’s optimal intertemporal pricing schedule.

6An interesting comparative static may be to see how industry outcomes vary with period length.
Such a comparative static, however, is not trivial to construct since it involves changing the scale of
several parameters simultaneously.

5



The main drawback of the literature thus far is its focus on monopoly and perfect

competition, whereas most durable goods (e.g., automobiles and appliances) are provided

by oligopolies. By turning to numerical methods, we are able to study the interaction of

innovation and pricing behavior in a dynamic oligopoly with forward-looking consumers.

2 Model

In this section we present a dynamic model of differentiated products oligopoly for a

durable good. Time, indexed by t, is discrete with an infinite horizon. Each firm

j ∈ {1, . . . , J} sells a single product with time-varying log-quality denoted qjt ∈

{0, δ, 2δ, . . .}.7 In each period, firms simultaneously choose their prices pjt and invest-

ment xjt.
8 Price is a dynamic control since lowering price in period t increases current

sales, but reduces future demand. Investment is a dynamic control since future quality

is stochastically increasing in investment. Consumers decide each period whether to

buy a new product or to continue using their currently owned product (if any).9 Hence,

the distribution of currently owned products affects current demand. We denote this

endogenous distribution ∆t.

Firms and consumers are forward-looking and take into account the optimal dynamic

behavior of the other agents (firms and consumers) when choosing their respective ac-

tions. We assume the vector of firms’ qualities qt = (q1t, . . . , qJt) and the ownership

distribution ∆t is observed by all agents. These two state variables comprise the state

space of payoff relevant variables for firms. The consumer’s state space consists of the

quality of her currently owned product q̃t, the firms’ current offerings qt, and the own-

7We could normalize qjt to be positive integers, but the estimated model is easier to interpret if
the quality grid (and the implied innovation process) matches the data. We restrict firms to sell only
one product because the computational burden of allowing multiproduct firms is prohibitive—the state
space grows significantly and the optimization within each state becomes substantially more complex.

8The model does not allow entry or exit, primarily because of the lack of significant entry in the CPU
industry. However, one could include entry and exit in the same manner as Ericson and Pakes (1995),
if desired. Our focus on the CPU industry is also why we consider price, instead of quantity, as the
choice variable: Intel and AMD both publish price lists and announce revisions to these lists.

9Some durable good markets, such as automobiles, have established used good markets. Only a small
fraction of purchases of durable goods with rapid innovation, such as CPUs and consumer electronics,
transact in used markets. As such, our model does not allow for resale of used goods.
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ership distribution ∆t. This latter state variable is relevant to the consumer since it

affects firms’ current and future prices and investment levels (i.e., innovation rates).

2.1 Consumers

Utility for a consumer from firm j’s new product with quality qjt is given by

ujt = γqjt − αpjt + ξj + εjt (1)

where γ is the taste for quality, α is the constant marginal utility of money, ξj is a

brand preference for firm j, and εjt captures idiosyncratic variation in utility which is

i.i.d. across consumers, products, and periods.

Utility for a consumer from the outside alternative (i.e., no-purchase option) is

u0t = γq̃t + ε0t (2)

where q̃ denotes the quality of the product the consumer will use if no purchase is made

this period.

One can think of our model as having two outside alternatives—one for consumers

who have purchased at least once in the past, and one for “non-owners” who have never

purchased the good. For consumers with previous purchases, q̃t is the quality of their

most recent purchase. For consumers who have yet to make an initial purchase, the

utility from the no-purchase option could be determined by a variety of factors. In the

context of CPUs, the outside good for “non-owners” may consist of using computers at

schools and libraries or using old computers given to them by family or friends who have

upgraded. To capture the notion that this outside alternative for non-owners improves

as the frontier’s quality improves, we specify that q̃t is (max(qt) − δ̄c) for non-owners.

That is, quality of the outside alternative for non-owners is always δ̄c below the frontier

quality. Furthermore, since everyone has access to this non-owner outside good, its

quality serves as a lower bound to q̃t for all consumers. We denote and define this lower

bound as qt = q̄t − δ̄c, where q̄t is defined to be max(qt). To ensure that the model’s
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behavior is not driven by our choice of δ̄c, we check that consumers upgrade frequently

enough that the quality of their most recent purchase is rarely below qt.

A key feature of this demand model is that the value of a consumer’s outside option is

endogenous, since it depends on past choices. This feature generates the dynamic trade-

off for firms’ pricing decisions: selling more in the current period reduces demand in

future periods since recent buyers are unlikely to buy again in the near future. Dynamic

demand also has an impact on firms’ investment decisions because the potential marginal

gain from a successful innovation depends on the future distribution of consumer product

ownership. The potential gain from an innovation will be larger if many consumers own

older products, and the gain will be smaller if many consumers have recently upgraded

to a product near the frontier.

Given the lower bound qt, the ownership distribution can treat all consumers with

q̃ ≤ qt as owning the lower bound itself. Hence, ∆t = (∆qt,t, . . . , ∆k,t, . . . , ∆q̄t,t), where

∆k,t is the fraction of consumers in the population whose outside option (i.e., current

product) has quality qkt.
10

Each consumer maximizes her expected discounted utility, which can be formulated

using Bellman’s equation as the following recursive decision problem:

V (qt, ∆t, q̃t, εt) = max
yt∈(0,1,...,J)

uyt,t + β
∑

qt+1, ∆t+1

∫
V (qt+1, ∆t+1, q̃t+1, εt+1)fε(εt+1)dεt+1

hc(qt+1|qt, ∆t, εt) gc(∆t+1|∆t, qt, qt+1, εt)

(3)

where yt denotes the optimal choice in period t, hc(·|·) is the consumer’s beliefs about

future product qualities, gc(·|·) is the consumer’s beliefs about the transition kernel for

∆t, and fε is the density of ε. The expected continuation value depends on consumer’s

expectations about future products’ qualities and future ownership distributions because

these are the state variables that determine firms’ future prices and investment levels.

With an appropriate distributional assumption on {εjt}, we can derive an expression for

10Here, we use the subscript k instead of j because these subscripts do not necessarily refer to products
currently offered by any of the J firms. Furthermore, the dimension of ∆t is δ̄c/δ + 1 which has no
relation to J .
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the demand for each product based on the value function governing consumer behavior.

The resulting demand system implies a law of motion for ∆t and is used below in the

model of firm behavior.

If yt = 0 then q̃t+1 = max(q̃t, qt+1), else q̃t+1 = qyt,t (i.e., the quality of the product

just purchased). Note that once a consumer purchases a product at some quality level,

the brand of the product no longer matters. That is, the consumer receives a one-time

utility payoff of ξj from purchasing a product from firm j. This payoff does not occur

in future periods since the outside option depends only on q̃t. Relaxing this assumption

would require ∆t to be brand specific, which would substantially increase the state space.

Each consumer is small relative to the size of the market so that their individual

actions do not affect the evolution of the aggregate ∆t. We also assume consumers are

ex-ante identical. Relaxing this assumption to allow γ and α to vary across consumers

would require expanding the state space to include separate ownership distributions for

each consumer type. While such an extension may be worth pursuing in future research,

the current specification is sufficient for capturing the most relevant feature of durable

goods demand—current sales affect future demand.

2.2 Firms

Each period firms make dynamic pricing and investment decisions. Each firm has access

to an R&D process that governs their ability to introduce higher quality products into

the market. Firms choose a level xj ∈ R+ to invest in the R&D process. The outcome

of this process, denoted τjt = qj,t+1−qjt, is probabilistic, and stochastically increasing in

the level of investment. We restrict τjt ∈ {0, δ} and denote its probability distribution

f(·|x, qt).
11 The dependence of τjt on qt permits spillover effects in investment, which

we model by specifying τjt to be stochastically increasing in (q̄t − qjt) —the degree to

which the firm is behind the frontier. As such, innovations are easier when catching up

than when advancing the frontier.

11We specify quality as being in logs, so that improvements are proportional increases in quality.
Using a log scale makes more sense than a linear scale when calibrating the model to the CPU industry.
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The period profit function, excluding investment costs, for firm j is

πj(pt, qt, ∆t) = Msjt(pt, qt, ∆t)(pjt −mcj) (4)

where M is the (fixed) market size, sjt(·) is the market share for firm j, pt is the vector of

J prices, and mcj is firm j’s constant marginal cost of production. Each firm maximizes

its expected discounted profits, which for firm j yields the Bellman equation

Wj(qjt, q−j,t, ∆t) = max
pjt,xjt

πj(pt, qt, ∆t)− cxjt + β
∑

τjt, q−j,t+1, ∆t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1)

f(τjt|xjt) hf (q−j,t+1|qt, ∆t) gf (∆t+1|∆t, qt, pt, qt+1)

(5)

where c is the unit cost of investment, hf (·|·) is the firm’s beliefs about its competitors

future product quality levels, and gf (·|·) is the firm’s beliefs about the transition kernel

for ∆t which is based on beliefs about consumers choices given prices and qualities. The

dependence of gf on qt+1 reflects the shifting of ∆t when the frontier quality increases,

as described below, since ∆t is defined only for quality levels within δ̄c of the frontier.12

Following Rust (1987) we assume the consumers’ {εjt} are multivariate extreme-value

so that we can obtain the standard multinomial logit formula for product demand for

qjt ∈ qt by consumers who currently own q̃. In particular, we can integrate over the

future εjt to obtain the product-specific value function

V̂j(qt, ∆t, q̃t) = ujt − εjt + β
∑

qt+1, ∆t+1

log

( ∑
j′∈{0,...,J}

exp
{

V̂j′(qt+1, ∆t+1, q̃t+1)
})

hc(qt+1|qt, ∆t) gc(∆t+1|∆t, qt, pt, qt+1) .

(6)

The conditional choice probabilities for a consumer owning product q̃ are therefore

sjt|q̃ =
exp{V̂j(qt, ∆t, q̃t}∑

k∈{0,...,J}
exp{V̂k(qt, ∆t, q̃t)}

. (7)

12Expressing the transition of ∆t conditional on the realized qt+1 (which combines the realizations of
τjt and q−j,t+1) simplifies the derivation of optimal investment in Section 2.3.
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Using ∆t to integrate over the distribution of q̃t yields the market share of product j

sjt =
∑

q̃∈{qt,...,q̄t}

sjt|q̃ ∆q̃,t . (8)

These market shares translate directly into the law of motion for the distribution of

ownership.13 Recall that ∆t only tracks ownership of products within δ̄c quality units of

the highest quality offering. Assuming this highest quality is unchanged between t and

t+1, the share of consumers owning a product of quality k at the start of period t+1 is

∆k,t+1(·) = s0t|k∆kt +
∑

j=1,...,J

sjtI(qjt = k) (9)

where the summation accounts for the possibility that multiple firms may have quality

k. For quality levels not offered in period t, this summation is simply zero. If a firm

advances the quality frontier with a successful R&D outcome pushing its qj,t+1 beyond

max(qt) then ∆t+1 shifts: the second element of ∆t+1 is added to its first element, the

third element becomes the new second element (and so on), and the new last element

is initialized to zero. Formally, define the shift operator Γ on a generic vector y =

(y1, y2, . . . , yL) as Γ(y) = (y1 + y2, y3, . . . , yL, 0). If the quality frontier advances at the

end of period t + 1, then we shift the interim ∆t+1 that results from equation (9) via

∆t+1 = Γ (∆t+1) . (10)

The continuation ownership distribution is therefore a deterministic function of prices,

except for the potential shift due to the stochastic innovation of frontier products.

