Bond Portfolios and Two-Fund Separation in the Lucas Asset-Pricing Model

Kenneth L. Judd

Felix Kubler

Hoover Institution

University of Pennsylvania

Karl Schmedders
Kellogg School of Management

2007 Summer CAM Conference
University of Notre Dame
June 9, 2007

Modern Portfolio Theory

Asset allocation in stochastic environments

Optimal investment in stocks, bond, and cash

Partial equilibrium analysis:

Exogenously specified stochastic processes of returns and interest rate

Continuous-time literature based on Merton (1973)

Many recent examples, e.g. Brennan and Xia (2000, 2002), Wachter (2003)

Discrete-time factor models

Campbell and Viceira (2001, 2002)

Motivation: This Paper

Popular models are partial equilibrium and not GE models

Few underlying factors, markets are complete with very few assets

Analysis of complex bond portfolios impossible

Our paper: Follow very different approach

Examine investors' portfolios in a dynamic GE model

Lucas asset pricing model with heterogeneous agents and many states of nature

Dynamically complete security markets

Market completeness through presence of many bonds

Summary: One Bond

HARA utility, linear sharing rules

Two-fund separation hinges on maturity of the bond

Consol: two-fund separation

One-period bond: typically no two-fund separation

Consol: riskless asset in an infinite-horizon dynamic model safe consumption stream over the infinite horizon uncertain capital value does not affect portfolios

One-period bond: risky asset in an infinite-horizon dynamic model time-varying interest rates, reinvestment risk

Summary: Many Bonds

Dynamically complete security markets with several zero-coupon bonds

Bonds have maturities of $1, 2, \dots, K$ periods

Stock portfolios typically do not exhibit two-fund separation

Bond portfolios involve unrealistically large trading volume of long-term bonds

As the number of states and bonds increases:

Stock portfolios approach two-fund separation

Bond portfolios show laddering structure for short maturities

Two-fund separation and bond ladders are approximately optimal

Introduction of redundant bonds is welfare-improving

Overview

- Dynamic GE Model
- HARA Utility Functions and Linear Sharing Rules
- Separation Results for the GE Model with a single bond
- Families of Finite-Maturity Bonds
- Bond Ladders

General Equilibrium Model

Lucas asset pricing model with heterogeneous agents

Dynamically complete asset markets

Markov process of exogenous dividend states, $y \in \mathcal{Y} = \{1, \dots, Y\}$

Transition matrix $\Pi >> 0$

Finite number of types of infinitely-lived agents, $h \in \mathcal{H} = \{1, \dots, H\}$

Single perishable consumption good (produced by firms)

Agents have no individual endowments but hold an initial portfolio of firms' stock Firms distribute output through dividends ("Lucas trees")

Securities

Infinitely-lived stocks with dividends $d^j: \mathcal{Y} \to \mathbb{R}_{++}$ for $j = 1, \ldots, J$

Stocks are in unit net supply

Each agent has initial holding of stocks

Initial model: two types of bonds

Consol with safe payoff $d_y^c = 1$ for all $y \in \mathcal{Y}$

One-period bond with safe payoff next period

Bonds are in zero net supply

Agents hold no initial positions

Utility Function

Time-separable utilities

$$U_h(c) = E\left\{\sum_{t=0}^{\infty} \beta^t u_h(c_t)\right\}$$

Consumption process $c = (c_0, c_1, \ldots)$

 $u_h: \mathbb{R}_{++} \to \mathbb{R}$ strictly monotone, C^2 , and strictly concave

Identical discount factor $\beta \in (0,1)$ for all agents

Equilibrium

Complete markets: Pareto efficient consumption allocations

Consumption only depends on current dividend state, is independent of history and any other state variables

Consumption "process" is represented by a vector of Y numbers

Negishi approach determines allocations; nonlinear system of equations

Portfolios are constant for Y independent dividend vectors

State-independent portfolio of stocks ψ^h , and consol θ^h_c or bond θ^h_1

Budget equations determine constant portfolios; linear system of equations

Classical Two-Fund Separation

Tobin (1958), Markowitz (1959)

Cass and Stiglitz (1970): single-agent static portfolio demand problem

There is a riskless asset and the agent has HARA utility

Monetary separation: The relative allocation of wealth across risky assets

is invariant to wealth and risk attitude

General Equilibrium

Market-clearing in general equilibrium model

Two-fund separation
$$\iff$$
 $\psi_j^h = \psi_{j'}^h \quad \forall j, j'$

Rubinstein (1974): Equi-cautious HARA utility leads to linear sharing rules for all agents in static GE

Generalizes to our dynamic model: $c_y^h = m^h e_y + b^h \quad \forall h, \forall y$

