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Outline: Six Topics

� Introduction

� Unconstrained optimization

• Limited-memory variable metric methods

� Systems of Nonlinear Equations

• Sparsity and Newton’s method

� Automatic Differentiation

• Computing sparse Jacobians via graph coloring

� Constrained Optimization

• All that you need to know about KKT conditions

� Solving optimization problems

• Modeling languages: AMPL and GAMS
• NEOS
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Topic 1: The Optimization Viewpoint

� Modeling

� Algorithms

� Software

� Automatic differentiation tools

� Application-specific languages

� High-performance architectures
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Classification of Constrained Optimization Problems

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

• Number of variables n

• Number of constraints m

• Number of linear constraints

• Number of equality constraints ne

• Number of degrees of freedom n− ne

• Sparsity of c′(x) = (∂icj(x))
• Sparsity of ∇2

xL(x, λ) = ∇2f(x) +
∑m

k=1∇2ck(x)λk
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Classification of Constrained Optimization Software

• Formulation

• Interfaces: MATLAB, AMPL, GAMS

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Linear solvers
• Direct solvers
• Iterative solvers
• Preconditioners

• Partially separable problem formulation

• Documentation

• License
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Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.

Question. What are the characteristics of the life-cycle problem?
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Topic 2: Unconstrained Optimization

Augustin Louis Cauchy (August 21, 1789 – May 23, 1857)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Unconstrained Optimization: Background

Given a continuously differentiable f : Rn 7→ R and

min {f(x) : x ∈ Rn}

generate a sequence of iterates {xk} such that the gradient test

‖∇f(xk)‖ ≤ τ

is eventually satisfied

Theorem. If f : Rn 7→ R is continuously differentiable and bounded
below, then there is a sequence {xk} such that

lim
k→∞

‖∇f(xk)‖ = 0.

Exercise. Prove this result.
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Unconstrained Optimization

What can I use if the gradient ∇f(x) is not available?

� Geometry-based methods: Pattern search, Nelder-Mead, . . .

� Model-based methods: Quadratic, radial-basis models, . . .

What can I use if the gradient ∇f(x) is available?

� Conjugate gradient methods

� Limited-memory variable metric methods

� Variable metric methods
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Computing the Gradient

Hand-coded gradients

� Generally efficient

� Error prone

� The cost is usually less than 5 function evaluations

Difference approximations

∂if(x) ≈ f((x + hei)− f(x)
hi

� Choice of hi may be problematic in the presence of noise.

� Costs n function evaluations

� Accuracy is about the ε
1/2
f where εf is the noise level of f
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Cheap Gradient via Automatic Differentiation

Code generated by automatic differentiation tools

� Accurate to full precision

� For the reverse mode the cost is ΩT T{f(x)}.
� In theory, ΩT ≤ 5.

� For the reverse mode the memory is proportional to the number of
intermediate variables.

Exercise

Develop an order n code for computing the gradient of

f(x) =
n∏

k=1

xk
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Line Search Methods

A sequence of iterates {xk} is generated via

xk+1 = xk + αkpk,

where pk is a descent direction at xk, that is,

∇f(xk)T pk < 0,

and αk is determined by a line search along pk.

Line searches

� Geometry-based: Armijo, . . .

� Model-based: Quadratics, cubic models, . . .
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Powell-Wolfe Conditions on the Line Search

Given 0 ≤ µ < η ≤ 1, require that

f(x + αp) ≤ f(x) + µα∇f(xk)T pk sufficent decrease

|∇f(x + αp)T p| ≤ η |∇f(x)T p| curvature condition
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Conjugate Gradient Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk + αkpk

pk+1 = −∇f(xk) + βkpk

where αk is determined by a line search.

Three reasonable choices of βk are (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Rivière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus
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Recommendations

But what algorithm should I use?

� If the gradient ∇f(x) is not available, then a model-based method
is a reasonable choice. Methods based on quadratic interpolation
are currently the best choice.

� If the gradient ∇f(x) is available, then a limited-memory variable
metric method is likely to produce an approximate minimizer in the
least number of gradient evaluations.