Finally, we note that physical depreciation of goods could be easily added to the

model by supposing that each currently owned product declines by δ (i.e., one quality

grid-step) with some fixed probability. In our application of the model to the CPU

industry, however, physical depreciation is zero.

13For conciseness our notation suppresses the dependence of market shares on prices.
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2.3 Optimal Prices and Investments

Each firm chooses price and investment simultaneously, fixing other firms’ prices and

investment levels. Fortunately, we can reduce the computational burden of this two-

dimensional optimization using a sequential approach. The outer search is a line opti-

mization over prices which contains a closed-form solution for investment given price.

Consider the first-order condition for investment
∂Wj

∂xjt
= 0 at an arbitrary price pjt:

−c + β
∑

τjt, q−j,t+1, ∆t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1)

hf (q−j,t+1|qt, ∆t) gf (∆t+1|∆t, qt, pt, qt+1) f(τjt|xjt)
∂f(τjt|xjt)

∂xjt
= 0 .

(11)

Given qt and outcomes for (τjt, q−j,t+1) the transition for ∆t+1 depends only on prices.

Thus, with a suitable choice for f we can analytically compute the optimal investment

as a function of price, x∗jt(pjt). We provide details in Appendix A.

2.4 Equilibrium

We consider pure-strategy Markov-Perfect Nash Equilibrium (MPNE) of this dynamic

oligopoly game. Our definition of a MPNE extends that found in Ericson and

Pakes (1995) to account for the forward-looking expectations of consumers. In brief,

the equilibrium fixed point has the additional requirement that consumers possess con-

sistent expectations on the probability of future firm states. The firms must choose their

optimal policies based on consistent expectations on the distribution of future consumer

states.

The equilibrium specifies that (1) firms’ and consumers’ equilibrium strategies must

only depend on the current state variables (which comprise all payoff relevant variables),

(2) consumers possess rational expectations about firms’ policy functions (which deter-

mine future qualities and prices) and the evolution of the ownership distribution, and

(3) each firm possesses rational expectations about its competitors’ policy functions for

price and investment and about the evolution of the ownership distribution.
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Formally, a MPNE in this model is the set

{
V ∗, h∗c , g

∗
c ,
{

W ∗
j , x∗j , p

∗
j , h

∗
fj

, g∗fj

}J

j=1

}
,

which contains the equilibrium value functions for the consumers and their beliefs h∗c

about future product qualities, beliefs g∗c about future ownership distributions, and

the firms’ value functions, policy functions, beliefs h∗fj
over their J − 1 rivals’ fu-

ture qualities, and beliefs g∗fj
about the future ownership distribution. The expec-

tations are rational in that the expected distributions match the distributions from

which realizations are drawn when consumers and firms behave according to their

policy functions. In particular, h∗c(qt+1|qt, ∆t, q̃) =
∏J

j=1 f(τ = qj,t+1 − qjt |qjt, x
∗
jt),

h∗fj
(q−j,t+1|qt, ∆t) =

∏J
j′ 6=j f(τ = qj′,t+1 − qj′t |qj′t, x

∗
j′t), and g∗c and g∗fj

are derived from

the law of motion for ∆t as described by equations (9) and (10).14

The functional form of the investment transition function satisfies the UIC admis-

sibility criterion in Doraszelski and Satterthwaite (2007). To guarantee existence of

equilibrium requires us to show that there is a pure-strategy equilibrium in both invest-

ment choices and prices. Ericson and Pakes (1995) and the various extensions found in

Doraszelski and Satterthwaite (2007) do not consider dynamic demand. As such, they

are able to construct a unique equilibrium in the product market in terms of prices or

quantities (depending on the specific model of product market competition).

3 Computation

This section discusses the details behind the computation of the Markov-perfect equilib-

rium defined above. First, we present a normalization that converts the non-stationary

state space into a finite stationary environment. Second, we introduce an approxima-

tion to the ownership distribution that significantly reduces the size of the state space.

Third, we present an overview of the steps required to compute the equilibrium.

14Symmetry corresponds to W ∗
j = W ∗, x∗j = x∗, p∗j = p∗, h∗fj

= h∗f , and g∗fj
= g∗f for all j. Symmetry

obviously requires that firm specific parameters, such as brand intercepts ξj , are the same across firms.
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3.1 Bounding the State Space

The state space in the model presented in Section 2 is unbounded since product qualities

increase without bound. To solve for equilibrium, we transform the state space to one

that is finite. Rather than measuring qualities on an absolute scale, we measure all

qualities relative to the current period’s maximum quality q̄t = max(qt). Our ability to

implement this transformation without altering the dynamic game itself hinges on the

following proposition.

Proposition 1. Shifting qt and q̃ by q̄t affects firms and consumers as follows:

Firms: Wj(qjt, q−j,t, ∆t) = Wj(qjt − q̄t, q−j,t − q̄t, ∆t)

Consumers: V (qt, ∆t, q̃t, εt) = γq̄t

1−β
+ V (qt − q̄t, ∆t, q̃t − q̄t, εt) .

(12)

The proof, which appears in Appendix B, rests on the following properties of the model:

1. Quality (actually log-quality) enters linearly in the utility function, so that adding

any constant to the utility of each alternative has no effect on consumers’ choices.

2. Innovations are governed by fτ (·) which is independent of quality levels (though

fτ (·) does depend on differences in qualities).

3. ∆t is unaffected by the shift since it is defined as the ownership shares of only

those products within δ̄c of the frontier. That is, ∆ is already in relative terms.

The proposition also claims that the change in the consumer’s value, when her q̃ and

the industry’s offered qualities qt are all shifted down by q̄, can be decomposed into a

component driven by relative values and a component driven by absolute levels. The

shift by (−q̄t) to the relative qualities in the arguments of V on the right-hand side

subtracts γq̄t from utility in each period (for all realizations of future states). To restore

equality the present value of this lost utility in every period, γq̄t

1−β
, must be added back,

which is accomplished by the first-term on the right-hand side.
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The only subtlety in implementing the transformation is in computing the continua-

tion values in equations (5) and (6) (or equivalently (3)). When integrating over future

states, some of the possible states involve an improvement in the frontier’s quality (al-

ways by δ units). In this event, the consumer’s continuation value for that particular

outcome is γδ/(1−β)+V (qt+1−δ, ∆t+1, q̃t+1−δ, εt+1) instead of V (qt+1, ∆t+1, q̃t+1, εt+1).

To facilitate writing the value functions in terms of a relative state space, we define

ωt = qt− q̄t and ω̃t = q̃t− q̄t as analogs to the original state variables. We also define the

indicator variable Iq̄t = 1 if q̄t+1 > q̄t to indicate whether the frontier product improved

in quality from period t to t + 1. The consumer’s product-specific value function in

equation (6) can then be expressed using the relative state space as

V̂j(ωt, ∆t, ω̃t) = γωjt − αpjt + β
∑

Iq̄t , ωt+1, ∆t+1

log

( ∑
j′∈{0,...,J}

exp
{

γδIq̄t

1−β
+ V̂j′(ωt+1, ∆t+1, ω̃t+1)

})
hc(Iq̄t , ωt+1|ωt, ∆t) gc(∆t+1|∆t, ωt, pt, Iq̄t)

(13)

where the outside alternative’s p0t is zero and, in a slight abuse of notation,

hc(Iq̄t , ωt+1|ωt, ∆t) and gc(∆t+1|∆t, ωt, pt, Iq̄t) are the analogs of the consumer’s tran-

sition kernels for qt+1 and ∆t+1 in the original state space.

Firm j’s value function in equation (5) using the relative state space becomes

Wj(ωjt, ω−j,t, ∆t) = max
pjt,xjt

πj(pt, ωt, ∆t)− cxjt+

β
∑

τjt, ω−j,t+1, Iq̄t , ∆t+1

Wj(ωjt + τjt − Iq̄t , ω−j,t+1 − Iq̄t , ∆t+1)

hf (Iq̄t , ω−j,t+1|ωt, ∆t) gf (∆t+1|∆t, ωt, pt, Iq̄t) f(τjt|xjt)

(14)

where ω−j,t+1 refers to competitors’ continuation qualities prior to shifting down by δ

in the event that the frontier’s quality improved. Again, we slightly abuse notation

by using hf (Iq̄t , ω−j,t+1|ωt, ∆t)f(τjt|xjt) and gf (∆t+1|∆t, ωt, pt, Iq̄t) as the analogs of the

firm’s transition kernels for competitors’ qualities and ∆t+1.

Finally, we invoke a knowledge spillover argument to bound the difference between

each firm’s own quality and the frontier quality. We denote the maximal difference in
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firms’ qualities δ̄f and impose this maximal difference directly in the transition kernels

f(·) and hf (·). We choose δ̄f < δ̄c to capture the fact that quality differences among

new products are typically less than the quality difference between the frontier and the

low end of products from which consumers have yet to upgrade. We also choose δ̄f to be

sufficiently large that it has minimal effect on equilibrium strategies.15 In particular, we

verify that investment behavior when a laggard is maximally inferior does not suggest

that laggards simply “free ride” off leader’s innovations. We also check that the laggard

rarely reaches this maximal inferiority state.

Comparison with Ericson-Pakes: Researchers have applied and extended the EP

framework to study a variety of dynamic differentiated products industries, as detailed

by Doraszelski and Pakes (2006). In each case, the state space is bounded by defining

firms’ qualities relative to an outside good and assuming consumers have concave prefer-

ences for this relative quality. Standard discrete choice models often specify diminishing

marginal utility for absolute levels of quality, but not for quality measured relative to

an outside alternative.16 This concavity implies the derivative of market share with re-

spect to a firm’s own quality goes to zero regardless of its competitors’ qualities. Since

investment is costly, there will exist a relative quality above which investment is zero,

thereby establishing an upper bound. The lower bound is established by firms exiting

when their relative quality gets low.

The EP approach to bounding the state space has a few potential drawbacks. Perhaps

the most significant is that the industry’s innovation rate is exogenously specified by

the innovation rate of the outside good. Improvements in the outside good provide a

continual need for inside firms to invest to remain competitive. If the outside good

never improves, the steady-state equilibrium has no investment and no innovations.

