
Introduction to Optimization

Ken Judd1

July 28, 2008

1The nice slides were created by Sven Ley!er, Jorge More, and Todd Munson.

1



Outline: Six Topics

� Introduction

� Unconstrained optimization

• Limited-memory variable metric methods

� Systems of Nonlinear Equations

• Sparsity and Newton’s method

� Automatic Differentiation

• Computing sparse Jacobians via graph coloring

� Constrained Optimization

• All that you need to know about KKT conditions

� Solving optimization problems

• Modeling languages: AMPL and GAMS
• NEOS

Leyffer, Moré, and Munson Computational Optimization



Topic 1: The Optimization Viewpoint

� Modeling

� Algorithms

� Software

� Automatic differentiation tools

� Application-specific languages

� High-performance architectures

Leyffer, Moré, and Munson Computational Optimization



Classification of Constrained Optimization Problems

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

• Number of variables n

• Number of constraints m

• Number of linear constraints

• Number of equality constraints ne

• Number of degrees of freedom n− ne

• Sparsity of c′(x) = (∂icj(x))
• Sparsity of ∇2

xL(x, λ) = ∇2f(x) +
∑m

k=1∇2ck(x)λk

Leyffer, Moré, and Munson Computational Optimization



Classification of Constrained Optimization Software

• Formulation

• Interfaces: MATLAB, AMPL, GAMS

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Linear solvers
• Direct solvers
• Iterative solvers
• Preconditioners

• Partially separable problem formulation

• Documentation

• License

Leyffer, Moré, and Munson Computational Optimization



Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.

Question. What are the characteristics of the life-cycle problem?

Leyffer, Moré, and Munson Computational Optimization



Topic 2: Unconstrained Optimization

Augustin Louis Cauchy (August 21, 1789 – May 23, 1857)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk


Unconstrained Optimization: Background

Given a continuously differentiable f : Rn 7→ R and

min {f(x) : x ∈ Rn}

generate a sequence of iterates {xk} such that the gradient test

‖∇f(xk)‖ ≤ τ

is eventually satisfied

Theorem. If f : Rn 7→ R is continuously differentiable and bounded
below, then there is a sequence {xk} such that

lim
k→∞

‖∇f(xk)‖ = 0.

Exercise. Prove this result.

Leyffer, Moré, and Munson Computational Optimization



Unconstrained Optimization

What can I use if the gradient ∇f(x) is not available?

� Geometry-based methods: Pattern search, Nelder-Mead, . . .

� Model-based methods: Quadratic, radial-basis models, . . .

What can I use if the gradient ∇f(x) is available?

� Conjugate gradient methods

� Limited-memory variable metric methods

� Variable metric methods

Leyffer, Moré, and Munson Computational Optimization



Computing the Gradient

Hand-coded gradients

� Generally efficient

� Error prone

� The cost is usually less than 5 function evaluations

Difference approximations

∂if(x) ≈ f((x + hei)− f(x)
hi

� Choice of hi may be problematic in the presence of noise.

� Costs n function evaluations

� Accuracy is about the ε
1/2
f where εf is the noise level of f

Leyffer, Moré, and Munson Computational Optimization



Cheap Gradient via Automatic Differentiation

Code generated by automatic differentiation tools

� Accurate to full precision

� For the reverse mode the cost is ΩT T{f(x)}.
� In theory, ΩT ≤ 5.

� For the reverse mode the memory is proportional to the number of
intermediate variables.

Exercise

Develop an order n code for computing the gradient of

f(x) =
n∏

k=1

xk

Leyffer, Moré, and Munson Computational Optimization



Line Search Methods

A sequence of iterates {xk} is generated via

xk+1 = xk + αkpk,

where pk is a descent direction at xk, that is,

∇f(xk)T pk < 0,

and αk is determined by a line search along pk.

Line searches

� Geometry-based: Armijo, . . .

� Model-based: Quadratics, cubic models, . . .

Leyffer, Moré, and Munson Computational Optimization



Powell-Wolfe Conditions on the Line Search

Given 0 ≤ µ < η ≤ 1, require that

f(x + αp) ≤ f(x) + µα∇f(xk)T pk sufficent decrease

|∇f(x + αp)T p| ≤ η |∇f(x)T p| curvature condition

Leyffer, Moré, and Munson Computational Optimization



Conjugate Gradient Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk + αkpk

pk+1 = −∇f(xk) + βkpk

where αk is determined by a line search.

Three reasonable choices of βk are (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Rivière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus

Leyffer, Moré, and Munson Computational Optimization



Recommendations

But what algorithm should I use?

� If the gradient ∇f(x) is not available, then a model-based method
is a reasonable choice. Methods based on quadratic interpolation
are currently the best choice.

� If the gradient ∇f(x) is available, then a limited-memory variable
metric method is likely to produce an approximate minimizer in the
least number of gradient evaluations.

