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Modern Portfolio Theory
Asset allocation in stochastic environments

Optimal investment in stocks, bond, and cash

Partial equilibrium analysis:

Exogenously specified stochastic processes of returns and interest rate

Continuous-time literature based on Merton (1973)

Many recent examples, e.g. Brennan and Xia (2000, 2002), Wachter (2003)

Discrete-time factor models

Campbell and Viceira (2001, 2002)
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Motivation: This Paper
Popular models are partial equilibrium and not GE models

Few underlying factors, markets are complete with very few assets

Analysis of complex bond portfolios impossible

Our paper: Follow very different approach

Examine investors’ portfolios in a dynamic GE model

Lucas asset pricing model with heterogeneous agents and many states of nature

Dynamically complete security markets

Market completeness through presence of many bonds
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Summary: One Bond
HARA utility, linear sharing rules

Two-fund separation hinges on maturity of the bond

Consol: two-fund separation

One-period bond: typically no two-fund separation

Consol: riskless asset in an infinite-horizon dynamic model

safe consumption stream over the infinite horizon

uncertain capital value does not affect portfolios

One-period bond: risky asset in an infinite-horizon dynamic model

time-varying interest rates, reinvestment risk
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Summary: Many Bonds
Dynamically complete security markets with several zero-coupon bonds

Bonds have maturities of 1, 2, . . . , K periods

Stock portfolios typically do not exhibit two-fund separation

Bond portfolios involve unrealistically large trading volume of long-term bonds

As the number of states and bonds increases:

Stock portfolios approach two-fund separation

Bond portfolios show laddering structure for short maturities

Two-fund separation and bond ladders are approximately optimal

Introduction of redundant bonds is welfare-improving
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Overview

• Dynamic GE Model

• HARA Utility Functions and Linear Sharing Rules

• Separation Results for the GE Model with a single bond

• Families of Finite-Maturity Bonds

• Bond Ladders
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General Equilibrium Model
Lucas asset pricing model with heterogeneous agents

Dynamically complete asset markets

Markov process of exogenous dividend states, y ∈ Y = {1, . . . , Y }
Transition matrix Π >> 0

Finite number of types of infinitely-lived agents, h ∈ H = {1, . . . , H}
Single perishable consumption good (produced by firms)

Agents have no individual endowments but hold an initial portfolio of firms’ stock

Firms distribute output through dividends (“Lucas trees”)
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Securities

Infinitely-lived stocks with dividends dj : Y → R++ for j = 1, . . . , J

Stocks are in unit net supply

Each agent has initial holding of stocks

Initial model: two types of bonds

Consol with safe payoff dc
y = 1 for all y ∈ Y

One-period bond with safe payoff next period

Bonds are in zero net supply

Agents hold no initial positions
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Utility Function

Time-separable utilities

Uh(c) = E

{ ∞∑
t=0

βtuh(ct)

}

Consumption process c = (c0, c1, . . .)

uh : R++ → R strictly monotone, C2, and strictly concave

Identical discount factor β ∈ (0, 1) for all agents
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Equilibrium

Complete markets: Pareto efficient consumption allocations

Consumption only depends on current dividend state, is independent of history and

any other state variables

Consumption “process” is represented by a vector of Y numbers

Negishi approach determines allocations; nonlinear system of equations

Portfolios are constant for Y independent dividend vectors

State-independent portfolio of stocks ψh, and consol θh
c or bond θh

1

Budget equations determine constant portfolios; linear system of equations
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Classical Two-Fund Separation

Tobin (1958), Markowitz (1959)

Cass and Stiglitz (1970): single-agent static portfolio demand problem

There is a riskless asset and the agent has HARA utility

Monetary separation: The relative allocation of wealth across risky assets

is invariant to wealth and risk attitude
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General Equilibrium