15Note that if firms were permitted to exit, then firms’ relative differences would be bounded auto-
matically by the exiting of firms with sufficiently low relative quality.

16The standard normalization in discrete choice models is to subtract the mean utility of the outside
good from all options. The EP approach, however, fixes the mean utility of the outside good to zero
and subtracts its (absolute) quality from firms’ qualities inside a concave function. See Pakes and
McGuire (1994) for details.

16



Since consumer surplus over time may be driven more by an industry’s innovation rate

than by its pricing behavior, providing an endogenous long-run innovation rate that

varies across market structures and regulatory controls seems particularly important for

policy work. In our model the long-run rate of innovation is an equilibrium outcome

that depends on consumer preferences, firms’ costs, and any regulatory stipulations in

effect.

Another odd implication is that consumers’ utility rankings of the inside goods de-

pends on the level of the outside good’s quality. For example, a consumer indifferent

between two products that differ by one quality level will strictly prefer the higher of

the two products if the outside alternative improves. As such, the relative market shares

depend on the outside good’s absolute quality: as the outside good increases, holding

inside goods fixed, the relative market share of the higher quality product increases.

Since our model uses a linear specification over the quality index, utility rankings and

relative shares are independent of the outside good’s quality.17

Finally, we note that our relative state-space is truly a normalization: the game using

the relative state space is an exact transformation of a dynamic game that is initially

expressed in absolute terms. Our focus on durable goods forces us to develop a model

that is, from the consumer’s perspective, consistent with respect to shifts in relative

qualities when the baseline good’s quality changes. A consumer purchases a product

with quality qjt knowing that this product has expected utility γqjt next period as well

(since depreciation is zero). The quality index must enter utility linearly to correctly

sum these flows across time in a relative state space reformulation. Such consistency

issues are best addressed by initially writing the model in absolute levels.18 Conceptually,

developing the model in levels is advantageous since agents’ primitives are, in most cases,

more naturally defined over absolute levels.

In essence, the EP bounds approach defines quality relative to the outside good and

generate an upper bound by manipulating the behavior of lead firms, whereas we define

17The quality index may itself be a concave transformation of measured quality, to reflect diminishing
marginal utility for measured quality.

18Goettler, Parlour, and Rajan (2005, 2006) also take the approach of initially specifying their dy-
namic asset trading game in absolute levels and then exactly transforming the game to a relative state.

17



quality relative to the frontier and generate a lower bound by truncating the degree to

which firms and outside options can be inferior. Since the industry leaders generate

most of the sales, profits, and surplus, assumptions regarding severe laggards are more

innocuous than assumptions restricting the benefits to innovation by frontier firms.19

3.2 Approximation of ∆t

A challenge in solving our model is that ∆t is a high-dimensional simplex. We approxi-

mate this continuous state variable with a discretization that restricts ∆t ∈ {∆d}Dd=1. To

be precise, let ∆′
t+1 denote the (unapproximated) transition implied by (9) and (10), and

let ρd(∆
′
t+1) denote the distance between ∆′

t+1 and the dth distribution of our discretiza-

tion. Several candidate distance metrics are available: the Kullback-Leibler divergence

measure, sum of squared errors of PDFs or CDFs, and the mean, among others. Since

we are using the approximation to obtain firms’ and consumers’ continuation values the

distance metric should be based on moments of the distribution that are most relevant

to the future profitability, pricing, and investment behavior. For logit based demand

systems the mean is the most relevant moment.20 We therefore define

ρd(∆
′
t+1) =

∣∣∣∣∣∑
k

k∆′
k,t+1 −

∑
k

k∆d
k

∣∣∣∣∣ , for all d ∈ (1, . . . , D), (15)

where the summation is over the discrete qualities from q to q̄ tracked by ∆.

Now let d1 and d2 denote the superscripts of the two distributions closest to ∆′
t+1,

19While we developed this alternative bounds approach in the context of durable goods, its merits
apply equally to the non-durable case. In future research, we will assess the effect of using our specifi-
cation for the non-durable case explored in Pakes and McGuire (1994). We also note that some features
of the Ericson-Pakes specification that we have excluded may be adopted. For example, the outside
good’s quality (for non-owners) may be allowed to stochastically improve according to an exogenous
process exactly as in Ericson and Pakes. A bound on inside goods’ qualities relative to the outside good
can also be imposed. We would argue, however, that this bound should be generated by modifying the
innovation technology f(·|·) to reflect the difficulty of advancing too quickly, rather than by modifying
the demand system to eliminate the benefit of higher quality.

20Fixing consumers’ conditional choice probabilities and firms’ relative qualities, we generate random
ownership distributions and regress the resulting profits on moments of the random ∆s. The mean is
easily the best predictor of a ∆’s profitability, with an R2 of .995.
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and define the stochastic transition of the discretized ∆ as

∆t+1 =

 ∆d1 with probability
ρd1

ρd1
+ρd2

∆d2 with probability
ρd2

ρd1
+ρd2

. (16)

Our discretization is a multidimensional version of the stochastic transition used

by Benkard (2004) to approximate production experience. With multiple dimensions,

one could consider transitioning to more than the two closest points, whereas with one

dimension using only the two closest is obvious. To retain the suitability of using only

the closest two distributions, we generate {∆d}Dd=1 from a single family of distributions

parameterized by a scalar.21 The discrete grid of this scalar is chosen such that the mean

qualities implied by the {∆d}Dd=1 are .1 apart and range from q̄ − 11 to q̄ − 1. The fact

that profitability and prices are driven primarily by the mean quality of the ownership

distribution suggests that this set of {∆d}Dd=1 is sufficiently rich to capture the tradeoffs

associated with dynamic demand.22

This approximation retains the key feature of dynamic demand—lowering price today

reduces expected future demand. Since ∆t+1 is used only in computing continuation

values, the effect of the approximation on the equilibrium will depend on the degree of

curvature in value functions with respect to ∆ and on the coarseness of the discretization.

3.3 Solving and Simulating Industry Equilibrium

We compute the equilibrium using a Gauss-Jacobi scheme to update the value and policy

functions.23 Starting at iteration k = 0, we initialize the consumer value function V̂ 0

and the firms’ value functions W 0
j each to zero, and policy functions (x∗0j , p∗0j ) to yield

innovation rates of 50 percent and prices 20 percent higher than marginal costs.24

21We use the logit, which has CDF for the kth quality level of z exp(qk)/(1 + z exp(qk))κ where z is
the scalar parameter and κ = z exp(q̄)/(1 + z exp(q̄)) is a normalization constant.

22This choice for {∆d}Dd=1 is also computationally efficient since the two closest ∆ds may be obtained
using an indexing formula instead of a search.

23For robustness we also compute the equilibrium using Gauss-Seidel with random orderings of the
states, as discussed in Section 4.2.1.

24The consumers smoothed value function (which integrates over the idiosyncratic ε) is V̂ (ω, ∆, ω̃) =
log
∑

j=0,...,J V̂j(ω, ∆, ω̃), where the product-specific V̂j functions are defined in equation (13).
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Then for iteration k = 1, 2, . . ., follow these steps:

1. For each ω̃ ∈ ∆, evaluate the consumer’s value function V̂ k given the firms’ policy

functions
{
x∗k−1

j , p∗k−1
j

}J

j=1
and the next period approximation parameters ρ′,k

from the previous iteration.

2. For each j ∈ J , evaluate firm j’s value function W k
j given the other firms’ policy

functions from the previous iteration
{
x∗k−1

j′ , p∗k−1
j′

}J

j′ 6=j
.

3. Update the consumer value functions V̂ k+1 ← V̂ k, the firms value functions

W k+1
j ← W k

j ,∀j, and their policy functions
{
x∗k+1

j , p∗k+1
j

}
←
{
x∗kj , p∗kj

}
.

4. Check for convergence in the sup norm of all agents’ value functions. If convergence

is not achieved, return to step (1).

To simulate the converged model we first specify an initial state for the industry

(ω0, ∆0). Then for each simulated period t = 0, . . . , T , we implement each firm’s op-

timal price and investment according to the equilibrium policy functions, process the

stochastic evolution of ownership as described in equation (16), and process the stochas-

tic innovation outcomes according to f(·|·).

4 Empirical Application

This paper has two components—a theory component that develops a general model of

durable goods competition and an empirical component that applies the model to the

CPU industry.

In the empirical application, we account for important asymmetries between Intel

and AMD by allowing them to differ in their costs of production and innovation and

brand equity. For the purposes of illustrating some theoretical properties of the model,

we consider the symmetric case in which firms have identical brand intercepts, innovation

efficiencies, and marginal costs. In the symmetric setting differences in firm behavior

are entirely due to the stochastic nature of innovation and evolution of the industry, as

opposed to being driven by exogenous asymmetries.
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A natural question to ask is why have these asymmetries developed? To answer such

a question, one would need a model that endogenizes the evolution of brand equity,

marginal costs, and innovation costs, which is well beyond our current objectives. We

take these asymmetries to be exogenous and investigate their implications for pricing

and investment strategies, and their impact on profits and surplus.

4.1 Data

Using data from 1993 to 2004, we construct empirical moments for the PC processor

industry. Over this period the industry is essentially a duopoly, with Intel and AMD

controlling about 95 percent of the market.

We obtained information on PC processor unit shipments, manufacturer prices, and

product quality measures, by processor, from a variety of sources. We obtained quarterly

global unit shipment data from In-Stat/MDR, an industry research firm that specialized

in microprocessors. Lastly, we used a PC processor speed benchmark from the CPU

Scorecard (www.cpuscorecard.com) to obtain a single index of quality that is comparable

across firms and product generations.25

Our model restricts each firm to offer only one product. Since AMD and Intel each

offer several products in each period, we must average the prices and qualities. Figure 1

presents the log qualities and prices of each firm’s offerings from 1993 Q1 to 2004 Q4.26

Intel clearly dominates in the early period with much higher quality. AMD’s introduction

of the K6 processor in early 1997 narrows the gap, but parity is not achieved until the

introduction of the AMD Athlon in mid-1999. The change in Intel’s log-quality from

over the 48 quarters corresponds to approximately an average of 11 percent improvement

per quarter. This rate of improvement translates into a doubling in CPU speed every

6.7 quarters, which is consistent with the 18 to 24 month elapsed-time for doubling

transistor counts on integrated circuits that has become known as “Moore’s Law”.

25The list of processor speed ratings from the CPU Scorecard does not contain all the processors in
the data set: 74 of 217 processors did not have benchmarks (38 from AMD and 36 from Intel). To fill
in the missing values, we impute the missing benchmark based on the available ratings.

26All prices are converted to base year 2000 dollars.
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The correlation between Intel’s price and its quality advantage is evident by compar-

ing the last plot in Figure 1 with Intel’s price in each of the first three plots. Average

prices were generally above $300 before the K6 introduction and around $200 after the

Athlon was introduced. The correlation between average prices and the difference be-

tween Intel and AMD’s quality is .63 for Intel and −.57 for AMD. Such correlations are

consistent with the theoretical model presented in Section 2.