� If the Hessian is also available, then a state-of-the-art
implementation of Newton’s method is likely to produce the best
results if the problem is large and sparse.

Leyffer, Moré, and Munson Computational Optimization



Topic 3: Newton’s Method

Sir Isaac Newton (January 4, 1643 – March 331, 1727)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk


Motivation

Give a continuously differentiable f : Rn 7→ Rn, solve

f(x) =

 f1(x)
...

fn(x)

 = 0

Linear models. The mapping defined by

Lk(s) = f(xk) + f ′(xk)s

is a linear model of f near xk, and thus it is sensible to choose sk such
that Lk(sk) = 0 provided xk + sk is near xk.

Leyffer, Moré, and Munson Computational Optimization



Newton’s Method

Given a starting point x0, Newton’s method generates iterates via

f ′(xk)sk = −f(xk), xk+1 = xk + sk.

Computational Issues

� How do we solve for sk?

� How do we handle a (nearly) singular f ′(xk)?

� How do we enforce convergence if x0 is not near a solution?

� How do we compute/approximate f ′(xk)?

� How accurately do we solve for sk?

� Is the algorithm scale invariant?

� Is the algorithm mesh-invariant?

Leyffer, Moré, and Munson Computational Optimization



Sparsity

Assume that the Jacobian matrix is sparse, and let ρi be the number of
non-zeroes in the i-th row of f ′(x).

� Sparse linear solvers can solve f ′(x)s = −f(x) in order ρA

operations, where ρA = avg{ρ2
i }.

� Graph coloring techniques (see Topic 4) can compute or
approximate the Jacobian matrix with ρM function evaluations
where ρM = max{ρi}

Leyffer, Moré, and Munson Computational Optimization



Topic 4: Automatic Differentiation

Gottfried Wilhelm Leibniz (July 1, 1646 – November 14, 1716)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk


Computing Gradients and Sparse Jacobians

Theorem. Given f : Rn 7→ Rm, automatic differentiation tools compute
f ′(x)v at a cost comparable to f(x)

Tasks

• Given f : Rn 7→ Rm with a sparse Jacobian, compute f ′(x) with
p � n evaluations of f ′(x)v

• Given a partially separable f : Rn 7→ R, compute ∇f(x) with p � n
evaluations of 〈∇f(x), v〉

Requirements:

T{f ′(x)} ≤ ΩT T{f(x)}, M{∇f(x)} ≤ ΩM M{f(x)}

where T{·} is computing time and M{·} is memory.

Leyffer, Moré, and Munson Computational Optimization



Topic 5: Constrained Optimization

Joseph-Louis Lagrange (January 25, 1736 – April 10, 1813)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk


Geometric Viewpoint of the KKT Conditions

For any closed set Ω, consider the abstract problem

min {f(x) : x ∈ Ω}

The tangent cone

T (x∗) =
{

v : v = lim
k→∞

xk − x∗

αk
, xk ∈ Ω, αk ≥ 0

}
The normal cone

N(x∗) = {w : 〈w, v〉 ≤ 0, v ∈ T (x∗)}

First order conditions

−∇f(x∗) ∈ N(x∗)

Leyffer, Moré, and Munson Computational Optimization



Computational Viewpoint of the KKT Conditions

In the case Ω = {x ∈ Rn : c(x) ≥ 0}, define

C(x∗) =

{
w : w =

m∑
i=1

λi (−∇ci(x∗)) , λi ≥ 0

}

In general C(x∗) ⊂ N(x∗), and under a constraint qualification

C(x∗) = N(x∗)

Hence, for some multipliers λi ≥ 0,

∇f(x) =
m∑

i=1

λi∇ci(x), λi ≥ 0,

Leyffer, Moré, and Munson Computational Optimization



Constraint Qualifications

In the case where

Ω = {x ∈ Rn : l ≤ c(x) ≤ u}

the main two constraint qualifications are

Linear independence
The active constraint normals are positively linearly independent, that is,
if

CA = (∇ci(x) : ci(x) ∈ {li, ui})

then CA has full rank.

Mangasarian-Fromovitz
The active constraint normals are positively linearly independent.

Leyffer, Moré, and Munson Computational Optimization



Lagrange Multipliers

For the general problem with 2-sided constraints

min {f(x) : l ≤ c(x) ≤ u}

the KKT conditions for a local minimizer are

∇f(x) =
m∑

i=1

λi∇ci(x), l ≤ c(x) ≤ u,

where the multipliers satisfy complementarity conditions

� λi is unrestricted if li = ui.

� λi = 0 if ci(x) /∈ {li, ui}
� λi ≥ 0 if ci(x) = li

� λi ≤ 0 if ci(x) = ui

Leyffer, Moré, and Munson Computational Optimization



Lagrangians

The KKT conditions for the problem with constraints l ≤ c(x) ≤ u can
be written in terms of the Lagrangian

L(x, λ) = f(x)−
m∑

i=1

λici(x).