� If the Hessian is also available, then a state-of-the-art
implementation of Newton’s method is likely to produce the best
results if the problem is large and sparse.
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Topic 3: Newton’s Method

Sir Isaac Newton (January 4, 1643 – March 331, 1727)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Motivation

Give a continuously differentiable f : Rn 7→ Rn, solve

f(x) =

 f1(x)
...

fn(x)

 = 0

Linear models. The mapping defined by

Lk(s) = f(xk) + f ′(xk)s

is a linear model of f near xk, and thus it is sensible to choose sk such
that Lk(sk) = 0 provided xk + sk is near xk.
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Newton’s Method

Given a starting point x0, Newton’s method generates iterates via

f ′(xk)sk = −f(xk), xk+1 = xk + sk.

Computational Issues

� How do we solve for sk?

� How do we handle a (nearly) singular f ′(xk)?

� How do we enforce convergence if x0 is not near a solution?

� How do we compute/approximate f ′(xk)?

� How accurately do we solve for sk?

� Is the algorithm scale invariant?

� Is the algorithm mesh-invariant?
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Sparsity

Assume that the Jacobian matrix is sparse, and let ρi be the number of
non-zeroes in the i-th row of f ′(x).

� Sparse linear solvers can solve f ′(x)s = −f(x) in order ρA

operations, where ρA = avg{ρ2
i }.

� Graph coloring techniques (see Topic 4) can compute or
approximate the Jacobian matrix with ρM function evaluations
where ρM = max{ρi}
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Topic 4: Automatic Differentiation

Gottfried Wilhelm Leibniz (July 1, 1646 – November 14, 1716)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Computing Gradients and Sparse Jacobians

Theorem. Given f : Rn 7→ Rm, automatic differentiation tools compute
f ′(x)v at a cost comparable to f(x)

Tasks

• Given f : Rn 7→ Rm with a sparse Jacobian, compute f ′(x) with
p � n evaluations of f ′(x)v

• Given a partially separable f : Rn 7→ R, compute ∇f(x) with p � n
evaluations of 〈∇f(x), v〉

Requirements:

T{f ′(x)} ≤ ΩT T{f(x)}, M{∇f(x)} ≤ ΩM M{f(x)}

where T{·} is computing time and M{·} is memory.
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Topic 5: Constrained Optimization

Joseph-Louis Lagrange (January 25, 1736 – April 10, 1813)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Geometric Viewpoint of the KKT Conditions

For any closed set Ω, consider the abstract problem

min {f(x) : x ∈ Ω}

The tangent cone

T (x∗) =
{

v : v = lim
k→∞

xk − x∗

αk
, xk ∈ Ω, αk ≥ 0

}
The normal cone

N(x∗) = {w : 〈w, v〉 ≤ 0, v ∈ T (x∗)}

First order conditions

−∇f(x∗) ∈ N(x∗)
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Computational Viewpoint of the KKT Conditions

In the case Ω = {x ∈ Rn : c(x) ≥ 0}, define

C(x∗) =

{
w : w =

m∑
i=1

λi (−∇ci(x∗)) , λi ≥ 0

}

In general C(x∗) ⊂ N(x∗), and under a constraint qualification

C(x∗) = N(x∗)

Hence, for some multipliers λi ≥ 0,

∇f(x) =
m∑

i=1

λi∇ci(x), λi ≥ 0,
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Constraint Qualifications

In the case where

Ω = {x ∈ Rn : l ≤ c(x) ≤ u}

the main two constraint qualifications are

Linear independence
The active constraint normals are positively linearly independent, that is,
if

CA = (∇ci(x) : ci(x) ∈ {li, ui})

then CA has full rank.

Mangasarian-Fromovitz
The active constraint normals are positively linearly independent.

Leyffer, Moré, and Munson Computational Optimization



Lagrange Multipliers

For the general problem with 2-sided constraints

min {f(x) : l ≤ c(x) ≤ u}

the KKT conditions for a local minimizer are

∇f(x) =
m∑

i=1

λi∇ci(x), l ≤ c(x) ≤ u,

where the multipliers satisfy complementarity conditions

� λi is unrestricted if li = ui.