The first two price graphs show (local) peaks at the end of 1999, despite the two firm’s

being roughly tied on the quality dimension. These high prices reflect the high demand

due to the tech bubble and to the fact that each firm recently increased the speed of its

chips. Our model accounts for variations in prices due to the recent upgrades, but does

not contain aggregate demand shocks which would be necessary to match precisely the

variance in prices, for example.

Figure 2 illustrates the dominance of Intel, as evidenced by a market share that

barely dips below 80 percent. The steady expansion of total CPU shipments from 1993

through 1999, followed by the flattening of shipments until growth resumes in 2004 is

also evident. The slow period from 2000 through 2003 primarily reflects the shock of the

bursting of the late nineties tech bubble. Since our model does not implement aggregate

shocks, we will not concern ourselves with this aspect of the data.

Figure 3 reveals another striking asymmetry in this industry: AMD invests in R&D

less than one-fourth the amount invested by Intel, yet is able to offer similar, sometimes

even higher, quality products beginning in 1999. This asymmetry warrants estimating

separate investment efficiencies for each firm.

4.2 Estimation

To estimate the model’s parameters we use a method of simulated moments (MSM)

estimator which minimizes the distance between a set of unconditional moments of our

data and their simulated counterparts implied by our model. Hall and Rust (2003) refer

to this type of estimator as a simulated minimum distance (SMD) estimator because

it minimizes a weighted distance between actual and simulated moments. The esti-
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mator may also be viewed as taking the indirect inference approach of Smith (1993),

Gouriéroux, Monfort, and Renault (1993), and Gallant and Tauchen (1996) in which the

moments to match are derived from an auxiliary model that is easier to evaluate than

the structural model of interest. Regardless of the label used, the estimator is in the

class of generalized method of moments (GMM) estimators introduced by Hansen (1982)

and augmented with simulation by Pakes and Pollard (1989).

The general idea behind the SMD estimator is to assume that the data are observa-

tions from a stationary distribution and to search over the space of structural parameters

to find the model which has a stationary distribution that yields moments matching the

actual moments. For example, the average prices in the actual and simulated data ought

to be similar. The estimator is obtained as the minimum of a quadratic form of the dif-

ference between the actual and simulated moments. We use enough simulations that the

variance in the estimator is due entirely to the finite sample size. As such, the efficient

weight matrix is the inverse of the covariance matrix of the actual data’s moments.27

4.2.1 A Simulated Minimum Distance Estimator

In this subsection we present the assumptions and details of our estimator, such as which

moments to match. Our presentation follows Hall and Rust (2003).

The model presented in Section 2 generates a stochastic process for µt =

{ωt, ∆t, pt, xt, st}, where ω denotes qualities relative to the frontier, ∆ is the owner-

ship distribution, p denotes prices, x denotes investments, and s denotes market shares.

27Since we obtain the efficient weight matrix directly from the data, we do not need a two-step GMM
estimator to obtain efficiency.
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The transition density, fµ, for this Markov process is given by

fµ(ωt+1, ∆t+1, pt+1, xt+1, st+1|ωt, ∆t, pt, xt, st, θ) =
J∏

j=1

f(ωj,t+1 − ωj,t|ωt, xt)

× g(∆t+1|∆t, st)

× I{pt+1 = p(ωt+1, ∆t+1)}

× I{xt+1 = x(ωt+1, ∆t+1)}

× I{st+1 = s(ωt+1, ∆t+1)}

(17)

where θ denotes the vector of K parameters to be estimated. Note that fµ is degenerate

since prices, investments, and market shares are deterministic functions of the state

variables ωt+1 and ∆t+1. The model would need to be modified, perhaps by adding

aggregate shocks, if we were to use maximum likelihood since the data would almost

surely contain observations having zero likelihood. This degeneracy, however, is not

a problem for the SMD estimator we define below, because it is based on predicting

moments of the distribution µt, not particular realizations of µt given µt−1.
28

For each candidate value of θ encountered, we solve for equilibrium and simulate the

model S times for T periods each, starting at the initial state (ω0, ∆0) which we observe

in the data. These S × T simulated periods each have three stochastic outcomes—each

firms’ investment outcome and the random transition of ∆t. The set of i.i.d. U(0,1) draws

for these outcomes, denoted
{
{Un

t }Tt=1

}S

n=1
, is held fixed throughout the estimation pro-

cedure to preserve continuity of the estimator’s objective function. The set of simulated

industry outcomes is denoted
{
{µt(θ, U

n
<t, ω0, ∆0)}Tt=1

}S

n=1
, where the subscript in Un

<t

indicates that µn
t depends on only the first t− 1 realizations of Un.

The SMD estimator is the parameter value that yields the best fit of simulated

moments to moments in the data. But which moments should we match? Gallant and

Tauchen (1996) suggest using the score of an auxiliary model which closely approximates

the distribution of the data. If the auxiliary model nests the structural model then

the estimator is as efficient as maximum likelihood. Hall and Rust (2003) use simple

28One reason we do not attempt to predict each period’s realization of µt given µt−1 is that we do
not observe ∆t in each period.
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statistics such as means and covariances. We use a mixture of simple moments and

estimates of approximations to policy functions, as embodied by a function m which

maps either real or simulated data into the L moments we match. The specification of

m is provided in the next subsection. Identification requires L ≥ K.

The vector of moments using actual data is denoted mT ≡ m({µactual
t }Tt=1) and the

simulated moment vector is the average over the S simulations:

mS,T (θ) =
1

S

S∑
n=1

m
(
{µt(θ, U

n
<t, ω0, ∆0)}Tt=1

)
. (18)

The simulated minimum distance estimator θ̂T is then defined as

θ̂T = argmin
θ∈Θ

(mS,T (θ)−mT )′AT (mS,T (θ)−mT ) (19)

where AT is an L× L positive definite weight matrix.

Assumption 1. For any θ ∈ Θ the process {µt(θ, U
n
<t, ω0, ∆0)} is ergodic with unique

invariant density Ψ(µ|θ) given by:

Ψ(µ′|θ) =

∫
fµ(µ′|µ, θ)dΨ(µ|θ). (20)

A valid concern with using moments based on simulated equilibrium outcomes is that

the equilibrium may not be unique. Two-stage approaches in which policy functions are

first estimated nonparametrically, as in Bajari, Benkard, and Levin (2007), permit the

model to have multiple equilibria. The assumption they invoke is that the data are all

from the same equilibrium, which is clearly a weaker assumption than Assumption 1.

Unfortunately, we do not have sufficient data to use a two-stage approach. We note that

other researchers have proceeded with SMD estimation of equilibrium models without

establishing uniqueness. For examples, see Gowrisankaran and Town (1997), Epple and

Seig (1999), and Xu (2007).

As in Pakes and McGuire (1994), we use value function iteration to numerically solve
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for equilibrium. Whereas general equation solvers may be computationally superior,

value function iteration has the conceptual advantage of restricting the set of equilibria

to those that are limits of finite horizon games. 29 Although this equilibrium refinement

does not guarantee uniqueness, it likely reduces the potential for multiplicity.

We have also established that the same equilibrium is obtained when we tweak the

value function algorithm in various ways. For example, we consider Gauss-Jacobi up-

dating and Gauss-Seidel updating with randomly determined orderings of the states.30

Finally, we note that the objective function defining the SMD estimator appears to be

smooth, which would not be the case if the algorithm were jumping to different equilibria

with small changes in the model.

Assumption 2. The structural model presented in Section 2 is correctly specified. As

such, there exists a θ∗ ∈ Θ for which each simulated sequence {µn
t }, n = 1, . . . , S from

the initial state (ω0, ∆0) has the same probability distribution as the observed sequence

{µt}.

This assumption enables us to use the standard GMM formula for the asymptotic

covariance matrix of θ̂T . We could alternatively relax this assumption, and bootstrap

the covariance matrix.

Define the functions E[m|θ], ∇E[m|θ], and ∇mS,T as:

E[m|θ] =
∫

m(µ)dΨ(µ|θ)

∇E[m|θ] = ∂
∂θ

E[m|θ]

∇mS,T = ∂
∂θ

mS,T (θ).

(21)

29Initializing firms’ and consumers’ value functions to zero implies a terminal payoff of zero in the
last period. The first iteration then solves for optimal strategies of a one period game. The second
iteration solves for optimal strategies of a two-period game, and so on. When determining a current
iteration’s optimal actions, the algorithm actually holds other players’ policy functions fixed at the
previous iteration’s values. The resulting update is therefore not really an equilibrium, unless the
policy functions have indeed converged. One could modify the algorithm to literally compute, say,
the two-period equilibrium in its second iteration, but at great computational cost. As the algorithm
progresses, the implied policy functions converge to an equilibrium of the infinite horizon game.

30The ordering has an effect because Gauss-Seidel uses updated values as soon as they become avail-
able within an iteration.
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Assumption 3. θ∗ is identified; that is, if θ 6= θ∗ then E[m|θ] 6= E[m|θ∗] =

E[m({µactual
t }Tt=1)]. In addition, rank(∇E[m|θ]) = K and limT→∞ AT = A with proba-

bility 1 where A is an L× L positive definite matrix.

The optimal weight matrix is Ω(m, θ∗)−1 ≡ E[(m(µ)−E[m(µ)])(m(µ)−E[m(µ)])′]−1,

the inverse of the covariance matrix of the moment vector, where the expectation

is taken with respect to the ergodic distribution of µ given θ = θ∗. Using AT =

[cov({µactual
t }Tt=1)]

−1 as a consistent estimate of the optimal weight matrix, the estimator

θ̂T has the property

√
T (θ̂T − θ∗) =⇒ N

(
0, (1 + 1/S)

(
∇E[m|θ∗]′Ω(m, θ∗)−1∇E[m|θ∗]

)−1
)

. (22)

We choose S to be sufficiently high (10,000) that simulation error has a negligible effect.

4.2.2 Auxiliary Models

The structural model in Section 2 implies that prices, investments, and market shares

are functions of the state variables ωt and ∆t. A natural choice of auxiliary model would

therefore be semi-parametric approximations to these policy functions. Data restrictions

and known differences between our model and the actual CPU industry lead us to depart

somewhat from this choice.

First, we do not have a good measure of ∆ so we are unable to condition on this

state variable. Second, we have only 48 quarterly observations, so we restrict ourselves

to parsimonious (i.e., linear) approximations to the policy functions. Finally, the model

assumes the market size M is fixed, whereas the data exhibit an upward trend in sales,

revenues, and R&D expenditures, as illustrated in Figure 2 and Figure 3.31 Hence,

instead of estimating an equation for investment levels, our auxiliary model matches

investment per unit revenue, which is stationary.

