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@ The prevailing approach to high frequency volatility estimation
is to measure the price change (return) per time unit

@ We put forward the dual approach of measuring the
time duration (passage time) per unit price change

@ Our analysis fills an existing gap in the IV estimation
literature by:

@ Developing a broad class of duration-based IV estimators

@ Identifying situations in which the duration-based approach
is advantageous

© Shedding new light on the microstructure properties of real
data
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Literature Review

o Magnitude-based approach to volatility estimation:

@ Discrete time (parametric): rich ARCH literature
@ Continuous time (non-parametric): rich RV literature
@ Duration-based approach to volatility estimation:
@ Discrete time (parametric): rich ACD literature
@ Continuous time (non-parametric): lack of “DV" literature
Cho and Frees (JF '88) consider non-parametric duration-based

estimation under constant volatility but their procedure is not
suitable for 1V estimation
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Our Contribution

@ Develop duration-based analogues to RV, range-based RV
(RRV), and other power/multipower variations

@ Derive an asymptotic theory for our duration-based estimators
showing consistency for IV and promising asymptotic efficiency

@ Demonstrate excellent finite sample efficiency and robustness
to both (finite activity) jumps and microstructure noise

@ Document superior performance in comparison to subsampled
BV both on simulated and real stock data
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@ Inherent duality between the increment h and corresponding

passage time dt for a Brownian motion:
h2
E [h* | dt] ~ o?dt E[dt | h] ~

@ Passage time moment subject to Jensen effect!
e Resolution: Use the reciprocal passage time
1 (72 2 h2
E|—|hl~—5 = 0% = const X —
{dt | } h? h dt
@ Passage time moment subject to Censoring effect!
o Resolution: Exploit the time reversibility of the Brownian
motion

@ Passage time moment subject to Discretization effect!

e Resolution: Apply discretization error theory for Brownian
maxima
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Integrated Variance Estimators Based On Passage Times

o Consider afixedtimegrid 0=ty < 1 <... <ty =1
consisting of N intervals with mesh size A; = tjy1 — t;

T;r(t 1) o (tis1)

/?/\/\/\

ti*l tz tz+l

o From a sequence of unbiased local variance estimates 63 (t;)
we can construct an |V estimate

@ Define DV as a duration-based counterpart to RV based on a
sequence of reciprocal passage times instead of squared

returns:
- N-1
DVN’h = Z 0’%(1‘) A;
i=0
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Brownian Passage Times - A Multitude of Definitions

@ Forward passage times for threshold h:

f;nf){ Witrg — Wi = h} (first hitting time)

>

(1) = (;2];“ Wiirg — We| = h} (first exit time)
inf{ sup Ws— inf W, =h}  (first range time)
6>0 [t,t+6] (t,t+06]

@ Backward passage times for threshold h:

(;m;{ W;_g — Wi = h} (first hitting time)

>

T (1) = Glgg{\ W;_g — We| = h} (first exit time)
inf Ws— inf Ws=h first ti
‘;20{[530[,)15] s [tTG,t] s = h}  (first range time)
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Brownian Passage Times - A Multitude of Definitions
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A Multitude of DV Estimators

N—-1
DVN'h = Z @’%(t,') A;
i=0

@ Local estimators of o2 given by the scaled reciprocal passage
times:
A2 _
0h(ti) = py T
o First exit time DV: based on reciprocal first exit times
@ First range time DV: based on reciprocal first range times

@ More generally, local estimators of ¢” are given by the p/2
power of the reciprocal passage times:

hP
Uh( i) = VP/2 P/2
Th
@ Can define natural DV analogues to power and multipower

variations
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Duality

Theorem (Duality for magnitude and passage time functionals)

Define the following standard Brownian functionals

Hi = sup By, M;= sup |By|, R:= sup By— inf By
0€0;t] 0€[0;t] 0€0;t] 6€[0;¢]

and let (for h > 0)
HT = inf{t|H; = h}, 757 = inf{t|M, = h}, TR = inf{t|R; = h}

be the first range time, first exit time, and first hitting time

respectively. Then we have the following identities in distribution:
D 1 D 1 D 1

H=———— M=— R =

() (7)™ (¢FT)™?
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Integrated Variance Estimators Based On Passage Times

@ We establish the following main asymptotic result:
. 1
VN (BVp—IV) ~ Mixed Normal <O,1// o du> ,
0

where
0.7681  (first exit time)

v~ ¢ 04073  (first range time)
2.0000  (first hitting time)

is the variance factor of the individual passage time estimators
at each grid point.

@ Underlying assumptions:
- No leverage

- Lipschitz continuity of the volatility process
- Mesh size A = O (N~1), threshold h = o(N~1/2)
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Subsampling DV Estimators

@ In practice, the observation record is discrete and we only
observe the value of the process at N grid points but not in
between

@ For a feasible version of DV consider coarser sub-grid
{ti,, ..., ti.} where K =0(N), K — o0 :

. 1
VK (DVK,,, - /v) ~ Mixed Normal <0,1//0 ot du>
o Convergence rate is now the slower K—1/2

e Efficiency loss can be mitigated by averaging the estimator
over all possible sub-grids of mesh size A = K1

@ The outcome is feasible DV akin to subsampled RV!
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Main Challenges to IV Estimation

Microstructure noise

Jumps
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Robustness of DV to Microstructure Noise

@ An intuitive advantage of the passage time approach is that
the threshold h can be chosen large enough to achieve
noise-robustness

e To formalize this intuition we adopt an AR(1) noise structure:

pi = pitu
up = pui-1+¢,

where ¢; ~ N(0, (1 — p?)w?), so that E[u;] =0, V]y;] = w?
@ For p = 0 we obtain a Gaussian i.i.d. specification
representative for transaction prices

