NUMERICAL DYNAMIC PROGRAMMING

Kenneth L. Judd
Hoover Institution and NBER

July 29, 2008

Dynamic Programming

- Foundation of dynamic economic modelling
-Individual decisionmaking
-Social planners problems, Pareto efficiency
-Dynamic games
- Computational considerations
-Applies a wide range of numerical methods: Optimization, approximation, integration
-Can exploit any architecture, including high-power and high-throughput computing

Outline

- Review of Dynamic Programming
- Necessary Numerical Techniques
-Approximation
-Integration
- Numerical Dynamic Programming

Discrete-Time Dynamic Programming

- Objective:

$$
\begin{equation*}
E\left\{\sum_{t=1}^{T} \pi\left(x_{t}, u_{t}, t\right)+W\left(x_{T+1}\right)\right\} \tag{12.1.1}
\end{equation*}
$$

$-X$ is set of states and \mathcal{D} is the set of controls
$-\pi(x, u, t)$ payoffs in period t, for $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
$-D(x, t) \subseteq \mathcal{D}$: controls which are feasible in state x at time t.
$-F(A ; x, u, t):$ probability that $x_{t+1} \in A \subset X$ conditional on time t control and state

- Value function definition

$$
\begin{equation*}
V(x, t) \equiv \sup _{\mathcal{U}(x, t)} E\left\{\sum_{s=t}^{T} \pi\left(x_{s}, u_{s}, s\right)+W\left(x_{T+1}\right) \mid x_{t}=x\right\} \tag{12.1.2}
\end{equation*}
$$

- Bellman equation

$$
\begin{equation*}
V(x, t)=\sup _{u \in D(x, t)} \pi(x, u, t)+E\left\{V\left(x_{t+1}, t+1\right) \mid x_{t}=x, u_{t}=u\right\} \tag{12.1.3}
\end{equation*}
$$

- Existence: boundedness of π is sufficient

Autonomous, Infinite-Horizon Problem:

- Objective:

$$
\begin{equation*}
\max _{u_{t}} E\left\{\sum_{t=1}^{\infty} \beta^{t} \pi\left(x_{t}, u_{t}\right)\right\} \tag{12.1.1}
\end{equation*}
$$

- Value function definition: if $\mathcal{U}(x)$ is set of all feasible strategies starting at x.

$$
\begin{equation*}
V(x) \equiv \sup _{\mathcal{U}(x)} E\left\{\sum_{t=0}^{\infty} \beta^{t} \pi\left(x_{t}, u_{t}\right) \mid x_{0}=x\right\} \tag{12.1.8}
\end{equation*}
$$

- Bellman equation for $V(x)$

$$
\begin{equation*}
V(x)=\sup _{u \in D(x)} \pi(x, u)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right\} \equiv(T V)(x) \tag{12.1.9}
\end{equation*}
$$

- Optimal policy function, $U(x)$, if it exists, is defined by

$$
U(x) \in \arg \max _{u \in D(x)} \pi(x, u)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right\}
$$

- Standard existence theorem: If X is compact, $\beta<1$, and π is bounded above and below, then

$$
\begin{equation*}
T V=\sup _{u \in D(x)} \pi(x, u)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right\} \tag{12.1.10}
\end{equation*}
$$

is monotone in V, and a contraction mapping with modulus β in the space of bounded functions, and has a unique fixed point.

Deterministic Growth Example

- Problem:

$$
\begin{gather*}
V\left(k_{0}\right)=\max _{c_{t}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \\
k_{t+1}=F\left(k_{t}\right)-c_{t} \tag{12.1.12}\\
k_{0} \text { given }
\end{gather*}
$$

-Euler equation:

$$
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right) F^{\prime}\left(k_{t+1}\right)
$$

-Bellman equation

$$
\begin{equation*}
V(k)=\max _{c} u(c)+\beta V(F(k)-c) . \tag{12.1.13}
\end{equation*}
$$

-Solution to (12.1.12) is a policy function $C(k)$ and a value function $V(k)$ satisfying

$$
\begin{align*}
0 & =u^{\prime}(C(k)) F^{\prime}(k)-V^{\prime}(k) \tag{12.1.15}\\
V(k) & =u(C(k))+\beta V(F(k)-C(k)) \tag{12.1.16}
\end{align*}
$$

- (12.1.16) defines the value of an arbitrary policy function $C(k)$, not just for the optimal $C(k)$.
- The pair (12.1.15) and (12.1.16)
-expresses the value function given a policy, and
-a first-order condition for optimality.