Our moment vector, mT , consists of the following twelve moments:

31Allowing market size to grow over time would render the model computationally intractable. An
implication of this misspecification is that our model underestimates the future benefits to innovation.
Unless growth rates are very high, this effect should be minor.
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• coefficients from regressing each firm’s price on a constant and ωIntel − ωAMD,

• coefficients from regressing Intel’s share of sales on a constant and ωIntel − ωAMD,

• mean innovation rates for each firm, defined as 1
T
(qT − q0)/δ,

• mean ωIntel − ωAMD and Mean |ωIntel − ωAMD|, and

• mean investment per unit revenue for each firm.

An obvious difference between our model and the CPU industry is that both Intel

and AMD offer multiple versions of their products, whereas our model permits only one

product per firm.32 We therefore average prices and qualities across the products offered

by each firm. The resulting average price series are plotted for both Intel and AMD in

Figure 1, along with the price of each firm’s frontier product. The figure also presents

each firm’s frontier quality and the difference in their average qualities.

In the estimation of the model, we are able to match the correlation of prices with

ωIntel − ωAMD, but we underestimate this covariance (primarily) because the variance

in average prices exceeds that of our simulated prices. This outcome is not surprising,

since a multiproduct firm will tend to vary it’s highest quality products’ prices more

than a single product firm would vary its one price. Comparing the frontier and average

prices in Figure 1 reveals that the average price’s variation is determined largely by

the variance in each firm’s frontier price. For comparison we also estimate our model

using a modification of the price equations in which the mean prices and correlations

are matched instead of the regression estimates.

We denote this latter specification the “Alt Aux.” model, and the former the “Base-

line Aux.” model. As reported in Section 4.2.4, the structural estimates are quite similar

across the two auxiliary models.

We estimate the covariance matrix of the moment vector mT using a bootstrap

procedure with 1000 replications. Its inverse is an estimate of the optimal weighing

matrix, which we use for AT .

32Extending the model to allow each firm to offer multiple products would be a considerable under-
taking.
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Experimentation with the stuctural model indicates that the moments provided by

the auxiliary models are quite sensitive to the structural parameters, which is encourag-

ing from an identification standpoint. Being a highly nonlinear model, all the structural

parameters influence all the auxiliary moments. However, the connection between some

parameters and moments are particularly tight. For example, the auxiliary pricing equa-

tions respond sharply to changes in the price and quality coefficients and AMD’s fixed

effect. The market share equation also plays an important role in identifying these three

preference parameters. The intercepts in the auxiliary pricing equations are sensitive to

the marginal costs. The spillover parameter is identified primarily by the mean absolute

difference in quality across firms—a high spillover keeps the qualities similar. Finally,

the investment efficiencies are chosen to match the firms’ observed R&D expenditures

per unit revenue.

A typical concern in empirical industry studies is the endogeneity of prices. We

assume that all unobserved demand shocks affect the overall demand for microprocessors,

but not consumers’ preferences for one brand over another. This assumption is based

on the direct observability of product quality through the performance benchmarks. As

such we base the market share moments on “inside” shares only (i.e., each firm’s share

of total cpu sales).

4.2.3 Parameterizations

We estimate K = 8 parameters in θ = (γ, α, ξAMD, a0,Intel, a0,AMD, a1, mcIntel, mcAMD),

where the a parameters relate to the innovation process detailed below. Table 1 lists the

parameter values of the remaining model parameters, which we now discuss.

We choose the log-quality grid size δ to be .1823, which corresponds to 20 percent

quality improvements from one grid point to the next. We use fifteen grid points for ∆

to track the ownership distribution, which implies δ̄c = 14 ∗ .1823 = 2.552. Our choice

of δ and δ̄c reflects the following considerations: i) a fine enough grid (i.e., low enough

δ) that in equilibrium firms will have varying degrees of differentiation, ii) a δ̄c that is

sufficiently high that consumers rarely reach the lowest grid point before upgrading, and
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iii) a number of grid points that is computationally manageable. We choose δ̄f to be

five δ steps so that the leader may be up to 149 percent higher quality than the laggard,

which exceeds the observed maximum quality difference.

Following Pakes and McGuire (1994) we specify the probabilities of successful and

failed investments, respectively, as f(1|x) = ax/(1 + ax) and f(0|x) = 1/(1 + ax), with

a “cost” of investment of c =$1 for each investment dollar.33 We modify this innovation

setup by allowing a to vary for the laggard according to the degree to which the firm

is behind. In particular, we specify aj(qt) = a0,j(1 + a1(
q̄t−qjt

δ
)2), which reflects the

increased difficulty of advancing the frontier, relative to catching up to the frontier.

We set β to .975, which corresponds to an annual discount factor around .90 since we

view a period as being three months. We choose the period length to be three months

since our data is quarterly and firms planning horizons are often on a quarterly basis.

We set the market size M to be 400 million consumers. Determining the appropriate

market size is difficult because the CPU market is global and a significant share of

demand comes from corporations. The effect of varying M is easy to predict: investment

is increasing in M because the benefit of innovation scales linearly with M , but the cost

of innovation is fixed. The pricing policy function, however, should be unaffected by M .

We fix ξIntel = 0. With three choices in each period, two mean utilities can be

estimated, which suggests we should estimate ξIntel as well as ξAMD. However, the share

of the “no purchase” option is declining over time due to the trend in unit sales and

assumption of fixed M . Hence, we prefer to fix ξIntel = 0 and estimate ξAMD off the

relative sales of Intel and AMD.34

4.2.4 Estimates and Model Fit

We report the model’s fit in Table 2 and the parameter estimates in Table 3 for each

of the two auxiliary models we consider. Comparing the “Observed” column with the

33The functional form ax/(1 + ax) for the probability of successful innovation provides closed form
solutions for optimal investment, as discussed in Appendix A.

34We note, however, that the percent improvement for upgrade purchases implied by the estimated
model is 280 percent, which seems quite plausible. Since this moment helps identify the fixed effects
but is already well matched, adding it to estimate ξIntel would yield a value close to zero.
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“Simulated” column in Table 2 reveals that the model fits the twelve moments reasonably

well. In the third column for each auxiliary model, we report a pseudo-t for each

moment’s fit by dividing the difference between the actual and simulated values by

the standard error of the actual moment.

Moments that have t-values below three are generally considered to be well-matched.

The moments we have difficulty fitting in the baseline auxiliary model relate to the

pricing equations. In particular, we under-predict the sensitivity of firm’s prices to the

difference in qualities. This sensitivity could be increased by increasing the quality

coefficient γ. However, increasing γ would worsen the fit of the coefficient on ωIntel −

ωAMD in the share equation, which is already too high.

In the alternative auxiliary model, which substitutes correlations between each firm’s

price and ωIntel−ωAMD for the regression coefficient, all the moments have t-values below

2.5. Using the correlation instead of the regression coefficient improves the fit because

the variance of prices in the data exceed that implied by our model. As discussed in the

previous section, the relatively low variation in prices is due to firm’s selling just one

product. We include the alternative auxiliary model to illustrate that the model fits the

data extremely well, once this discrepancy is taken into account.35

In both specifications the model slightly overpredicts the innovation rates, but both

firms’ rates are within two standard errors of their observed values. The model accurately

predicts the average quality difference of 1.2 δ steps between the leader and laggard, and

the average obsolute difference of 1.4 δ steps. R&D as a share of revenue is also predicted

with a high degree of accuracy. The standard errors of these two moments are small, so

the t-values are above 1.7 in the baseline model despite being close.

Table 3 provides the structural estimates and their standard errors for both of the

auxiliary models we consider. All the parameters are statistically significant given the

relatively small standard errors. The estimated marginal costs are similar to the average

35Since we have more moments than estimated parameters, we can formally test the model’s spec-
ification as being that which generated the data. The objective function’s value of 55.7 in the base
model and 26.2 using the alternative model, with only 4 over-identifying restrictions, leads to rejecting
the model. Rarely do structural models of this sort pass such specification tests, since the real-world is
typically too complicated for a tractable model to mimic perfectly.

31



manufacturing costs reported by In-Stat of $39.29 for AMD and $43.19 for Intel. Intel’s

estimated cost may be higher because of the significant advertising of their processors.

4.3 Results

We now use these parameter values as the basis for six different industry scenarios, which

correspond to the column headers in Table 4: 1) Intel-AMD duopoly, 2) symmetric

duopoly, 3) monopoly, 4) myopic pricing duopoly, 5) myopic pricing monopoly, and 6)

social planner. Scenario 1 is the baseline model using the estimates reported in column

1 of Table 3. Scenario 2 modifies the model by using Intel’s firm-specific values for

both firms, so that we can get a sense of what the duopoly outcome would be like if

both firms were on equal footing. Scenario 3 uses Intel’s parameters for the monopolist.

Scenarios 4 and 5 highlight the importance of accounting for the dynamic nature of

demand by computing equilibrium when firms are myopic with respect to the pricing

decision. Under myopic pricing we solve for the equilibrium when firms and consumers

know that firms are behaving myopically with respect to the effect of current prices on

future demand.36 Finally, scenario 6 considers the social planner with one product who

maximizes the sum of discounted profits and discounted consumer surplus.37

For each scenario we solve for optimal policies and simulate 10,000 industries each

for 300 periods, starting from a state in which demand is moderate (average ω̃ is 10δ

relative to frontier at 14δ). If the scenario involves two firms then AMD’s quality (or

the laggard, if symmetric) is one δ-step behind Intel’s quality (or the initial leader if

the industry is symmetric). We then analyze the simulated data to characterize the

equilibrium behavior of firms and consumers and to identify observations of particular

36After price is myopically chosen to maximize current profits, investment is optimally chosen taking
into account the dynamic tradeoffs.

37We have recently computed the social planner’s optimal behavior when he controls two products,
but have yet to update the full set of results. The planner benefits only slightly from having a second
product available. Currently, we weight firm profits equally with consumer surplus. Being a global
market, however, a domestic social planner would potentially include only domestic consumers and
firms in its objective function. For example, if all firms were domestic but only half the consumers were
domestic, then the weight on firms in the objective function should be twice the weight on consumer
surplus.
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interest. Finally, we consider various counterfactual experiments to further illustrate the

properties of the model and its implications for policy analysis.

Much of the information we provide in this results section is merely designed to in-

still confidence that the model yields equilibrium outcomes that make sense. Particular

findings that we wish to emphasize are set apart as “observations”.

Firm Behavior in Equilibrium: We first characterize the firms’ optimal price and

investment policy functions in the scenarios 1 and 3 (the baseline duopoly and monopoly

settings). The complexity of the state space, due to the distribution of ownership,

prohibits a state-by-state inspection of the policy functions. For illustrative purposes,

however, we pick two values the ownership distribution—one with low demand and one

with high demand—and plot each firm’s value function, pricing function, investment

function, innovation rate, and resulting market shares (given prices and consumers’

purchase behavior). The resulting ten plots appear in Figure 4. The first row depicts

the ownership distribution of each respective column. In each of the lower ten plots the

horizontal axis is the difference in quality (measured in δ steps) between AMD and Intel.