Market-clearing in general equilibrium model

Two-fund separation ⇐⇒ ψh
j = ψh

j′ ∀ j, j′

Rubinstein (1974): Equi-cautious HARA utility leads to linear sharing rules

for all agents in static GE

Generalizes to our dynamic model: ch
y = mhey + bh ∀ h, ∀ y

Social endowment ey =
∑J

j=1 dj
y
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Consol vs. One-period Bond

Consol mh ey + bh = ch
y =

∑J
j=1 ψh

j d
j
y + θh

c · 1

Two-fund separation holds, θh
c = bh and ψh

j = mh ∀j

One-period bond mh ey + bh = ch
y =

∑J
j=1 ψh

j d
j
y + θh

1 · (1− q1
y)

Generically no two-fund separation when bh 6= 0

Deviations from two-fund separation are quantitatively significant
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Many Finite-Maturity Bonds

Infinitely-lived stocks with dividends dj : Y → R++ for j = 1, . . . , J

K zero-coupon bonds of maturities 1, 2, . . . , K in zero net supply

Agent h’s bond portfolio, θh
1 , θ

h
2 , . . . , θ

h
K

Agent h’s budget constraint (in stationary equilibrium)

ch
y =

J∑
j=1

ψh
j d

j
y + θh

1(1− q1
y) +

K∑

k=2

θh
k(qk−1

y − qk
y)
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Two-Fund Separation with IID Dividends

Any number J of stocks, two bonds with maturities k = 1, 2

IID beliefs over next period’s dividend states

Prices of the two bonds are perfectly correlated, q2 = βq1

Portfolio

θh
1 = bh, θh

2 =
bh

(1− β)
,

implements holding bh of consol and so creates safe consumption stream of size bh

Two-fund separation for stock portfolio ψh
j = mh ∀j = 1, . . . , J
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Spanning the Consol

Finite-maturity bonds span consol =⇒ two-fund separation

ch
y = mhey + bh =

J∑
j=1

ψh
j d

j
y + θh

1(1− q1
y) +

K∑

k=2

θh
k(qk−1

y − qk
y)

Spanning means relationship between bond price vectors q1, q2, . . . , qK

Sufficient conditions for spanning

Key ingredient is Markov transition matrix Π of exogenous shocks
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Examples with Many Bonds

J independent stocks with independent high and low dividends

stock 1 2 3 4 5 6 7
high d 1.02 1.23 1.05 1.2 1.09 1.14 1.1
low d 0.98 0.77 0.95 0.8 0.91 0.86 0.9
pers. 0.55 0.81 0.61 0.74 0.66 0.7 0.68

Model with J independent stocks: Y = 2J states

With different persistence, K = Y − J bonds

H = 2 agents with power utilities, 1
1−γ(c− Ah)1−γ, β = 0.95
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Sharing rule for agent 1, c1
y = 0.3 · ey + 0.2

(J,K) = (3, 5) (4, 12)
ψ1

1 0.431 0.30
ψ1

2 0.351 0.30
ψ1

3 0.387 0.30
ψ1

4 0.30

θ1
1 0.152 0.20

θ1
2 −0.184 0.20

θ1
3 2.337 0.20

θ1
4 −7.498 0.20

θ1
5 8.074 0.20

θ1
7 −0.66

θ1
8 6.33

θ1
11 −86.58

θ1
12 46.58

(J,K) = (5, 27)
ψ1

1 0.30
ψ1

2 0.30
ψ1

3 0.30
ψ1

4 0.30
ψ1

5 0.30

θ1
1 0.20

θ1
2

θ1
8

...
θ1
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θ1
12 0.20

θ1
20 −5.2

θ1
25 556

θ1
26 −423

θ1
27 146

(J,K) = (6, 58)
ψ1

1 0.30
ψ1

2 0.30
ψ1

3 0.30
ψ1

4 0.30
ψ1

5 0.30
ψ1

6 0.30
θ1

1 0.20
θ1

2

θ1
3

...
θ1

26

θ1
27 0.20

θ1
50 1179

θ1
56 10177

θ1
57 −4627

θ1
58 998
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Deviations from Two-Fund Separation