Social endowment $e_y = \sum_{j=1}^J d_y^j$

Consol vs. One-period Bond

Consol

$$m^h e_y + b^h = c_y^h = \sum_{j=1}^J \psi_j^h d_y^j + \theta_c^h \cdot 1$$

Two-fund separation holds, $\theta_c^h = b^h$ and $\psi_j^h = m^h \ \forall j$

One-period bond
$$m^h e_y + b^h = c_y^h = \sum_{j=1}^J \psi_j^h d_y^j + \theta_1^h \cdot (1 - q_y^1)$$

Generically no two-fund separation when $b^h \neq 0$

Deviations from two-fund separation are quantitatively significant

Many Finite-Maturity Bonds

Infinitely-lived stocks with dividends $d^j: \mathcal{Y} \to \mathbb{R}_{++}$ for $j = 1, \dots, J$

K zero-coupon bonds of maturities $1, 2, \ldots, K$ in zero net supply

Agent h's bond portfolio, $\theta_1^h, \theta_2^h, \dots, \theta_K^h$

Agent h's budget constraint (in stationary equilibrium)

$$c_y^h = \sum_{j=1}^J \psi_j^h d_y^j + \frac{\theta_1^h}{1} (1 - q_y^1) + \sum_{k=2}^K \frac{\theta_k^h}{k} (q_y^{k-1} - q_y^k)$$

Two-Fund Separation with IID Dividends

Any number J of stocks, two bonds with maturities k = 1, 2

IID beliefs over next period's dividend states

Prices of the two bonds are perfectly correlated, $q^2 = \beta q^1$

Portfolio

$$\theta_1^h = b^h, \quad \theta_2^h = \frac{b^h}{(1-\beta)},$$

implements holding b^h of consol and so creates safe consumption stream of size b^h

Two-fund separation for stock portfolio $\psi_j^h = m^h \ \forall j = 1, \dots, J$

Spanning the Consol

Finite-maturity bonds span consol \implies two-fund separation

$$c_y^h = m^h e_y + b^h = \sum_{j=1}^J \psi_j^h d_y^j + \theta_1^h (1 - q_y^1) + \sum_{k=2}^K \theta_k^h (q_y^{k-1} - q_y^k)$$

Spanning means relationship between bond price vectors q^1, q^2, \dots, q^K

Sufficient conditions for spanning

Key ingredient is Markov transition matrix Π of exogenous shocks

Examples with Many Bonds

J independent stocks with independent high and low dividends

stock	1	2	3	4	5	6	7
high d	1.02	1.23	1.05	1.2	1.09	1.14	1.1
low d	0.98	0.77	0.95	0.8	0.91	0.86	0.9
pers.	0.55	0.81	0.61	0.74	0.66	0.7	0.68

Model with J independent stocks: $Y = 2^J$ states

With different persistence, K = Y - J bonds

H=2 agents with power utilities, $\frac{1}{1-\gamma}(c-A^h)^{1-\gamma}$, $\beta=0.95$

Sharing rule for agent 1, $c_y^1 = 0.3 \cdot e_y + 0.2$

(J,K) =	(3,5)	(4, 12)	(J,K) =	(5, 27)	(J,K) =	(6, 58)
ψ_1^1	0.431	0.30	ψ_1^1	0.30	ψ_1^1	0.30
ψ_2^1	0.351	0.30	ψ_2^1	0.30	ψ_2^1	0.30
ψ_3^1	0.387	0.30	ψ^1_3	0.30	ψ^1_3	0.30
$\psi^1_3 \ \psi^1_4$		0.30	ψ_4^1	0.30	$\psi_4^{ m 1}$	0.30
			$\psi_5^{ ilde{1}}$	0.30	$\psi_5^{ ilde{1}}$	0.30
					ψ_6^1	0.30
θ_1^1	0.152	0.20	$ heta_1^1$	0.20	θ_1^1	0.20
θ_2^1	-0.184	0.20	$ heta_2^1$		$ heta_2^1$	
θ_3^1	2.337	0.20		•	$ heta_3^1$	•
θ_4^1	-7.498	0.20	$\theta_{11}^{\tilde{1}}$			
$\begin{array}{c} \theta_{1}^{1} \\ \theta_{2}^{1} \\ \theta_{3}^{1} \\ \theta_{4}^{1} \\ \theta_{5}^{1} \\ \theta_{5}^{1} \\ \theta_{11}^{1} \\ \theta_{12}^{1} \\ \end{array}$	8.074	0.20	$egin{array}{c} heta_8^1 \\ heta_{11}^1 \\ heta_{12}^1 \\ heta_{20}^1 \\ heta_{25}^1 \\ heta_{26}^1 \\ heta_{27}^1 \end{array}$	0.20	$\begin{array}{c} \theta_{26}^{1} \\ \theta_{27}^{1} \\ \hline \theta_{50}^{1} \\ \theta_{56}^{1} \\ \theta_{57}^{1} \\ \end{array}$	0.20
$ heta_7^1$		-0.66	θ_{20}^1	-5.2	θ_{50}^1	1179
θ_8^1		6.33	$ heta_{25}^1$	556	$ heta_{56}^1$	10177
θ_{11}^{1}		-86.58	$ heta_{26}^1$	-423	$ heta_{57}^1$	$\left -4627\right $
$\theta_{12}^{\tilde{1}}$		46.58	$ heta_{27}^{ar{1}}$	146	$ heta_{58}^{1}$	998