Negative values indicate that AMD is the laggard and positive values indicate AMD is

the quality leader.

The first column of plots corresponds to an ownership distribution that has a high

mean quality of currently owned products which implies few consumers are ready to

upgrade. The second column of plots corresponds to an ownership distribution with

a low mean quality of currently owned products implying many consumers are ready

to upgrade. The title of each plot reports the monopolist’s corresponding value for

comparison.38

As expected, the market shares of both firms are substantially higher in column two

than column one, as are the value functions (particularly Intel’s), since the ownership

distribution corresponds to higher demand. Intel’s prices are higher in column 2 since

the leader charges high prices when demand is high. AMD’s prices, however, are only

38The monopolist only has one number since quality difference (i.e., the x-axis) is undefined with
only one firm.
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marginally higher when demand is high. The monopolist’s value and price are also both

higher in the high demand state.

Interestingly, the difference in investment behavior across these two states depends

on industry structure. The monopolist invests more in the low demand state, since

investment is more crucially needed to induce future upgrades. In the duopoly, however,

both firms invest more (at each level of quality difference) in the high demand state,

which reflects the desire to have a quality advantage (or less of a disadvantage) when

consumers are primed to upgrade.

For both Intel and AMD, investment is generally increasing in their own quality rel-

ative to their competitor. This relationship between investment and quality advantage

primarily reflects the effect of spillovers. If a leader’s advantage increases, the com-

petitor’s investment efficiency increases substantially which increases its probability of

innovating. The leader must therefore invest more to try to preserve his advantage.

Similarly, when a laggard becomes more competitive its efficiency declines due to the

weaker spillover benefit. The laggard invests more to at least partially make up for this

reduced efficiency.

To further illustrate the nature of equilibrium, we provide time series plots of the

simulated industry. Two hundred simulated periods for the estimated model appear in

Figure 5 The variation in prices over time is evident in both the price plot of Figure 5

and the full distribution of realized margins reported in Table 5. Note from the table

that the variation is substantially greater in the duopoly than in the monopoly, and

greater when firms optimally account for the dynamic nature of demand.

Finally, Table 6 reports the simulated outcomes separately for Intel and AMD. The

total profits are discounted lifetime profits, which therefore correspond to market cap-

italization. The values of $433 billion for Intel and $38 billion for AMD are broadly

consistent with market valuations for Intel and AMD over the period of our data, though

perhaps a little high.

Figure 6 depicts the difference between optimal pricing by a durable good monopolist

and pricing by a myopic monopolist that ignores the dynamic nature of demand. The
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top plot corresponds to the payoff (per consumer) facing the myopic monopolist as a

function of price. The price that maximizes the current period’s gross profits (which ex-

cludes investments) is around $300. The lower plot corresponds to the true payoff facing

the durable good monopolist as a function of current price. The payoff is expressed in

a per-period equivalent (by multiplying by (1− β)). This per-period payoff is lower for

two reasons: investment costs are included and the dynamic monopolist accepts lower

current period profits in order to preserve future profits. This preservation is achieved

by charging a much higher price, around $450, in this case.

Consumer Behavior in Equilibrium: We now characterize consumers’ policy func-

tions. The consumer’s only decision is when and what to buy. Since the “when” part

corresponds to the current ownership q̃, we plot in Figure 7 the choice probabilities for

each ownership vintage, averaged across states encountered in the duopoly simulations

of scenario 1 (the baseline). As expected, the consumer is more likely to upgrade her

product, to either the frontier or non-frontier offering, the lower is her current vintage

relative to the frontier offering. Consumers with vintages within two δ-steps (i.e., 44%)

of the frontier upgrade around 12 percent of the time, compared to more than 50 percent

of the time for owners of the lowest quality vintage.

As consumers implement their policies function, they generate a sequence of owner-

ship distributions across time. Figure 8 depicts the average ownership distribution for

the baseline duopoly and monopoly cases. Because monopolists charge higher prices,

consumers are less likely to upgrade from a given vintage to the frontier in the monopoly

case. In the duopoly consumers also have the option to upgrade to the non-frontier prod-

uct. Both these forces cause the monopolist’s ownership distribution to have more mass

on the older vintages, compared to the duopolists’ ownership distribution.

Importantly, Figure 8 reveals that consumers almost never reach the lower bound on

vintage, which implies our bounding approach (as discussed in Section 3.1), indeed has

little effect on equilibrium behavior. If consumers reached this bound often, then we

would simply lower this bound by increasing δ̄c.
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Multiplying the choice probabilities in Figure 7 by the ownership distribution in

Figure 8 yields the portion of purchasers from each ownership vintage, as presented

in Figure 9. In the duopoly most purchasers upgrade from products that are two to

five δ steps below the frontier, which implies the frontier is 44 percent to 149 percent

faster than their current product. Of course, some of the consumers upgrade to the

non-frontier firm’s offering. As reported in Table 4, the average upgrade percent im-

provement is 100 percent. This percent improvement for upgrades is perhaps somewhat

low, but given that the estimation did not attempt to fit this moment, we find it accept-

able. In the monopoly, the higher prices induce consumers to upgrade only when the

percent improvement over their current product is reasonably high. Most upgrades in

the monopoly are to products that are three to seven δ steps below the frontier, which

corresponds to percent improvements of roughly 73 and 258 percent, respectively. The

mean upgrade percent in the monopoly 150 percent.

Observations of Interest: Having established that consumers’ and firms’ policy func-

tions match our intuition, we now present and discuss features of equilibrium behavior

and outcomes of particular interest.

Observation 1. Margins (defined as (p −mc)/mc) and profits are significantly higher

when firms correctly account for the dynamic nature of demand. The differences are

larger for monopoly than duopoly.

From Table 4 we see that monopoly profits are 34 percent higher and margins are

102 percent higher when the monopolist accounts for the dynamic nature of demand,

compared to “myopic pricing” which ignores the decline in future demand due to current

sales. Industry profits for the duopoly are 14 percent higher and margins are 34 percent

higher when the firms account for the dynamic nature of demand, compared to myopic

pricing.

This result highlights the importance of accounting for the dynamic nature of de-

mand when analyzing pricing behavior in durable goods markets. Standard practice in
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the empirical industrial organization and marketing literatures is to observe prices and

use first-order conditions from a static profit maximization to infer marginal costs. Ob-

servation 1 suggests that marginal cost estimates computed in this manner for durable

goods will be too high. That is, prices are high because the firm does not want to reduce

future demand, not because its marginal costs are high.

Table 6 reports the separate outcomes for Intel and AMD under both optimal and

myopic pricing. The stark asymmetry of this industry is matched by our model.

Observation 2. (i) Equilibrium investment is too low, relative to the socially optimal

level, for both the monopoly and duopoly market structures.

(ii) Innovation is slightly higher with a monopoly than with a duopoly.

The per-firm investment levels (measured in millions of dollars) reported in Table 4

for the duopoly, monopoly, and social planner (with one firm to control) are, respectively,

1206, 2584, and 9787. The resulting innovation rates for the industry’s frontier product

in each market structure are 0.680 for the duopoly, 0.694 for the monopolist, and 0.896

for the planner.

The finding that innovation by a monopolist exceeds that of a duopoly may come

as a surprise to many readers. This finding is driven by two features of the model—

the monopolist must innovate to induce consumers to upgrade, and the monopolist

is able to extract much of the potential surplus from these upgrades because of its

substantial pricing power. If the good’s durability were reduced, by introducing physical

depreciation, the monopolist’s innovation would fall since the “competition-with-itself”

would decline.

Observation 3. (i) The AMD-Intel duopoly attains 84.8 percent of the planner’s social

surplus, whereas the monopoly attains 83.4 percent—a difference of (84.8−83.4)/83.4 =

1.7 percent.

(ii) Consumers’ share of social surplus is 90.2 percent in the AMD-Intel duopoly, com-

pared to 88.1 percent in the monopoly.
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(iii) Consumer surplus is $432 billion per year in the AMD-Intel duopoly, compared to

$415 billion per year in the monopoly—a difference of 4 percent.

(iv) The benefits of competition are substantially higher if Intel were facing a symmetric

competitor: consumer surplus and social surplus are 8.2 percent and 6.7 percent higher

in a symmetric duopoly than in a monopoly, and duopoly margins are less than half the

monopolist’s.

(v) The social inefficiencies of duopoly and monopoly are due to both higher prices and

lower investment.

Firms’ profits are calculated in the usual manner as the discounted sum of per period

profits. However, the appropriate measure of consumer surplus is less obvious. We

compute consumer surplus assuming mean utility from the outside alternative (for non-

owners) would remain at zero forever in the absence of innovation by these two firms.

If this were not the case, then an exogenous improvement in the outside alternative (for

nonowners) would need to be included in the model. While such a modification could

easily be accommodated, our stance is that the role of an outside good in models of

industry evolution ought to be minimized.39

Consumer surplus for a consumer in period t who currently owns a product with

quality q̃t is the expected utility flow in that period, divided by the price coefficient to

convert utils to dollars. In the static logit model the expected utility is computed using

the “inclusive value” formula log
∑

j exp(ujt − εjt). In the dynamic setting, however,

we cannot use this formula since the choice probabilities are functions of the discounted

continuation values and our measure of surplus uses only the utility flows, not utility

flows plus discounted continuation values. Hence, we define

39If this alternative is truly a substitute for the inside goods, then its price and quality transitions
ought to react strategically to the inside goods, in which case it becomes an inside good itself.
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CS(q̃t, qt) = 1
α
E [ujt]

CS(q̃t, qt) = 1
α

∑
j∈{0,...,J}

sjt|q̃ (γqjt − αpjt + ξj − E [εjt|choose j])

= 1
α

∑
j∈{0,...,J}

sjt|q̃ (γqjt − αpjt + ξj − log sjt|q̃)

(23)

where the quality levels are in absolute terms (i.e., not relative to the frontier), sjt|q̃ is

the conditional choice probability and log sjt|q̃ is the expected value of εjt given that j

is chosen.40

Aggregate discounted consumer surplus over a simulation run is the discounted sum of

the per period surplus, integrated over the distribution of consumer product ownership:41

CS = M

T∑
t=0

βt

q̄t∑
q̃=qt

CS(q̃, qt) ·∆q̃,t. (24)

Table 4 reports the aggregate discounted CS and industry profits for each of the

scenarios we consider. The duopoly value for CS is $4.32 trillion, which corresponds to

$432 billion per year (using an annual discount factor of .9). This value is 4.1 percent

higher than the CS generated by the monopoly. In terms of social surplus, the monopolist

is able to make-up for part of this reduced CS through its significantly higher industry

profits. Nonetheless, the monopoly’s social surplus is still about 1.7 percent below the

duopoly social surplus.

