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Motivation

The prevailing approach to high frequency volatility estimation
is to measure the price change (return) per time unit

We put forward the dual approach of measuring the
time duration (passage time) per unit price change

Our analysis fills an existing gap in the IV estimation
literature by:

1 Developing a broad class of duration-based IV estimators
2 Identifying situations in which the duration-based approach

is advantageous
3 Shedding new light on the microstructure properties of real

data
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Literature Review

Magnitude-based approach to volatility estimation:

1 Discrete time (parametric): rich ARCH literature

2 Continuous time (non-parametric): rich RV literature

Duration-based approach to volatility estimation:

1 Discrete time (parametric): rich ACD literature

2 Continuous time (non-parametric): lack of “DV” literature

Cho and Frees (JF ’88) consider non-parametric duration-based

estimation under constant volatility but their procedure is not

suitable for IV estimation

Andersen, Dobrev & Schaumburg Duration-Based Volatility Estimation



Our Contribution

Develop duration-based analogues to RV, range-based RV
(RRV), and other power/multipower variations

Derive an asymptotic theory for our duration-based estimators
showing consistency for IV and promising asymptotic efficiency

Demonstrate excellent finite sample efficiency and robustness
to both (finite activity) jumps and microstructure noise

Document superior performance in comparison to subsampled
BV both on simulated and real stock data
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Main Idea

Inherent duality between the increment h and corresponding
passage time dt for a Brownian motion:

E
[
h2 | dt

]
∼ σ2dt E [dt | h] ∼ h2

σ2

Passage time moment subject to Jensen effect!

Resolution: Use the reciprocal passage time

E

[
1

dt
| h

]
∼ σ2

h2
⇒ σ̂2

h = const × h2

dt

Passage time moment subject to Censoring effect!

Resolution: Exploit the time reversibility of the Brownian
motion

Passage time moment subject to Discretization effect!

Resolution: Apply discretization error theory for Brownian
maxima
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Integrated Variance Estimators Based On Passage Times

Consider a fixed time grid 0 ≡ t0 < t1 < . . . < tN ≡ 1
consisting of N intervals with mesh size ∆i = ti+1 − ti
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From a sequence of unbiased local variance estimates σ̂2
h(ti )

we can construct an IV estimate

Define DV as a duration-based counterpart to RV based on a
sequence of reciprocal passage times instead of squared
returns:

D̂V N,h =
N−1

∑
i=0

σ̂2
h(ti ) ∆i

Andersen, Dobrev & Schaumburg Duration-Based Volatility Estimation



Brownian Passage Times - A Multitude of Definitions

Forward passage times for threshold h:

τ+
h (t) =


inf
θ>0
{Wt+θ −Wt = h} (first hitting time)

inf
θ>0
{|Wt+θ −Wt | = h} (first exit time)

inf
θ>0
{ sup

[t,t+θ]
Ws − inf

[t,t+θ]
Ws = h} (first range time)

Backward passage times for threshold h:

τ−h (t) =


inf
θ>0
{Wt−θ −Wt = h} (first hitting time)

inf
θ>0
{|Wt−θ −Wt | = h} (first exit time)

inf
θ>0
{ sup

[t−θ,t]
Ws − inf

[t−θ,t]
Ws = h} (first range time)
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Brownian Passage Times - A Multitude of Definitions
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A Multitude of DV Estimators

D̂V N,h =
N−1

∑
i=0

σ̂2
h(ti ) ∆i

Local estimators of σ2 given by the scaled reciprocal passage
times:

σ̂2
h(ti ) = µ−1

1

h2

τh

First exit time DV: based on reciprocal first exit times
First range time DV: based on reciprocal first range times

More generally, local estimators of σp are given by the p/2
power of the reciprocal passage times:

σ̂p
h(ti ) = µ−1

p/2

hp

τp/2
h

Can define natural DV analogues to power and multipower
variations
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Duality

Theorem (Duality for magnitude and passage time functionals)

Define the following standard Brownian functionals

Ht = sup
θ∈[0;t]

Bθ, Mt = sup
θ∈[0;t]

|Bθ | , Rt = sup
θ∈[0;t]

Bθ − inf
θ∈[0;t]

Bθ

and let (for h > 0)

τHT
h = inf{t|Ht = h}, τET

h = inf{t|Mt = h}, τRT
h = inf{t|Rt = h}

be the first range time, first exit time, and first hitting time
respectively. Then we have the following identities in distribution:

H1
D=

1(
τHT

1

)1/2
, M1

D=
1(

τET
1

)1/2
, R1

D=
1(

τRT
1

)1/2
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Integrated Variance Estimators Based On Passage Times

We establish the following main asymptotic result:

√
N
(

D̂V N,h − IV
)
∼ Mixed Normal

(
0, ν

∫ 1

0
σ4

u du

)
,

where

ν ≈


0.7681 (first exit time)
0.4073 (first range time)
2.0000 (first hitting time)

is the variance factor of the individual passage time estimators
at each grid point.