Deviations from Two-Fund Separation

J	K	Δ^S	Δ^1	Δ^2	Δ^3	Δ^4	Δ^5
4	12	4.5 (-9)	1.3(-9)	3.5 (-8)	2.0 (-6)	1.1 (-4)	3.7(-3)
5	27	3.5(-33)	6.3(-34)	8.3(-31)	8.3(-28)	4.6(-25)	1.6(-22)
6	58	9.6 (-88)	4.2 (-85)	3.1(-81)	1.1 (-77)	2.1(-74)	3.0(-71)
			I .				2.4(-197)

As K increases,

stock portfolios converge to holdings satisfying two-fund separation holdings of bonds with short maturity are approximately b^h for agent h

More Deviations

k	(5, 27)	(6,58)	(7,121)
6	3.5(-20)	3.0(-68)	1.4 (-193)
7	5.3(-18)	2.4(-65)	6.3(-190)
10	3.0(-12)	2.9(-57)	2.0 (-179)
11	1.5(-10)	9.9(-55)	4.5 (-176)
12	5.4(-9)	2.9(-52)	8.9(-173)
20	5.37	7.5(-35)	3.5(-148)
25	555.6	1.1(-25)	3.9(-134)
26	423.4	5.3(-24)	2.0 (-131)
27	145.8	2.4(-22)	9.1 (-129)
40	_	3.7(-5)	1.0 (-96)
50	_	1179.3	4.3 (-75)
56	_	10178	3.0 (-63)
57	_	4627.2	2.3(-61)
58	<u> </u>	998.2	1.7 (-59)

Bond Ladders

Consider very simple portfolios

Stock portfolios must exhibit two-fund separation

Bond portfolios must have ladder structure

$$\psi_j^h = \hat{m}^h, \ \forall j = 1, \dots, J \text{ (two-fund separation)}$$
 $\theta_k^h = \hat{b}^h, \ \forall k = 1, \dots, B \text{ (bond ladder)}$

Welfare loss of such portfolios?

Welfare Comparison of Three Portfolios

Consumption stream c^h yields lifetime utility $V^h(c^h)$

Consumption equivalent C^h defined by $\sum_{t=0}^{\infty} \beta^t u^h(C^h) = V^h(c^h)$

 $C^{h,0}$ = CE for consumption stream from initial portfolio

 $C^{h,*}$ = CE for equilibrium consumption stream

 $C^{h,B} = \text{CE}$ for portfolio with bond ladder (\hat{m}^h, \hat{b}^h) of size B

Welfare loss from bond ladder

$$\Delta C^h = 1 - \frac{C^{h,B} - C^{h,0}}{C^{h,*} - C^{h,0}} = \frac{C^{h,*} - C^{h,B}}{C^{h,*} - C^{h,0}}$$

Equilibrium Portfolio vs. Bond Ladder

Economy with J=4 independent stocks, so $Y=2^4$ states

stock	1	2	3	4
high d	1.05	1.08	1.12	1.15
low d	0.95	0.92	0.88	0.85

Persistence probability of both states is 0.6 for all stocks

Welfare Losses of Bond Ladders

$\boxed{B\backslash\gamma}$	1	3	5	10
1	1.4(-4)	1.4(-3)	7.2(-3)	4.8(-2)
2	5.0(-6)	3.0 (-3)	1.3(-2)	7.5(-2)
5	2.4(-10)	3.2(-3)	1.4(-2)	8.1 (-2)
10	6.3(-13)	2.6 (-3)	1.2(-2)	7.5(-2)
30	≈ 0	7.7(-4)	5.1(-3)	4.7(-2)
50	≈ 0	1.6 (-4)	1.4(-3)	1.9(-2)
100	≈ 0	1.2(-6)	1.3(-5)	2.8(-4)

Summary

Portfolio analysis in Lucas asset-pricing model with many states and bonds

Equilibrium portfolios are economically unintuitive

Simple portfolios with two-fund separation and bond ladders are approximately optimal

Such portfolios benefit from the introduction of redundant bonds