Observation 4. Unexpected 10 percent increases in price for one period yield:

(i) Intel’s price increase causes its share to fall by 18.1 percent, AMD’s share to increase

by 4.1 percent, and the no-purchase share to increase by 3.7 percent.

(ii) AMD’s price increase causes its share to fall by 12.7 percent, Intel’s share to increase

by 0.4 percent, and the no-purchase share to increase by 0.4 percent.

(iii) Intel’s price increase as a monopolist causes its share to fall by 23.7 percent, and

the no-purchase share to increase by 4.2 percent.

40We use a distribution for ε that is shifted by Euler’s constant so that its mean is zero.
41Consumer surplus may be computed directly from the value functions as M

α

∑q̄t

q̃=qt
V̂ (q0,∆0, q̃)·∆q̃,0.
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(iv) A firm’s markup (in both duopoly and monopoly) is positively related to the elasticity

of demand, in direct contrast with the “inverse elasticity rule” of static pricing.

These elasticities are averages from 10,000 simulations in which the unexpected,

single-period price shock occurred in period 100 of each simulation. The stochastic

nature of the model implies that the state at which this price shock is implemented

varies across simulations. In Figure 10 we plot the elasticity and optimal markup at

each of the states encountered in these simulations. For both duopoly firms and for

Intel as a monopolist, the markup is increasing in elasticity. This contrasts with the

inverse relationship of static pricing, as depicted by performing the price shock exercise

for the monopolist that prices myopically.

Hence, the static relationship between markups and (short-run) elasticities is reversed

due to the dynamic nature of demand for durable goods. Intel (and AMD) could indeed

increase current sales substantially by lowering price today, but this would lower its

future demand too much to warrant the change.

Observation 5. As depicted in Figure 11, consumer surplus, margins, innovation, and

profits all increase monotonically in the rate of time preference upon which consumers

base decisions.42

If consumers do not value the future benefit of a durable good, their willingness to

pay for the good decreases, which causes firms to reduce prices and earn lower profits.

Innovation is also reduced, since consumers are not willing to pay as much for their

upgrade purchases.

This result contrasts with the finding in Nair (2007) that optimal prices for a durable

goods monopolist are decreasing in the consumers’ rate of time preference. The difference

in our findings is due to the fact that we increase the consumer’s discounted utility flow

42Consumer surplus is constructed assuming that consumers truly value the future using the discount
rate .975, but are myopic, to varying degrees, in their decision making. Using the varying rate of time
preference for decision making as the true discount factor merely steepens the slope of the consumer
surplus plot.
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from the durable good when β increases, whereas Nair (2007) fixes the discounted utility

flow at the estimated values. His result applies when consumers use different discount

factors for the valuation of a product’s discounted utility flows and the determination

of when to purchase a product.

4.4 Counterfactual Analysis

Recently AMD has filed a lawsuit contending that Intel has engaged in anti-competitive

practices that deny AMD access to a share of the CPU market. We can use our model

to study the effect of such practices on innovation and pricing, and ultimately consumer

surplus and firms’ profits. We perform a series of counterfactual simulations in which we

vary the portion of the market to which one firm has exclusive access. The firm which

has exclusive access to a portion of the market is restricted to offer the same price in

both sub-markets.

In Figure 12 we plot the margins, innovation rates, consumer surplus, and social

surplus when the “access denied” portion of the market varies from zero to one (in

.1 increments). We find that barring AMD from 30 percent of the market decreases

consumer surplus, social surplus, and innovation all by about 2 percent. The innovation

rate begins to increase when the share of the market from which AMD is barred surpasses

.8, and eventually passes the duopoly level of innovation when Intel is a monopolist. This

pattern indicates that as Intel gains exclusive access to a large share of the market, its

investment increases to reap the greater benefit from higher quality that results from its

pricing power.

5 Conclusions

This paper presents a dynamic model of durable goods oligopoly with endogenous in-

novation. The model entails two methodological contributions. First we propose an

alternative approach to bounding the state space in dynamic oligopoly models of the

Ericson and Pakes (1995) type. Under this alternative specification, the innovation rate
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for the industry is endogenous instead of being determined by an outside good’s exoge-

nous rate of innovation. This feature makes our model particularly suitable for studying

industries in which innovation is a significant source of consumer surplus. Second, we

develop a simple approximation for the ownership distribution, which is an endogenous

state variable that summarizes the state of demand when products are durable goods.

We estimate the model using data from the computer processor industry and show

that accounting for the durable nature of products in an equilibrium setting has im-

portant implications for firm and consumer behavior and market outcomes. Because

increased sales today lowers future demand, firms set prices higher when correctly ac-

counting for this dynamic aspect of demand.

We compute profits and consumer surplus under alternative market structures and

find that consumer surplus is 4.1 percent higher with AMD duopoly than without AMD

competing against Intel. Social surplus is 1.7 percent higher with competition from

AMD. Interestingly, the monopolist innovates more than the duopoly, as its market

power enables it to better extract the potential gains to trade resulting from innovations.

Several possibilities remain for future research. For example, natural questions arise

regarding the firm’s choice of leasing versus selling its durable product. Under what

conditions should a firm sell versus lease? Is it more advantageous for the leader or

laggard to lease? Does leasing reduce innovation and social welfare?

Another extension of interest is to consider switching costs for consumers when up-

grading from one firm’s product to a different firm’s product. Conceptually, such an

extension is trivial, though the state space would grow substantially since the ownership

distribution would need to be firm-specific.

Finally, allowing for multiproduct firms would enable researchers to study whether

competition is enhanced or diminished when leading firms offer inferior products to

compete more directly with the top offerings of lagging firms.
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Appendix A: Optimal Prices and Investments

As discussed in Section 2.3, we use a sequential approach to solve for the simultaneously

chosen prices and investments. Following Pakes and McGuire (1994), we specify the

probability of successful innovation to be f(1|x) = ajx/(1 + ajx) where aj denotes the

firm’s investment efficiency. This specification yields a closed form solution to the first

order condition in (11). Let

EW+(pjt) =
∑

q−j,t+1

∆t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1) hf (q−j,t+1|qt, ∆t) gf (∆t+1|∆t, qt, pt, qt+1) f(τjt = δ|xjt)

EW−(pjt) =
∑

q−j,t+1

∆t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1) hf (q−j,t+1|qt, ∆t) gf (∆t+1|∆t, qt, pt, qt+1) f(τjt = 0|xjt)

be the expected continuation values conditional on, positive and negative innovation

outcomes, respectively. The dependence of these expectations on pjt is through the

effect of price on the ownership transition to ∆t+1. For an arbitrary price pjt, the

optimal investment is

x∗jt(pjt) =
1

aj

(
c

βaj(EW+(pjt)− EW−(pjt))

)−1/2

− 1 . (25)

To determine the optimal price, consider the derivative of the firm’s value function

with respect to price, ∂W
∂pjt

= 0, which implies

∂πj(pt,qt,∆t)

∂pjt
+ β

∑
τjt, q−j,t+1, ∆t+1

Wj(qjt + τjt, q−j,t+1, ∆t+1)

hf (q−j,t+1|qt, ∆t)
∂gf (∆t+1|∆t,qt,pt,qt+1)

∂pjt
f(τjt|x∗jt(pjt)) = 0

(26)

where the partial derivative ∂x∗(p)
∂p

may be ignored due to the Envelope theorem. Recall

the important dynamic trade-off—a higher price today implies that more people will

be available in the next period to purchase the product. The second term of this first-

order condition captures this benefit to raising price, and leads to forward-looking firms

pricing higher than myopic firms who ignore this dynamic aspect of demand.

We use Brent’s method to solve for the optimal price. For each candidate price we

use x∗(pjt), the optimal investment level given this price, to evaluate the probability of

a successful innovation. While we have yet to prove that the optimal price is uniquely
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determined, inspection of the first-order-condition as a function of pjt at many states

indicates that this appears to be the case. The pair (p∗jt, x
∗
jt(p

∗
jt)) is the optimal set of

controls at this state.

Appendix B

Proof of Proposition 1: We prove the proposition for the case of a finite horizon, using

backwards induction, since this approach enables us to impose rational expectations

regarding future outcomes.

Consider the finite game with T periods in which a consumer starting at state

(q1, ∆1, q̃1, ε1) maximizes expected discounted utility

V T (q1, ∆1, q̃1, ε1) = max
{yt(qt,∆t,q̃t,εt)∈(0,1,...,J)}T

t=1

E

[
T∑

t=1

βt (γqyt,t − αpyt,t + ξyt + εyt,t)

]
(27)

where q0,t = q̃t and p0,t = 0 in each period, yt(qt, ∆t, q̃t, εt) is the consumer’s policy

function, and the expectation is taken with respect to information available at time t.

In this game each firm j maximizes expected discounted net profits

W T
j (qj1, q−j,1, ∆1) = max

{pjt(qt,∆t), xt(qt,∆t)}T
t=1

E

[
T∑

t=1

βt (Msjt(pt, qt, ∆t)(pjt −mcj)− cxjt)

]
(28)

where M is the market size, sjt(·) is the market share for firm j as defined in equation

(8), pt is the vector of J prices, xjt is investment by firm j, and mcj is firm j’s constant

marginal cost of production.

In period T firms and consumers play a standard static differentiated products game

given the state of the industry, as described by (qT , ∆T ). Since consumers’ utility func-

tions are linear in the quality index, consumers’ choices are insensitive to shifts in all

qualities (qt and q̃) by some constant q̂. The market share function therefore satisfies

sjt(pt, qt, ∆t) = sjt(pt, qt− q̂, ∆t), which implies firms’ prices are insensitive to shifts in all

qualities. The period T value functions V T and W T , for consumers and firms therefore

satisfy

Firms: W T
j (qjt, q−j,t, ∆t) = W T

j (qjt − q̂, q−j,t − q̂, ∆t)

Consumers: V T (qt, ∆t, q̃t, εt) = γq̂ + V T (qt − q̂, ∆t, q̃t − q̂, εt) .
(29)
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Note that each consumer’s utility shifts by γq̂ when all qualities shift by q̂.

Now consider equilibrium outcomes in period T − 1 taking as given the period T

equilibrium payoffs. Each consumer solves

V T−1(qT−1, ∆T−1, q̃T−1, εT−1) = max
y∈(0,1,...,J)

γqy,T−1 − αpy,T−1 + ξy + εy,T−1

+β
∑
qT

∫
εT

V T (qT , ∆T , q̃T , εT ) dFε(εT )

J∏
j=1

f(qjT − qj,T−1|xj,T−1, qT−1)

(30)

where q̃T = max(qy,T−1, q̄T − δc) is the transition of q̃ accounting for the maximum

allowed difference between the frontier product’s quality q̄T and each consumers q̃, and

the deterministic transition to ∆T is based on consumers’ choices, as detailed in equation

(9). Since each consumer is small relative to M , her actions do not affect the transition

of ∆.