� λi = 0 if ci(x) /∈ {li, ui}
� λi ≥ 0 if ci(x) = li

� λi ≤ 0 if ci(x) = ui
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Lagrangians

The KKT conditions for the problem with constraints l ≤ c(x) ≤ u can
be written in terms of the Lagrangian

L(x, λ) = f(x)−
m∑

i=1

λici(x).

Examples.

The KKT conditions for the equality-constrained c(x) = 0 are

∇xL(x, λ) = 0, c(x) = 0.

The KKT conditions for the inequality-constrained c(x) ≥ 0 are

∇xL(x, λ) = 0, c(x) ≥ 0, λ ≥ 0, λ ⊥ c(x)

where λ ⊥ c(x) means that λici(x) = 0.
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Newton’s Method: Equality-Constrained Problems

The KKT conditions for the equality-constrained problem c(x) = 0,

∇xL(x, λ) = ∇f(x)−
m∑

i=1

λi∇ci(x) = 0, c(x) = 0.

are a system of n + m nonlinear equations.

Newton’s method for this system can be written as

x+ = x + sx, λ+ = λ + sλ

where (
∇2

xL(x, λ) −∇c(x)
∇c(x)T 0

) (
sx

sλ

)
= −

(
∇xL(x, λ)

c(x)

)
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Topic 6: Solving Optimization Problems

Environments

� Modeling Languages: AMPL, GAMS

� NEOS
http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg

http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg7/11/2004 8:19:27 AM
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The Classical Model

Fortran C Matlab NWChem
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The NEOS Model

A collaborative research project that represents the efforts of the
optimization community by providing access to 50+ solvers from both
academic and commercial researchers.
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NEOS: Under the Hood

� Modeling languages for optimization: AMPL, GAMS

� Automatic differentiation tools: ADIFOR, ADOL-C, ADIC

� Python

� Optimization solvers (50+)

• Benchmark, GAMS/AMPL (Multi-Solvers)

• MINLP, FortMP, GLPK, Xpress-MP, . . .

• CONOPT, FILTER, IPOPT, KNITRO, LANCELOT, LOQO,
MINOS, MOSEK, PATHNLP, PENNON, SNOPT

• BPMPD, FortMP, MOSEK, OOQP, Xpress-MP, . . .

• CSDP, DSDP, PENSDPP, SDPA, SeDuMi, . . .

• BLMVM, L-BFGS-B, TRON, . . .

• MILES, PATH

• Concorde
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Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.
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Life-Cycles Saving Problem: Model

param T integer; # Number of periods

param R integer; # Retirement

param beta; # Discount rate

param r; # Interest rate

param S0; # Initial savings

param ST; # Final savings

param w{1..T}; # Wages

var S{0..T}; # Savings

var c{0..T}; # Consumption

maximize utility: sum{t in 1..T} beta^t*(-exp(-c[t]));

subject to budget {t in 0..T-1}: S[t+1] = (1+r)*S[t] + w[t+1] - c[t+1];

subject to savings {t in 0..T}: S[t] >= 0.0;

subject to consumption {t in 1..T}: c[t] >= 0.0;

subject to bc1: S[0] = S0;

subject to bc2: S[T] = ST;

subject to bc3: c[0] = 0.0;
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Life-Cycles Saving Problem: Data

param T := 100;

param R := 60;

param beta := 0.9;

param r := 0.2;

param S0 := 0.0;

param ST := 0.0;

# Wages

let {i in 1..R} w[i] := 1.0;

let {i in R..T} w[i] := 0.0;

let {i in 1..R} w[i] := (i/R);

let {i in R..T} w[i] := (i - T)/(R - T);
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Life-Cycles Saving Problem: Commands

option show_stats 1;

option solver "filter";

option solver "ipopt";

option solver "knitro";

option solver "loqo";

model;

include life.mod;

data;

include life.dat;

solve;

printf {t in 0..T}: "%21.15e %21.15e\n", c[t], S[t] > cops.dat;
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