Stochastic Growth Accumulation

- Problem:

$$
\begin{aligned}
V(k, \theta)=\max _{c_{t}, \ell_{t}} E & \left\{\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right\} \\
k_{t+1} & =F\left(k_{t}, \theta_{t}\right)-c_{t} \\
\theta_{t+1} & =g\left(\theta_{t}, \varepsilon_{t}\right) \\
\varepsilon_{t} & : \text { i.i.d. random variable } \\
k_{0} & =k, \theta_{0}=\theta
\end{aligned}
$$

- State variables:
— k : productive capital stock, endogenous
$-\theta$: productivity state, exogenous
- The dynamic programming formulation is

$$
\begin{array}{cl}
V(k, \theta)=\max _{c} & u(c)+\beta E\left\{V\left(F(k, \theta)-c, \theta^{+}\right) \mid \theta\right\} \tag{12.1.21}\\
& \theta^{+}=g(\theta, \varepsilon)
\end{array}
$$

- The control law $c=C(k, \theta)$ satisfies the first-order conditions

$$
\begin{equation*}
0=u_{c}(C(k, \theta))-\beta E\left\{u_{c}\left(C\left(k^{+}, \theta^{+}\right)\right) F_{k}\left(k^{+}, \theta^{+}\right) \mid \theta\right\} \tag{12.1.23}
\end{equation*}
$$

where

$$
k^{+} \equiv F(k, L(k, \theta), \theta)-C(k, \theta)
$$

Discrete State Space Problems

- State space $X=\left\{x_{i}, i=1, \cdots, n\right\}$
- Controls $\mathcal{D}=\left\{u_{i} \mid i=1, \ldots, m\right\}$
- $q_{i j}^{t}(u)=\operatorname{Pr}\left(x_{t+1}=x_{j} \mid x_{t}=x_{i}, u_{t}=u\right)$
- $Q^{t}(u)=\left(q_{i j}^{t}(u)\right)_{i, j}:$ Markov transition matrix at t if $u_{t}=u$.

Value Function Iteration: Discrete-State Problems

- State space $X=\left\{x_{i}, i=1, \cdots, n\right\}$ and controls $\mathcal{D}=\left\{u_{i} \mid i=1, \ldots, m\right\}$
- Terminal value:

$$
V_{i}^{T+1}=W\left(x_{i}\right), i=1, \cdots, n
$$

- Bellman equation: time t value function is

$$
V_{i}^{t}=\max _{u}\left[\pi\left(x_{i}, u, t\right)+\beta \sum_{j=1}^{n} q_{i j}^{t}(u) V_{j}^{t+1}\right], i=1, \cdots, n
$$

- Bellman equation can be directly implemented - called value function iteration. Only choice for finite T.
- Infinite-horizon problems
-Bellman equation is now a simultaneous set of equations for V_{i} values:

$$
V_{i}=\max _{u}\left[\pi\left(x_{i}, u\right)+\beta \sum_{j=1}^{n} q_{i j}(u) V_{j}\right], i=1, \cdots, n
$$

-Value function iteration is

$$
\begin{aligned}
V_{i}^{k+1} & =\max _{u}\left[\pi\left(x_{i}, u\right)+\beta \sum_{j=1}^{n} q_{i j}(u) V_{j}^{k}\right], i=1, \cdots, n \\
U_{i}^{k+1} & =\arg \max _{u}\left[\pi\left(x_{i}, u\right)+\beta \sum_{j=1}^{n} q_{i j}(u) V_{j}^{k}\right], i=1, \cdots, n
\end{aligned}
$$

-Can use value function iteration with arbitrary V_{i}^{0} and iterate $k \rightarrow \infty$.
-Error is given by contraction mapping property:

$$
\left\|V^{k}-V^{*}\right\| \leq \frac{1}{1-\beta}\left\|V^{k+1}-V^{k}\right\|
$$

—Stopping rule: continue until $\left\|V^{k}-V^{*}\right\|<\varepsilon$ where ε is desired accuracy.

Policy Iteration (a.k.a. Howard improvement)

- Value function iteration is a slow process
-Linear convergence at rate β
-Convergence is particularly slow if β is close to 1 .
- Policy iteration is faster
-Current guess:

$$
V_{i}^{k}, i=1, \cdots, n .
$$

-Iteration: compute optimal policy today if V^{k} is value tomorrow:

$$
U_{i}^{k+1}=\arg \max _{u}\left[\pi\left(x_{i}, u\right)+\beta \sum_{j=1}^{n} q_{i j}(u) V_{j}^{k}\right], i=1, \cdots, n,
$$

-Compute the value function if the policy U^{k+1} is used forever, which is solution to the linear system

$$
V_{i}^{k+1}=\pi\left(x_{i}, U_{i}^{k+1}\right)+\beta \sum_{j=1}^{n} q_{i j}\left(U_{i}^{k+1}\right) V_{j}^{k+1}, i=1, \cdots, n,
$$

-Policy iteration depends on only monotonicity

* If initial guess is above or below solution then policy iteration is between truth and value function iterate
* Works well even for β close to 1 .

Linear Programming Approach

- If \mathcal{D} is finite, we can reformulate dynamic programming as a linear programming problem.
- (12.3.4) is equivalent to the linear program

$$
\begin{align*}
& \min _{V_{i}} \sum_{i=1}^{n} V_{i} \\
& \text { s.t. } \quad V_{i} \geq \pi\left(x_{i}, u\right)+\beta \sum_{j=1}^{n} q_{i j}(u) V_{j}, \forall i, u \in \mathcal{D} \tag{12.4.10}
\end{align*}
$$

- Computational considerations
-(12.4.10) may be a large problem
—Trick and Zin (1997) pursued an acceleration approach with success.
—Recent work by Daniela Pucci de Farias and Ben van Roy has revived interest.