Each firm j solves

W T−1
j (qj,T−1, q−j,T−1, ∆T−1) = max

pj,T−1
xj,T−1

Msj,T−1(pT−1, qT−1, ∆T−1)(pj,T−1 −mcj)− cxj,T−1

+β
∑
qT

W T
j (qj,T , q−j,T , ∆T )

J∏
j=1

f(qjT − qj,T−1|xj,T−1, qT−1)

(31)

In these equations defining V T−1 and W T−1, the products’ future qualities are uncer-

tain. Rational expectations regarding this uncertainty is achieved by using the firm’s

investments in period T − 1 to determine the distribution of qT .43

Now consider these same maximizations at a state with all qualities shifted by q̂:

V T−1(qT−1 − q̂, ∆T−1, q̃T−1 − q̂, εT−1) = max
y∈(0,1,...,J)

γ(qy,T−1 − q̂)− αpy,T−1 + ξy + εy,T−1

+β
∑
qT

∫
εT

V T (qT − q̂, ∆T , q̃T − q̂, εT ) dFε(εT )

J∏
j=1

f(qjT − q̂ − (qj,T−1 − q̂)|xj,T−1, qT−1 − q̂)

(32)

43Recall that f(·|xjt, qt) is the probability distribution of j’s investment outcome, which is restricted
to be either no improvement in quality, or improvement by one δ-step.
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and

W T−1
j (qj,T−1 − q̂, q−j,T−1 − q̂, ∆T−1) = max

pj,T−1
xj,T−1

Msj,T−1(pT−1, qT−1 − q̂, ∆T−1)(pj,T−1 −mcj)

−cxj,T−1 + β
∑
qT

W T
j (qj,T − q̂, q−j,T − q̂, ∆T )

J∏
j=1

f(qjT − q̂ − (qj,T−1 − q̂)|xj,T−1, qT−1 − q̂) .

(33)

Substitute the right-hand sides of (29) into (33) and (32). Then note that f(qjT − q̂ −
(qj,T−1 − q̂)|xj,T−1, qT−1 − q̂) = f(qjT − qj,T−1|xj,T−1, qT−1) by algebra and the assump-

tion that the “spillover” aspect of investment outcomes depends on quality differences

between the investing firm and the frontier product. As such, firms’ investment choices

are unaffected by the q̂ shift. Consumers’ and firms’ discounted continuation values are

therefore insensitive to the q̂ shift. Since current flow utility is insensitive to the quality

shift (by linearity), consumers’ period T − 1 choices (i.e., sj,T−1) must be insensitive

to the shift, which further implies firms’ T − 1 prices are insensitive to the shift. Im-

plementing these equivalences converts (33) into (31), exactly, and converts (32) into

(30), except for a −(γq̂ + βγq̂) term which does not affect the consumer’s choice. The

modified (32) is

V T−1(qT−1 − q̂, ∆T−1, q̃T−1−q̂, εT−1) = max
y∈(0,1,...,J)

γ(qy,T−1 − q̂)− αpy,T−1 + ξy + εy,T−1

+β
∑
qT

∫
εT

(
−γq̂ + V T (qT , ∆T , q̃T , εT )

)
dFε(εT )

J∏
j=1

f(qjT − qj,T−1|xj,T−1, qT−1)

(34)

By induction, the optimal consumer policies yt(qt, ∆t, q̃t, εt) and firm policies

pt(qjt, q−jt, ∆t) and xt(qjt, q−jt, ∆t) are insensitive to shifts in all qualities, for all t.

The firm’s value functions W t are also insensitive to q̂ shifts and the consumers’ value

function V t is shifted by γq̂
∑T−t

t′=0 βt′ .

To complete the proof, choose q̂ = q̄t, the quality of the frontier product in period t.
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Table 1: Base Case Parameters

Parameter Value

Intel fixed effect, ξIntel 0
Discount factor, β 0.975
Log-quality stepsize, δ 0.1823 (20% quality increments)
q̄ − q̃ bound, δ̄c 2.5522 (14 δ-steps)
q̄ − qj bound, δ̄f 0.9115 (5 δ-steps)
Innovation pdf, f(τ = δ|x, q) a(·)x/(1 + a(·)x), x in $millions

Innovation spillover, a(·) a0,j(1 + a1(
q̄t−qjt

δ
)2)

Investment cost, c 1
Market size, M 400 million
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Table 2: Empirical vs. Simulated Moments

Baseline Aux. Model Alt. Aux. model
Auxiliary Moment Observed Simulated pseudo-t Observed Simulated pseudo-t

Intel price equation:
constant 228.102 228.840 0.079 270.844 274.073 0.282
ωIntel − ωAMD 197.335 61.239 3.141 0.633 0.637 0.056

AMD price equation:
constant 180.554 139.712 3.826 149.185 137.738 1.277
ωIntel − ωAMD -139.870 -15.300 5.038 -0.572 -0.748 2.083

Intel share equation:
constant 0.830 0.831 0.230 0.830 0.821 1.368
ωIntel − ωAMD 0.074 0.114 2.311 0.074 0.116 2.447

Mean Innovation Rates:
Intel 0.571 0.676 1.587 0.571 0.731 2.416
AMD 0.602 0.672 0.881 0.602 0.714 1.419

Mean Quality Differences:
ωIntel − ωAMD 1.217 1.112 0.506 1.217 1.500 1.353
|ωIntel − ωAMD| 1.412 1.587 0.978 1.412 1.716 1.700

Mean R&D / Revenue:
Intel 0.114 0.120 1.717 0.114 0.111 0.760
AMD 0.203 0.226 2.524 0.203 0.197 0.758

Objective Function : 55.8 26.2

The “Alt. Aux. Model” differs from the baseline by using the correlations between each firm’s price
and ωIntel − ωAMD instead of the regression coefficient.
The pseudo-t is |Observed− Simulated|/Observed Std Error.

Table 3: Parameter Estimates

Baseline Aux. Alt. Aux.
Parameter Estimate Std. Err. Estimate Std. Err.

Price, α 0.01017 0.001184 0.00938 0.000198
Quality, γ 0.38560 0.037586 0.40607 0.020751
AMD Fixed Effect, ξAMD -2.49436 0.111348 -2.62150 0.046973
Intel Innovation, a0,Intel 0.00088 0.000044 0.00100 0.000112
AMD Innovation, a0,AMD 0.00197 0.000432 0.00185 0.000055
Spillover, a1 1.30389 0.025923 1.36845 0.033894
Intel Marginal Cost, mcIntel 57.76092 1.807299 71.12646 0.843711
AMD Marginal Cost, mcAMD 30.34652 1.411450 20.73857 0.937190
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Table 4: Industry Measures under Various Scenarios

Intel-AMD Symmetric Myopic Pricing Social
Duopoly Duopoly Monopoly Duopoly Monopoly Planner

Industry Profits ($millions) 472069 535865 559302 412513 416265 -391252
Consumer Surplus 4321806 4490887 4152413 4126303 3895274 6044158
Social Surplus 4793875 5026752 4711715 4538816 4311540 5652905
Period Profits per Consumer 28.017 32.660 32.309 24.728 24.330 -24.468
Margins 3.146 2.197 4.461 2.312 2.212 0.000
Price 221.738 184.675 315.451 177.961 185.516 57.761
Frontier Innovation Rate 0.680 0.635 0.694 0.591 0.523 0.896
Industry Investment 1205.781 1267.145 2584.089 806.987 1270.218 9787.185
Average |q1t − q2t|/δ 1.702 1.259 0.000 1.429 0.000 0.000
Frontier Quality t = 1 2.735 2.735 2.735 2.735 2.735 2.735
Frontier Quality t = 100 15.018 14.191 15.272 13.404 12.207 18.907
Mean Quality Upgrade 1.006 0.587 1.523 0.709 0.691 0.553
Firm 1 market share 0.172 0.162 0.150 0.206 0.214 0.426
Firm 2 market share 0.029 0.143 0.000 0.026 0.000 0.000

Reported values are based on 10,000 simulations of 300 periods each.
Symmetric duopoly uses Intel’s firm specific parameters for both firms.
Under “myopic pricing” firms choose price ignoring its effect on future demand.
Profits, investment, and surplus numbers are reported in millions of dollars.
Profits and surplus are discounted back to period 0, except “Period Profits per Consumer”.
Social surplus is the sum of consumer surplus and industry profits.
The social planner and monopolist are restricted to offering one product.
Margins are computed as (p−mc)/mc. Price and margins are share-weighted averages.

Table 5: Margin Distribution

Myopic Pricing
Duopoly Monopoly Duopoly Monopoly

Min 2.261 2.480 2.154 2.117
5% 2.743 3.565 2.237 2.117
10% 2.824 3.750 2.247 2.117
25% 2.965 4.073 2.277 2.163
50% 3.138 4.602 2.313 2.209
75% 3.355 4.906 2.350 2.264
90% 3.549 4.924 2.378 2.302
95% 3.656 4.963 2.405 2.321
Max 4.046 6.231 2.614 2.571

Mean 3.146 4.461 2.312 2.212
Stdev 0.481 0.658 0.041 0.120

Distribution of sales-weighted average price margins
((pjt −mcj)/mcj) under the different industry scenarios.
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Table 6: Intel and AMD outcomes with optimal pricing and myopic pricing

Optimal Pricing Myopic Pricing
Intel AMD Intel AMD

Total Profits ($millions) 433596 38473 382466 30047
Period Profits 10345 862 9181 710
Period Profits per Consumer 25.863 2.154 22.952 1.776
Market Share 0.172 0.029 0.206 0.026
Margin 3.092 3.492 2.184 3.332
Investment 2016.584 395.866 1264.725 349.613
Innovation Rate 0.679 0.677 0.590 0.592
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Figure 1: CPU Prices and Qualities: 1993 Q1 to 1994 Q4
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Figure 2: CPU Shipments and Market Shares

Figure 3: R&D Spending
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Figure 4: Value and Policy Functions: Column 1 has ownership with many recent
purchases; Column 2 has ownership with mostly old vintages. Value functions are
reported in $ billions and investments are in $ millions.
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Figure 5: Simulated Time Series
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Figure 6: Myopic vs. Optimal pricing for Monopoly
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Figure 7: Purchase Probabilities by Vintage, Duopoly Case
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Figure 8: Ownership Distribution, Duopoly and Monopoly Cases
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Figure 9: Each Vintage’s Share of Purchases
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Figure 10: Elasticities and Markups for duopoly, monopoly, and myopic
pricing monopoly
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Figure 11: Comparison of Outcomes Varying Consumer Discount Factor

0.5 0.75 0.9 0.975
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

at
iv

e 
to

 B
en

ch
m

ar
k 

M
od

el

Consumer Discount Factor

Profits

Consumer
Surplus

Margins

Innovation

65



Figure 12: Market Restriction
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