Examples.

The KKT conditions for the equality-constrained c(x) = 0 are

∇xL(x, λ) = 0, c(x) = 0.

The KKT conditions for the inequality-constrained c(x) ≥ 0 are

∇xL(x, λ) = 0, c(x) ≥ 0, λ ≥ 0, λ ⊥ c(x)

where λ ⊥ c(x) means that λici(x) = 0.

Leyffer, Moré, and Munson Computational Optimization



Newton’s Method: Equality-Constrained Problems

The KKT conditions for the equality-constrained problem c(x) = 0,

∇xL(x, λ) = ∇f(x)−
m∑

i=1

λi∇ci(x) = 0, c(x) = 0.

are a system of n + m nonlinear equations.

Newton’s method for this system can be written as

x+ = x + sx, λ+ = λ + sλ

where (
∇2

xL(x, λ) −∇c(x)
∇c(x)T 0

) (
sx

sλ

)
= −

(
∇xL(x, λ)

c(x)

)

Leyffer, Moré, and Munson Computational Optimization



Topic 6: Solving Optimization Problems

Environments

� Modeling Languages: AMPL, GAMS

� NEOS
http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg

http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg7/11/2004 8:19:27 AM

Leyffer, Moré, and Munson Computational Optimization



The Classical Model

Fortran C Matlab NWChem

Leyffer, Moré, and Munson Computational Optimization



The NEOS Model

A collaborative research project that represents the efforts of the
optimization community by providing access to 50+ solvers from both
academic and commercial researchers.

Leyffer, Moré, and Munson Computational Optimization



NEOS: Under the Hood

� Modeling languages for optimization: AMPL, GAMS

� Automatic differentiation tools: ADIFOR, ADOL-C, ADIC

� Python

� Optimization solvers (50+)

• Benchmark, GAMS/AMPL (Multi-Solvers)

• MINLP, FortMP, GLPK, Xpress-MP, . . .

• CONOPT, FILTER, IPOPT, KNITRO, LANCELOT, LOQO,
MINOS, MOSEK, PATHNLP, PENNON, SNOPT

• BPMPD, FortMP, MOSEK, OOQP, Xpress-MP, . . .

• CSDP, DSDP, PENSDPP, SDPA, SeDuMi, . . .

• BLMVM, L-BFGS-B, TRON, . . .

• MILES, PATH

• Concorde

Leyffer, Moré, and Munson Computational Optimization

http://www-neos.mcs.anl.gov/neos/server-solver-types.html


Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.

Leyffer, Moré, and Munson Computational Optimization



Life-Cycles Saving Problem: Model

param T integer; # Number of periods

param R integer; # Retirement

param beta; # Discount rate

param r; # Interest rate

param S0; # Initial savings

param ST; # Final savings

param w{1..T}; # Wages

var S{0..T}; # Savings

var c{0..T}; # Consumption

maximize utility: sum{t in 1..T} beta^t*(-exp(-c[t]));

subject to budget {t in 0..T-1}: S[t+1] = (1+r)*S[t] + w[t+1] - c[t+1];

subject to savings {t in 0..T}: S[t] >= 0.0;

subject to consumption {t in 1..T}: c[t] >= 0.0;

subject to bc1: S[0] = S0;

subject to bc2: S[T] = ST;

subject to bc3: c[0] = 0.0;

Leyffer, Moré, and Munson Computational Optimization



Life-Cycles Saving Problem: Data

param T := 100;

param R := 60;

param beta := 0.9;

param r := 0.2;

param S0 := 0.0;

param ST := 0.0;

# Wages

let {i in 1..R} w[i] := 1.0;

let {i in R..T} w[i] := 0.0;

let {i in 1..R} w[i] := (i/R);

let {i in R..T} w[i] := (i - T)/(R - T);

Leyffer, Moré, and Munson Computational Optimization



Life-Cycles Saving Problem: Commands

option show_stats 1;

option solver "filter";

option solver "ipopt";

option solver "knitro";

option solver "loqo";

model;

include life.mod;

data;

include life.dat;

solve;

printf {t in 0..T}: "%21.15e %21.15e\n", c[t], S[t] > cops.dat;

Leyffer, Moré, and Munson Computational Optimization


	start.pdf
	jjm.pdf
	Introduction, Applications, and Formulations

	handout.pdf
	Overview
	Examples
	Social Planning for Endowment Economy
	Traffic Routing with Congestion
	Finite Element Method

	Optimization Methods
	Newton's Method for Equations
	Sequential Quadratic Programming
	Interior Point Methods
	Global Convergence

	Optimization Software
	Beyond Nonlinear Optimization
	Nash Games
	Introduction
	Oligopoly Model
	Equilibrium for Endowment Economy
	Bimatrix Games

	Stackelberg Games
	Introduction
	Endowment Economy
	Limitations