Continuous states: Discretization

- Method:
—"Replace" continuous X with a finite $X^{*}=\left\{x_{i}, i=1, \cdots, n\right\} \subset X$
-Proceed with a finite-state method.
- Problems:
-Sometimes need to alter space of controls to assure landing on an x in X.
-A fine discretization often necessary to get accurate approximations

Continuous Methods for Continuous-State Problems

- Basic Bellman equation:

$$
\begin{equation*}
\left.V(x)=\max _{u \in D(x)} \pi(u, x)+\beta E\left\{V\left(x^{+}\right) \mid x, u\right)\right\} \equiv(T V)(x) . \tag{12.7.1}
\end{equation*}
$$

-Discretization essentially approximates V with a step function
-Approximation theory provides better methods to approximate continuous functions.

- General Task
-Choose a finite-dimensional parameterization

$$
\begin{equation*}
V(x) \doteq \hat{V}(x ; a), a \in R^{m} \tag{12.7.2}
\end{equation*}
$$

and a finite number of states

$$
\begin{equation*}
X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}, \tag{12.7.3}
\end{equation*}
$$

-Find coefficients $a \in R^{m}$ such that $\hat{V}(x ; a)$ "approximately" satisfies the Bellman equation.

General Parametric Approach: Approximating T

- For each $x_{j},(T V)\left(x_{j}\right)$ is defined by

$$
\begin{equation*}
v_{j}=(T V)\left(x_{j}\right)=\max _{u \in D\left(x_{j}\right)} \pi\left(u, x_{j}\right)+\beta \int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right) \tag{12.7.5}
\end{equation*}
$$

- In practice, we compute the approximation \hat{T}

$$
v_{j}=(\hat{T} V)\left(x_{j}\right) \doteq(T V)\left(x_{j}\right)
$$

-Integration step: for ω_{j} and x_{j} for some numerical quadrature formula

$$
\begin{aligned}
\left.E\left\{V\left(x^{+} ; a\right) \mid x_{j}, u\right)\right\} & =\int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right) \\
& =\int \hat{V}\left(g\left(x_{j}, u, \varepsilon\right) ; a\right) d F(\varepsilon) \\
& \doteq \sum_{\ell} \omega_{\ell} \hat{V}\left(g\left(x_{j}, u, \varepsilon_{\ell}\right) ; a\right)
\end{aligned}
$$

-Maximization step: for $x_{i} \in X$, evaluate

$$
v_{i}=(T \hat{V})\left(x_{i}\right)
$$

-Fitting step:

* Data: $\left(v_{i}, x_{i}\right), i=1, \cdots, n$
* Objective: find an $a \in R^{m}$ such that $\hat{V}(x ; a)$ best fits the data
* Methods: determined by $\hat{V}(x ; a)$

Approximation Methods

- General Objective: Given data about $f(x)$ construct simpler $g(x)$ approximating $f(x)$.
- Questions:
-What data should be produced and used?
-What family of "simpler" functions should be used?
-What notion of approximation do we use?
- Comparisons with statistical regression
-Both approximate an unknown function and use a finite amount of data
-Statistical data is noisy but we assume data errors are small
-Nature produces data for statistical analysis but we produce the data in function approximation

Interpolation Methods

- Interpolation: find $g(x)$ from an n-D family of functions to exactly fit n data items
- Lagrange polynomial interpolation
-Data: $\left(x_{i}, y_{i}\right), i=1, \ldots, n$.
-Objective: Find a polynomial of degree $n-1, p_{n}(x)$, which agrees with the data, i.e.,

$$
y_{i}=f\left(x_{i}\right), i=1, . ., n
$$

-Result: If the x_{i} are distinct, there is a unique interpolating polynomial

- Does $p_{n}(x)$ converge to $f(x)$ as we use more points? Consider $f(x)=\frac{1}{1+x^{2}}, x_{i}$ uniform on $[-5,5]$

Figure 1:

- Hermite polynomial interpolation
-Data: $\left(x_{i}, y_{i}, y_{i}^{\prime}\right), i=1, . ., n$.
-Objective: Find a polynomial of degree $2 n-1, p(x)$, which agrees with the data, i.e.,

$$
\begin{aligned}
& y_{i}=p\left(x_{i}\right), i=1, . ., n \\
& y_{i}^{\prime}=p^{\prime}\left(x_{i}\right), i=1, . ., n
\end{aligned}
$$

-Result: If the x_{i} are distinct, there is a unique interpolating polynomial

- Least squares approximation
-Data: A function, $f(x)$.
-Objective: Find a function $g(x)$ from a class G that best approximates $f(x)$, i.e.,

$$
g=\arg \max _{g \in G}\|f-g\|^{2}
$$

Orthogonal polynomials

- General orthogonal polynomials
-Space: polynomials over domain D
-weighting function: $w(x)>0$
-Inner product: $\langle f, g\rangle=\int_{D} f(x) g(x) w(x) d x$
—Definition: $\left\{\phi_{i}\right\}$ is a family of orthogonal polynomials w.r.t $w(x)$ iff

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle=0, i \neq j
$$

-We like to compute orthogonal polynomials using recurrence formulas

$$
\begin{aligned}
\phi_{0}(x) & =1 \\
\phi_{1}(x) & =x \\
\phi_{k+1}(x) & =\left(a_{k+1} x+b_{k}\right) \phi_{k}(x)+c_{k+1} \phi_{k-1}(x)
\end{aligned}
$$