@ For p >> 0 we obtain a persistent autoregressive specification
representative for quotes
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Robustness of DV to Microstructure Noise Cont'd

@ Given a passage time transition on noisy data, it is possible to
infer the expected magnitude of the latent transition

@ AR(1) noise leads to an upward bias of our reciprocal
passage time estimators

@ We plot the upward bias factor as a function of the noise
persistence p for two different noise-to-signal ratios:

@ A = 0.25 (moderate noise)
@ A =1.00 (high noise)
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Robustness of DV to Microstructure Noise Cont'd

Noise-to-Signal Ratio 0.25
First Exit Time Bias At Three Target Threshold Levels

1.20 =857

1.18

1.16

8 114

S 112

£ 110

2 1.08

= 106

1.04

1.02 4m

1.00 -

0.98 T T °rr T+ T+ T+ T T T T T° 1T 11T 1T T 1T T
[ AN o) T o NN To TR~ I To IR To T I To RN e IR To BRI To RN To NS NN [ NN [o @) N [ N @) W@
Y dH o2 S cddsc oo
ISP TS TTSS TS oSS S " esg

Noise Persistence

Negligible bias for moderate noise (A = 0.25) at all persistence
levels p
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Robustness of DV to Microstructure Noise Cont'd

Noise-to-Signal Ratio 1.00
First Exit Time Bias At Three Target Threshold Levels
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Noise Persistence

Negligible bias for high noise (A = 1.0) if sufficiently persistent
(p>0.9)
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Robustness of DV to Jumps

@ Another advantage of the passage time estimators is their
inherent robustness to finite jumps

@ Jumps above the threshold level h are effectively truncated!

@ The lower the chosen threshold, the higher the degree of
jump-robustness but ... the lower the degree of
noise-robustness

@ To avoid lowering the threshold too much, we propose an
asymptotically equivalent “previous tick” passage time
estimator

@ It utilizes the lower threshold level h~ corresponding to the
level at one tick prior to the crossing of the target threshold h
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“Previous Tick” Passage Times

====Previous Tick Threshold = = Original Threshold ——logP
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Better jump-robustness in finite samples than the standard passage
times!
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Empirical Analysis of The “Robust” DV Estimators

Real Stock Data

Simulated Stock Data
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DV Analysis of The Dow Jones 30

o We analyze the performance of DV on the Dow Jones 30
stocks for 601 trading days in the period January 1, 2005 to
May 31, 2007

@ We work with mid-quotes known to have relatively low and
persistent noise, so DV should be unbiased for moderate
threshold levels

@ DV is jump-robust, so we choose 2min subsampled BV as
benchmark

@ We produce DV signature plots for the mean, standard
deviation, and correlation of DV with 2min subsampled BV

@ Focus on first exit time DV and first range time DV for
thresholds from 1 to 10 log-spreads
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BV Signature Plot

Ticker Symbol: (All)
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BV is downward biased at higher frequencies, so 2min is close to
optimall!
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DV Signature Plots: Mean

Ticker symbol: (All)
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DV for thresholds above 4 log-spreads has the same mean as BV!
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DV Signature Plots: StdDev

Ticker symbol: (All)
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DV has markedly lower standard deviation than BV!
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DV Signature Plots: Correlation with BV
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DV for thresholds above 4 log-spreads is highly correlated with
BV!
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Monte Carlo Study of DV

@ Very similar results across different SV models

@ Scenario of main interest: “jump” days with 25% mean jump
contribution to IV and U-shape volatility pattern

@ The adopted AR(1) noise structure gives rise to five distinct
cases:
@ No noise
@ Non-persistent noise (0 = 0) at moderate level (A = 0.25)
© Persistent noise (p = 0.99) at moderate level (A = 0.25)
@ Non-persistent noise (0 = 0) at high level (A = 1.00)
© Persistent noise (o = 0.99) at high level (A = 1.00)

@ Compare the performance of DV vis-a-vis 2min subsampled
BV by:
(i) A relative bias measure: mean of IV /IV
(i) A relative MSE measure: mean of 195(1V — IV)2/1Q
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Monte Carlo Study of DV 1/5: No Noise

Model SV2A-U]J with U-Shaped Pattern and 25% Mean Jump Contribution to IV
Avg Sample Freq 3sec without Microstructure Noise
——Robust Exit Time DV ——Robust Range Time DV 2min Subsampled BV
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Monte Carlo Study 2/5: Moderate Nonpersistent Noise

Relative Bias

Relative MSE

Model SV2A-UJ with U-Shaped Pattern and 25% Mean Jump Contribution to IV
Avg Sample Freq 3sec with Non-Persistent Noise at Moderate Level
——Robust Exit Time DV ——Robust Range Time DV 2min Subsampled BV
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Monte Carlo Study of DV 3/5: Moderate Persistent Noise

Relative Bias

Relative MSE
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Monte Carlo Study of DV 4/5: High Nonpersistent Noise

Relative Bias

Relative MSE
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Monte Carlo Study of DV 5/5: High Persistent Noise

Model SV2A-U]J with U-Shaped Pattern and 25% Mean Jump Contribution to IV
Avg Sample Freq 3sec with Persistent Noise at High Level
——Robust Exit Time DV ——Robust Range Time DV 2min Subsampled BV
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Summary and Conclusions

@ Novel dual approach to realized return variation measurement
based on reciprocal passage times

e Duration-based counterparts to RV, range-based RV (RRV),
and other power/multipower variations

@ Asymptotic theory showing consistency for IV and promising
asymptotic efficiency

@ Natural robustness to both jumps and microstructure noise

@ Promising finite sample efficiency in comparison to
subsampled BV both on simulated and real stock data

@ Exciting “to do" list!
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