J K ∆S ∆1 ∆2 ∆3 ∆4 ∆5

4 12 4.5 (−9) 1.3 (−9) 3.5 (−8) 2.0 (−6) 1.1 (−4) 3.7 (−3)
5 27 3.5 (−33) 6.3 (−34) 8.3 (−31) 8.3 (−28) 4.6 (−25) 1.6 (−22)
6 58 9.6 (−88) 4.2 (−85) 3.1 (−81) 1.1 (−77) 2.1 (−74) 3.0 (−71)
7 121 2.0 (−222) 4.9 (−214) 1.8 (−209) 3.0 (−205) 3.2 (−201) 2.4 (−197)

As K increases,

stock portfolios converge to holdings satisfying two-fund separation

holdings of bonds with short maturity are approximately bh for agent h
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More Deviations
k (5, 27) (6, 58) (7, 121)
6 3.5 (−20) 3.0 (−68) 1.4 (−193)
7 5.3 (−18) 2.4 (−65) 6.3 (−190)
10 3.0 (−12) 2.9 (−57) 2.0 (−179)
11 1.5 (−10) 9.9 (−55) 4.5 (−176)
12 5.4 (−9) 2.9 (−52) 8.9 (−173)
20 5.37 7.5 (−35) 3.5 (−148)
25 555.6 1.1 (−25) 3.9 (−134)
26 423.4 5.3 (−24) 2.0 (−131)
27 145.8 2.4 (−22) 9.1 (−129)
40 − 3.7 (−5) 1.0 (−96)
50 − 1179.3 4.3 (−75)
56 − 10178 3.0 (−63)
57 − 4627.2 2.3 (−61)
58 − 998.2 1.7 (−59)
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Bond Ladders

Consider very simple portfolios

Stock portfolios must exhibit two-fund separation

Bond portfolios must have ladder structure

ψh
j = m̂h, ∀j = 1, . . . , J (two-fund separation)

θh
k = b̂h, ∀k = 1, . . . , B (bond ladder)

Welfare loss of such portfolios ?
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Welfare Comparison of Three Portfolios

Consumption stream ch yields lifetime utility V h(ch)

Consumption equivalent Ch defined by
∑∞

t=0 βtuh(Ch) = V h(ch)

Ch,0 = CE for consumption stream from initial portfolio

Ch,∗ = CE for equilibrium consumption stream

Ch,B = CE for portfolio with bond ladder (m̂h, b̂h) of size B

Welfare loss from bond ladder

∆Ch = 1− Ch,B − Ch,0

Ch,∗ − Ch,0
=

Ch,∗ − Ch,B

Ch,∗ − Ch,0
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Equilibrium Portfolio vs. Bond Ladder

Economy with J = 4 independent stocks, so Y = 24 states

stock 1 2 3 4

high d 1.05 1.08 1.12 1.15

low d 0.95 0.92 0.88 0.85

Persistence probability of both states is 0.6 for all stocks
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Welfare Losses of Bond Ladders

B\γ 1 3

1 1.4 (−4) 1.4 (−3)

2 5.0 (−6) 3.0 (−3)

5 2.4 (−10) 3.2 (−3)

10 6.3 (−13) 2.6 (−3)

30 ≈ 0 7.7 (−4)

50 ≈ 0 1.6 (−4)

100 ≈ 0 1.2 (−6)

5 10

7.2 (−3) 4.8 (−2)

1.3 (−2) 7.5 (−2)

1.4 (−2) 8.1 (−2)

1.2 (−2) 7.5 (−2)

5.1 (−3) 4.7 (−2)

1.4 (−3) 1.9 (−2)

1.3 (−5) 2.8 (−4)

23



Summary

Portfolio analysis in Lucas asset-pricing model with many states and bonds

Equilibrium portfolios are economically unintuitive

Simple portfolios with two-fund separation and bond ladders

are approximately optimal

Such portfolios benefit from the introduction of redundant bonds
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