- Chebyshev polynomials

$$
\begin{aligned}
& -[a, b]=[-1,1] \text { and } w(x)=\left(1-x^{2}\right)^{-1 / 2} \\
& -T_{n}(x)=\cos \left(n \cos ^{-1} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x),
\end{aligned}
$$

- General Orthogonal Polynomials
-Few problems have the specific intervals and weights used in definitions
-One must adapt interval through linear COV: If compact interval $[a, b]$ is mapped to $[-1,1]$ by

$$
y=-1+2 \frac{x-a}{b-a}
$$

then $\phi_{i}\left(-1+2 \frac{x-a}{b-a}\right)$ are orthogonal over $x \in[a, b]$ with respect to $w\left(-1+2 \frac{x-a}{b-a}\right)$ iff $\phi_{i}(y)$ are orthogonal over $y \in[-1,1]$ w.r.t. $w(y)$

Regression

- Data: $\left(x_{i}, y_{i}\right), i=1, . ., n$.
- Objective: Find a function $f(x ; \beta)$ with $\beta \in R^{m}, m \leq n$, with $y_{i} \doteq f\left(x_{i}\right), i=1, . ., n$.
- Least Squares regression:

$$
\min _{\beta \in R^{m}} \sum\left(y_{i}-f\left(x_{i} ; \beta\right)\right)^{2}
$$

Chebyshev Regression

- Chebyshev Regression Data:
- $\left(x_{i}, y_{i}\right), i=1, . ., n>m, x_{i}$ are the n zeroes of $T_{n}(x)$ adapted to $[a, b]$
- Chebyshev Interpolation Data:
$\left(x_{i}, y_{i}\right), i=1, . ., n=m, x_{i}$ are the n zeroes of $T_{n}(x)$ adapted to $[a, b]$

Algorithm 6.4: Chebyshev A pproximation Algorithm in R^{1}

- Objective: Given $f(x)$ defined on $[a, b]$, find its Chebyshev polynomial approximation $p(x)$
- Step 1: Compute the $m \geq n+1$ Chebyshev interpolation nodes on $[-1,1]$:

$$
z_{k}=-\cos \left(\frac{2 k-1}{2 m} \pi\right), k=1, \cdots, m .
$$

- Step 2: Adjust nodes to $[a, b]$ interval:

$$
x_{k}=\left(z_{k}+1\right)\left(\frac{b-a}{2}\right)+a, k=1, \ldots, m .
$$

- Step 3: Evaluate f at approximation nodes:

$$
w_{k}=f\left(x_{k}\right), k=1, \cdots, m
$$

- Step 4: Compute Chebyshev coefficients, $a_{i}, i=0, \cdots, n$:

$$
a_{i}=\frac{\sum_{k=1}^{m} w_{k} T_{i}\left(z_{k}\right)}{\sum_{k=1}^{m} T_{i}\left(z_{k}\right)^{2}}
$$

to arrive at approximation of $f(x, y)$ on $[a, b]$:

$$
p(x)=\sum_{i=0}^{n} a_{i} T_{i}\left(2 \frac{x-a}{b-a}-1\right)
$$

Minmax Approximation

- Data: $\left(x_{i}, y_{i}\right), i=1, . ., n$.
- Objective: L^{∞} fit

$$
\min _{\beta \in R^{m}} \max _{i}\left\|y_{i}-f\left(x_{i} ; \beta\right)\right\|
$$

- Problem: Difficult to compute
- Chebyshev minmax property

Theorem 1 Suppose $f:[-1,1] \rightarrow R$ is C^{k} for some $k \geq 1$, and let I_{n} be the degree n polynomial interpolation of f based at the zeroes of $T_{n}(x)$. Then

$$
\begin{aligned}
\left\|f-I_{n}\right\|_{\infty} \leq & \left(\frac{2}{\pi} \log (n+1)+1\right) \\
& \times \frac{(n-k)!}{n!}\left(\frac{\pi}{2}\right)^{k}\left(\frac{b-a}{2}\right)^{k}\left\|f^{(k)}\right\|_{\infty}
\end{aligned}
$$

- Chebyshev interpolation:
-converges in L^{∞}
-essentially achieves minmax approximation
- easy to compute
-does not approximate f^{\prime}

Splines

Definition $2 A$ function $s(x)$ on $[a, b]$ is a spline of order n iff

1. s is C^{n-2} on $[a, b]$, and
2. there is a grid of points (called nodes) $a=x_{0}<x_{1}<\cdots<x_{m}=b$ such that $s(x)$ is a polynomial of degree $n-1$ on each subinterval $\left[x_{i}, x_{i+1}\right], i=0, \ldots, m-1$.

Note: an order 2 spline is the piecewise linear interpolant.