Underlying assumptions:
- No leverage
- Lipschitz continuity of the volatility process
- Mesh size ∆ = O

(
N−1

)
, threshold h = o(N−1/2)
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Subsampling DV Estimators

In practice, the observation record is discrete and we only
observe the value of the process at N grid points but not in
between

For a feasible version of DV consider coarser sub-grid
{ti1 , . . . , tiK } where K = o(N), K → ∞ :

√
K
(

D̂V K ,h − IV
)
∼ Mixed Normal

(
0, ν

∫ 1

0
σ4

u du

)
Convergence rate is now the slower K−1/2

Efficiency loss can be mitigated by averaging the estimator
over all possible sub-grids of mesh size ∆ = K−1

The outcome is feasible DV akin to subsampled RV!
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Main Challenges to IV Estimation

Microstructure noise

Jumps
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Robustness of DV to Microstructure Noise

An intuitive advantage of the passage time approach is that
the threshold h can be chosen large enough to achieve
noise-robustness

To formalize this intuition we adopt an AR(1) noise structure:

p̃i = pi + ui

ui = ρui−1 + εi ,

where εi ∼ N(0, (1− ρ2)ω2), so that E[ui ] = 0, V[ui ] = ω2

For ρ = 0 we obtain a Gaussian i.i.d. specification
representative for transaction prices

For ρ >> 0 we obtain a persistent autoregressive specification
representative for quotes
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Robustness of DV to Microstructure Noise Cont’d

Given a passage time transition on noisy data, it is possible to
infer the expected magnitude of the latent transition

AR(1) noise leads to an upward bias of our reciprocal
passage time estimators

We plot the upward bias factor as a function of the noise
persistence ρ for two different noise-to-signal ratios:

1 λ = 0.25 (moderate noise)

2 λ = 1.00 (high noise)
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Robustness of DV to Microstructure Noise Cont’d
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Robustness of DV to Microstructure Noise Cont’d
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Robustness of DV to Jumps

Another advantage of the passage time estimators is their
inherent robustness to finite jumps

Jumps above the threshold level h are effectively truncated!

The lower the chosen threshold, the higher the degree of
jump-robustness but ... the lower the degree of
noise-robustness

To avoid lowering the threshold too much, we propose an
asymptotically equivalent “previous tick” passage time
estimator

It utilizes the lower threshold level h− corresponding to the
level at one tick prior to the crossing of the target threshold h
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“Previous Tick” Passage Times
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Better jump-robustness in finite samples than the standard passage
times!
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Empirical Analysis of The “Robust” DV Estimators

Real Stock Data

Simulated Stock Data
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DV Analysis of The Dow Jones 30

We analyze the performance of DV on the Dow Jones 30
stocks for 601 trading days in the period January 1, 2005 to
May 31, 2007

We work with mid-quotes known to have relatively low and
persistent noise, so DV should be unbiased for moderate
threshold levels

DV is jump-robust, so we choose 2min subsampled BV as
benchmark

We produce DV signature plots for the mean, standard
deviation, and correlation of DV with 2min subsampled BV

Focus on first exit time DV and first range time DV for
thresholds from 1 to 10 log-spreads
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BV Signature Plot
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BV is downward biased at higher frequencies, so 2min is close to
optimal!
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DV Signature Plots: Mean
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DV for thresholds above 4 log-spreads has the same mean as BV!
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DV Signature Plots: StdDev
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DV has markedly lower standard deviation than BV!
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DV Signature Plots: Correlation with BV
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DV for thresholds above 4 log-spreads is highly correlated with
BV!
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Monte Carlo Study of DV

Very similar results across different SV models

Scenario of main interest: “jump” days with 25% mean jump
contribution to IV and U-shape volatility pattern

The adopted AR(1) noise structure gives rise to five distinct
cases:

1 No noise
2 Non-persistent noise (ρ = 0) at moderate level (λ = 0.25)
3 Persistent noise (ρ = 0.99) at moderate level (λ = 0.25)
4 Non-persistent noise (ρ = 0) at high level (λ = 1.00)
5 Persistent noise (ρ = 0.99) at high level (λ = 1.00)

Compare the performance of DV vis-a-vis 2min subsampled
BV by:

(i) A relative bias measure: mean of ÎV /IV

(ii) A relative MSE measure: mean of 195(ÎV − IV )2/IQ
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Monte Carlo Study of DV 1/5: No Noise
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Monte Carlo Study 2/5: Moderate Nonpersistent Noise
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Monte Carlo Study of DV 3/5: Moderate Persistent Noise
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Monte Carlo Study of DV 4/5: High Nonpersistent Noise
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Monte Carlo Study of DV 5/5: High Persistent Noise
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Summary and Conclusions

Novel dual approach to realized return variation measurement
based on reciprocal passage times

Duration-based counterparts to RV, range-based RV (RRV),
and other power/multipower variations

Asymptotic theory showing consistency for IV and promising
asymptotic efficiency

Natural robustness to both jumps and microstructure noise

Promising finite sample efficiency in comparison to
subsampled BV both on simulated and real stock data

Exciting “to do” list!
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