- Cubic Splines
-Lagrange data set: $\left\{\left(x_{i}, y_{i}\right) \mid i=0, \cdots, n\right\}$.
-Nodes: The x_{i} are the nodes of the spline
-Functional form: $s(x)=a_{i}+b_{i} x+c_{i} x^{2}+d_{i} x^{3}$ on $\left[x_{i-1}, x_{i}\right]$
-Unknowns: $4 n$ unknown coefficients, $a_{i}, b_{i}, c_{i}, d_{i}, i=1, \cdots n$.
- Conditions:
$-2 n$ interpolation and continuity conditions:

$$
\begin{aligned}
& y_{i}=a_{i}+b_{i} x_{i}+c_{i} x_{i}^{2}+d_{i} x_{i}^{3} \\
& \quad i=1, ., n \\
& y_{i}=a_{i+1}+b_{i+1} x_{i}+c_{i+1} x_{i}^{2}+d_{i+1} x_{i}^{3} \\
& \quad i=0, ., n-1
\end{aligned}
$$

$-2 n-2$ conditions from C^{2} at the interior: for $i=1, \cdots n-1$,

$$
\begin{aligned}
b_{i}+2 c_{i} x_{i}+3 d_{i} x_{i}^{2} & =b_{i+1}+2 c_{i+1} x_{i}+3 d_{i+1} x_{i}^{2} \\
2 c_{i}+6 d_{i} x_{i} & =2 c_{i+1}+6 d_{i+1} x_{i}
\end{aligned}
$$

-Equations (1-4) are $4 n-2$ linear equations in $4 n$ unknown parameters, a, b, c, and d.
—construct 2 side conditions:

* natural spline: $s^{\prime}\left(x_{0}\right)=0=s^{\prime}\left(x_{n}\right)$; it minimizes total curvature, $\int_{x_{0}}^{x_{n}} s^{\prime \prime}(x)^{2} d x$, among solutions to (1-4).
* Hermite spline: $s^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$ and $s^{\prime}\left(x_{n}\right)=y_{n}^{\prime}$ (assumes extra data)
* Secant Hermite spline: $s^{\prime}\left(x_{0}\right)=\left(s\left(x_{1}\right)-s\left(x_{0}\right)\right) /\left(x_{1}-x_{0}\right)$ and $s^{\prime}\left(x_{n}\right)=\left(s\left(x_{n}\right)-s\left(x_{n-1}\right)\right) /\left(x_{n}-\right.$ $\left.x_{n-1}\right)$.
* not-a-knot: choose $j=i_{1}, i_{2}$, such that $i_{1}+1<i_{2}$, and set $d_{j}=d_{j+1}$.
-Solve system by special (sparse) methods; see spline fit packages
- Shape-preservation
-Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.
-Example

- Schumaker Procedure:

1. Take level (and maybe slope) data at nodes x_{i}
2. Add intermediate nodes $z_{i}^{+} \in\left[x_{i}, x_{i+1}\right]$
3. Run quadratic spline with nodes at the x and z nodes which intepolate data and preserves shape.
4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction at book's website)

- Many other procedures exist for one-dimensional problems, but few procedures exist for twodimensional problems
- Spline summary:
-Evaluation is cheap
* Splines are locally low-order polynomial.
* Can choose intervals so that finding which $\left[x_{i}, x_{i+1}\right]$ contains a specific x is easy.
* Finding enclosing interval for general x_{i} sequence requires at most $\left\lceil\log _{2} n\right\rceil$ comparisons
-Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality of cubic splines depends only on $f^{(4)}(x)$, not $f^{(5)}(x)$.
-Can use splines to preserve shape conditions

Multidimensional approximation methods

- Lagrange Interpolation
-Data: $D \equiv\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N} \subset R^{n+m}$, where $x_{i} \in R^{n}$ and $z_{i} \in R^{m}$
-Objective: find $f: R^{n} \rightarrow R^{m}$ such that $z_{i}=f\left(x_{i}\right)$.
-Need to choose nodes carefully.
-Task: Find combinations of interpolation nodes and spanning functions to produce a nonsingular (well-conditioned) interpolation matrix.

Tensor products

- General Approach:
-If A and B are sets of functions over $x \in R^{n}, y \in R^{m}$, their tensor product is

$$
A \otimes B=\{\varphi(x) \psi(y) \mid \varphi \in A, \psi \in B\}
$$

-Given a basis for functions of $x_{i}, \Phi^{i}=\left\{\varphi_{k}^{i}\left(x_{i}\right)\right\}_{k=0}^{\infty}$, the n-fold tensor product basis for functions of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is

$$
\Phi=\left\{\prod_{i=1}^{n} \varphi_{k_{i}}^{i}\left(x_{i}\right) \mid k_{i}=0,1, \cdots, i=1, \ldots, n\right\}
$$

- Orthogonal polynomials and Least-square approximation
-Suppose Φ^{i} are orthogonal with respect to $w_{i}\left(x_{i}\right)$ over $\left[a_{i}, b_{i}\right]$
-Least squares approximation of $f\left(x_{1}, \cdots, x_{n}\right)$ in Φ is

$$
\sum_{\varphi \in \Phi} \frac{\langle\varphi, f\rangle}{\langle\varphi, \varphi\rangle} \varphi,
$$

where the product weighting function

$$
W\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} w_{i}\left(x_{i}\right)
$$

defines $\langle\cdot, \cdot\rangle$ over $D=\prod_{i}\left[a_{i}, b_{i}\right]$ in

$$
\langle f(x), g(x)\rangle=\int_{D} f(x) g(x) W(x) d x
$$

Algorithm 6.4: Chebyshev A pproximation Algorithm in R^{2}

- Objective: Given $f(x, y)$ defined on $[a, b] \times[c, d]$, find its Chebyshev polynomial approximation $p(x, y)$
- Step 1: Compute the $m \geq n+1$ Chebyshev interpolation nodes on $[-1,1]$:

$$
z_{k}=-\cos \left(\frac{2 k-1}{2 m} \pi\right), k=1, \cdots, m .
$$

- Step 2: Adjust nodes to $[a, b]$ and $[c, d]$ intervals:

$$
\begin{aligned}
& x_{k}=\left(z_{k}+1\right)\left(\frac{b-a}{2}\right)+a, k=1, \ldots, m \\
& y_{k}=\left(z_{k}+1\right)\left(\frac{d-c}{2}\right)+c, k=1, \ldots, m
\end{aligned}
$$

- Step 3: Evaluate f at approximation nodes:

$$
w_{k, \ell}=f\left(x_{k}, y_{\ell}\right), k=1, \cdots, m ., \ell=1, \cdots, m
$$

- Step 4: Compute Chebyshev coefficients, $a_{i j}, i, j=0, \cdots, n$:

$$
a_{i j}=\frac{\sum_{k=1}^{m} \sum_{\ell=1}^{m} w_{k, \ell} T_{i}\left(z_{k}\right) T_{j}\left(z_{\ell}\right)}{\left(\sum_{k=1}^{m} T_{i}\left(z_{k}\right)^{2}\right)\left(\sum_{\ell=1}^{m} T_{j}\left(z_{\ell}\right)^{2}\right)}
$$

to arrive at approximation of $f(x, y)$ on $[a, b] \times[c, d]$:

$$
p(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i j} T_{i}\left(2 \frac{x-a}{b-a}-1\right) T_{j}\left(2 \frac{y-c}{d-c}-1\right)
$$

Multidimensional Splines

- B-splines: Multidimensional versions of splines can be constructed through tensor products; here B-splines would be useful.
- Summary
-Tensor products directly extend one-dimensional methods to n dimensions
-Curse of dimensionality often makes tensor products impractical

Complete polynomials

- Taylor's theorem for R^{n} produces the approximation

$$
\begin{aligned}
f(x) \doteq & f\left(x^{0}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(x^{0}\right)\left(x_{i}-x_{i}^{0}\right) \\
& +\frac{1}{2} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{k}}}\left(x_{0}\right)\left(x_{i_{1}}-x_{i_{1}}^{0}\right)\left(x_{i_{k}}-x_{i_{k}}^{0}\right)+\ldots
\end{aligned}
$$

-For $k=1$, Taylor's theorem for n dimensions used the linear functions $\mathcal{P}_{1}^{n} \equiv\left\{1, x_{1}, x_{2}, \cdots, x_{n}\right\}$
-For $k=2$, Taylor's theorem uses $\mathcal{P}_{2}^{n} \equiv \mathcal{P}_{1}^{n} \cup\left\{x_{1}^{2}, \cdots, x_{n}^{2}, x_{1} x_{2}, x_{1} x_{3}, \cdots, x_{n-1} x_{n}\right\}$.

- In general, the k th degree expansion uses the complete set of polynomials of total degree k in n variables.

$$
\mathcal{P}_{k}^{n} \equiv\left\{x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \mid \sum_{\ell=1}^{n} i_{\ell} \leq k, 0 \leq i_{1}, \cdots, i_{n}\right\}
$$

- Complete orthogonal basis includes only terms with total degree k or less.
- Sizes of alternative bases

degree k	\mathcal{P}_{k}^{n}	Tensor Prod.
2	$1+n+n(n+1) / 2$	3^{n}
3	$1+n+\frac{n(n+1)}{2}+n^{2}+\frac{n(n-1)(n-2)}{6}$	4^{n}

-Complete polynomial bases contains fewer elements than tensor products.
-Asymptotically, complete polynomial bases are as good as tensor products.
-For smooth n-dimensional functions, complete polynomials are more efficient approximations

- Construction
-Compute tensor product approximation, as in Algorithm 6.4
-Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in complete basis).
-Complete polynomial version is faster to compute since it involves fewer terms

Integration

- Most integrals cannot be evaluated analytically
- Integrals frequently arise in economics
-Expected utility and discounted utility and profits over a long horizon
-Bayesian posterior
-Solution methods for dynamic economic models

Gaussian Formulas

- All integration formulas choose quadrature nodes $x_{i} \in[a, b]$ and quadrature weights ω_{i} :

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \doteq \sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right) \tag{7.2.1}
\end{equation*}
$$

-Newton-Cotes (trapezoid, Simpson, etc.) use arbitrary x_{i}
-Gaussian quadrature uses good choices of x_{i} nodes and ω_{i} weights.

- Exact quadrature formulas:
-Let \mathcal{F}_{k} be the space of degree k polynomials
-A quadrature formula is exact of degree k if it correctly integrates each function in \mathcal{F}_{k}
-Gaussian quadrature formulas use n points and are exact of degree $2 n-1$

Theorem 3 Suppose that $\left\{\varphi_{k}(x)\right\}_{k=0}^{\infty}$ is an orthonormal family of polynomials with respect to $w(x)$ on $[a, b]$. Then there are x_{i} nodes and weights ω_{i} such that $a<x_{1}<x_{2}<\cdots<x_{n}<b$, and

1. if $f \in C^{(2 n)}[a, b]$, then for some $\xi \in[a, b]$,

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)+\frac{f^{(2 n)}(\xi)}{q_{n}^{2}(2 n)!}
$$

2. and $\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)$ is the unique formula on n nodes that exactly integrates $\int_{a}^{b} f(x) w(x) d x$ for all polynomials in $\mathcal{F}_{2 n-1}$.

Gauss-Chebyshev Quadrature

- Domain: $[-1,1]$
- Weight: $\left(1-x^{2}\right)^{-1 / 2}$
- Formula:

$$
\begin{equation*}
\int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-1 / 2} d x=\frac{\pi}{n} \sum_{i=1}^{n} f\left(x_{i}\right)+\frac{\pi}{2^{2 n-1}} \frac{f^{(2 n)}(\xi)}{(2 n)!} \tag{7.2.4}
\end{equation*}
$$

for some $\xi \in[-1,1]$, with quadrature nodes

$$
\begin{equation*}
x_{i}=\cos \left(\frac{2 i-1}{2 n} \pi\right), \quad i=1, \ldots, n . \tag{7.2.5}
\end{equation*}
$$

Arbitrary Domains

- Want to approximate $\int_{a}^{b} f(x) d x$ for different range, and/or no weight function
-Linear change of variables $x=-1+2(y-a)(b-a)$
-Multiply the integrand by $\left(1-x^{2}\right)^{1 / 2} /\left(1-x^{2}\right)^{1 / 2}$.

$$
\int_{a}^{b} f(y) d y=\frac{b-a}{2} \int_{-1}^{1} f\left(\frac{(x+1)(b-a)}{2}+a\right) \frac{\left(1-x^{2}\right)^{1 / 2}}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

-Gauss-Chebyshev quadrature uses the x_{i} Gauss-Chebyshev nodes over $[-1,1]$

$$
\int_{a}^{b} f(y) d y \doteq \frac{\pi(b-a)}{2 n} \sum_{i=1}^{n} f\left(\frac{\left(x_{i}+1\right)(b-a)}{2}+a\right)\left(1-x_{i}^{2}\right)^{1 / 2}
$$

Gauss-Hermite Quadrature

- Domain is $[-\infty, \infty]$ and weight is $e^{-x^{2}}$
- Formula: for some $\xi \in(-\infty, \infty)$.

$$
\int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x=\sum_{i=1}^{n} \omega_{i} f\left(x_{i}\right)+\frac{n!\sqrt{\pi}}{2^{n}} \cdot \frac{f^{(2 n)}(\xi)}{(2 n)!}
$$

| N | x_{i} | ω_{i} | N | x_{i} | ω_{i} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0.7071067811 | 0.8862269254 | 7 | $0.2651961356(1)$ | $0.9717812450(-3)$ |
| | | | | $0.1673551628(1)$ | $0.5451558281(-1)$ |
| 3 | $0.1224744871(1)$ | 0.2954089751 | | 0.8162878828 | 0.4256072526 |
| | 0.0000000000 | $0.1181635900(1)$ | | 0.0000000000 | 0.8102646175 |

- Normal Random Variables
$-Y$ is distributed $N\left(\mu, \sigma^{2}\right)$. Expectation is integration.
-Use Gauss-Hermite quadrature: Linear COV $x=(y-\mu) / \sqrt{2} \sigma$ implies

$$
\begin{aligned}
E\{f(Y)\} & =\int_{-\infty}^{\infty} f(y) e^{-(y-\mu)^{2} /\left(2 \sigma^{2}\right)} d y=\int_{-\infty}^{\infty} f(\sqrt{2} \sigma x+\mu) e^{-x^{2}} \sqrt{2} \sigma d x \\
& \doteq \pi^{-\frac{1}{2}} \sum_{i=1}^{n} \omega_{i} f\left(\sqrt{2} \sigma x_{i}+\mu\right)
\end{aligned}
$$

where the ω_{i} and x_{i} are the Gauss-Hermite quadrature weights and nodes over $[-\infty, \infty]$.

Multidimensional Integration

- Most economic problems have several dimensions
-Multiple assets
-Multiple error terms
- Multidimensional integrals are much more difficult
-Simple methods suffer from curse of dimensionality
-There are methods which avoid curse of dimensionality

Product Rules

- Build product rules from one-dimension rules
- Let $x_{i}^{\ell}, \omega_{i}^{\ell}, \quad i=1, \cdots, m$, be one-dimensional quadrature points and weights in dimension ℓ from a Newton-Cotes rule or the Gauss-Legendre rule.
- The product rule

$$
\int_{[-1,1]^{d}} f(x) d x \doteq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{d}=1}^{m} \omega_{i_{1}}^{1} \omega_{i_{2}}^{2} \cdots \omega_{i_{d}}^{d} f\left(x_{i_{1}}^{1}, x_{i_{2}}^{2}, \cdots, x_{i_{d}}^{d}\right)
$$

- Gaussian structure prevails
-Suppose $w^{\ell}(x)$ is weighting function in dimension ℓ
-Define the d-dimensional weighting function.

$$
W(x) \equiv W\left(x_{1}, \cdots, x_{d}\right)=\prod_{\ell=1}^{d} w^{\ell}\left(x_{\ell}\right)
$$

-Product Gaussian rules are based on product orthogonal polynomials.

- Curse of dimensionality:
- m^{d} functional evaluations is m^{d} for a d-dimensional problem with m points in each direction.
-Problem worse for Newton-Cotes rules which are less accurate in \mathbf{R}^{1}.

General Parametric Approach: Approximating T

- For each $x_{j},(T V)\left(x_{j}\right)$ is defined by

$$
\begin{equation*}
v_{j}=(T V)\left(x_{j}\right)=\max _{u \in D\left(x_{j}\right)} \pi\left(u, x_{j}\right)+\beta \int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right) \tag{12.7.5}
\end{equation*}
$$

- In practice, we compute the approximation \hat{T}

$$
v_{j}=(\hat{T} V)\left(x_{j}\right) \doteq(T V)\left(x_{j}\right)
$$

-Integration step: for ω_{j} and x_{j} for some numerical quadrature formula

$$
\begin{aligned}
\left.E\left\{V\left(x^{+} ; a\right) \mid x_{j}, u\right)\right\} & =\int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right) \\
& =\int \hat{V}\left(g\left(x_{j}, u, \varepsilon\right) ; a\right) d F(\varepsilon) \\
& \doteq \sum_{\ell} \omega_{\ell} \hat{V}\left(g\left(x_{j}, u, \varepsilon_{\ell}\right) ; a\right)
\end{aligned}
$$

-Maximization step: for $x_{i} \in X$, evaluate

$$
v_{i}=(T \hat{V})\left(x_{i}\right)
$$

* Hot starts
* Concave stopping rules
-Fitting step:
* Data: $\left(v_{i}, x_{i}\right), i=1, \cdots, n$
* Objective: find an $a \in R^{m}$ such that $\hat{V}(x ; a)$ best fits the data
* Methods: determined by $\hat{V}(x ; a)$

Approximating T with Hermite Data

- Conventional methods just generate data on $V\left(x_{j}\right)$:

$$
\begin{equation*}
v_{j}=\max _{u \in D\left(x_{j}\right)} \pi\left(u, x_{j}\right)+\beta \int \hat{V}\left(x^{+} ; a\right) d F\left(x^{+} \mid x_{j}, u\right) \tag{12.7.5}
\end{equation*}
$$

- Envelope theorem:
-If solution u is interior,

$$
v_{j}^{\prime}=\pi_{x}\left(u, x_{j}\right)+\beta \int \hat{V}\left(x^{+} ; a\right) d F_{x}\left(x^{+} \mid x_{j}, u\right)
$$

-If solution u is on boundary

$$
v_{j}^{\prime}=\mu+\pi_{x}\left(u, x_{j}\right)+\beta \int \hat{V}\left(x^{+} ; a\right) d F_{x}\left(x^{+} \mid x_{j}, u\right)
$$

where μ is a Kuhn-Tucker multiplier

- Since computing v_{j}^{\prime} is cheap, we should include it in data:
-Data: $\left(v_{i}, v_{i}^{\prime}, x_{i}\right), i=1, \cdots, n$
-Objective: find an $a \in R^{m}$ such that $\hat{V}(x ; a)$ best fits Hermite data -Methods: determined by $\hat{V}(x ; a)$

General Parametric Approach: Value Function Iteration

$$
\begin{aligned}
\text { guess } a & \longrightarrow \hat{V}(x ; a) \\
& \longrightarrow\left(v_{i}, x_{i}\right), \quad i=1, \cdots, n \\
& \longrightarrow \text { new } a
\end{aligned}
$$

- Comparison with discretization
-This procedure examines only a finite number of points, but does not assume that future points lie in same finite set.
-Our choices for the x_{i} are guided by systematic numerical considerations.
- Synergies
-Smooth interpolation schemes allow us to use Newton's method in the maximization step.
-They also make it easier to evaluate the integral in (12.7.5).
- Finite-horizon problems
-Value function iteration is only possible procedure since $V(x, t)$ depends on time t.
-Begin with terminal value function, $V(x, T)$
-Compute approximations for each $V(x, t), t=T-1, T-2$, etc.

Algorithm 12.5: Parametric Dynamic Programming with Value Function Iteration
Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form for $\hat{V}(x ; a)$, and choose the approximation grid, $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Make initial guess $\hat{V}\left(x ; a^{0}\right)$, and choose stopping criterion $\epsilon>0$.
Step 1: Maximization step: Compute

$$
v_{j}=\left(T \hat{V}\left(\cdot ; a^{i}\right)\right)\left(x_{j}\right) \text { for all } x_{j} \in X .
$$

Step 2: Fitting step: Using the appropriate approximation method, compute the $a^{i+1} \in R^{m}$ such that $\hat{V}\left(x ; a^{i+1}\right)$ approximates the $\left(v_{i}, x_{i}\right)$ data.
Step 3: If $\left\|\hat{V}\left(x ; a^{i}\right)-\hat{V}\left(x ; a^{i+1}\right)\right\|<\epsilon$, STOP; else go to step 1.

- Convergence
$-T$ is a contraction mapping
$-\hat{T}$ may be neither monotonic nor a contraction
- Shape problems
-An instructive example

Figure 2:
-Shape problems may become worse with value function iteration
-Shape-preserving approximation will avoid these instabilities

Summary:

- Discretization methods
-Easy to implement
-Numerically stable
-Amenable to many accelerations
-Poor approximation to continuous problems
- Continuous approximation methods
-Can exploit smoothness in problems
-Possible numerical instabilities
-Acceleration is less possible

