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Abstract

We develop a novel approach to estimating the integrated variance of a general
jump-diffusion with stochastic volatility. Our approach exploits the relationship be-
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to travel a fixed distance) of the Brownian motion. The new class of duration-based
IV estimators derived in this paper is shown to be robust to both jumps and market
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favorably to those of commonly used robust IV estimators.
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1 Introduction

The importance of return volatility for asset pricing theory as well as practical financial
management has led to a rich literature on volatility estimation, mostly based on time series
observations of asset prices. Information regarding asset values has historically been available
to the research community only through selective transaction and settlement prices such as
daily opening and closing prices and recorded high and low prices during the trading day.
However, within the last decade tick-by-tick data for many liquid financial markets, detailing
all transactions and quotes with corresponding time stamps, have become commonplace. The
price history is available as a sequence of observations on a two-dimensional vector whose
coordinates take values on a price and time grid dictated by the institutional set-up of the
market.1 For example, for stocks traded on the New York Stock Exchange (NYSE) prices
are recorded in increments of one cent and time in increments of one second.

The task of volatility estimation is therefore to convert the sequence of recorded high-
frequency price-time data into a measure of return variation for a given period of interest
such as a trading day. A common trait of the prevailing approaches to measuring the realized
return variation is to directly measure the size of the price changes over an exogenously given
time grid, either in the form of equidistant sampling (calendar time) or over a certain number
of transactions or quotes (event or tick time). Such measures readily map into corresponding
volatility measures expressed in terms of the observed price variation per time unit.

In this paper we introduce a natural dual approach to volatility estimation which focuses
instead on measuring the time duration per unit of price change and develop a new family
of robust volatility estimators based on the theory of passage times for Brownian excursions.
While the concept of duration-based volatility estimation is not new to financial econometrics
it has, to our knowledge, not been used for measuring the realized return variation in models
with stochastic volatility and jumps in a systematic way, nor have its robustness properties
been fully explored. The closest precursor to our work is arguably Cho and Frees (1988)
who also consider duration based volatility estimation. However, they limit attention to
the unduly restrictive case of constant volatility and do not consider the significant biases

1Often additional information may be available, such as the depth of the order book and size of trans-
actions, etc. We do not consider procedures which draw on such auxiliary information. The expanded
information set can be analyzed using the theory of marked point processes, see, e.g., the surveys by Engle
and Russell (2004), Bauwens and Hautsch (2008) and Pacurar (2008).
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induced by finite samples and duration censoring.2,3

The main complication is that return volatility is stochastically evolving throughout
the trading day: it displays a pronounced intraday pattern (diurnal effect), is subject to
large short-lived shocks (e.g. news release effect), and features a strong degree of temporal
persistence at the inter-daily horizon (volatility clustering effect). This raises a number of
questions regarding the underlying concept of volatility. First, should we think of volatility
in continuous time or as a discrete-time process updated at equidistant points (in calendar
time) or for each new transaction or quote (in tick time)? Second, do we estimate volatility
at each point in time within the trading day and then subsequently aggregate to obtain
a measure covering the interval of interest, or should we aim more directly for an overall
daily measure in one step? Third, how do we formally interpret the volatility measure if
it represents return variation over a period where the underlying high-frequency volatility
potentially is fluctuating strongly?

We adopt the coherent framework for addressing these issues which has been developed
within the recent literature on realized volatility. We posit an underlying continuous-time
setting and a frictionless market in which the observed (equilibrium) price dynamics does
not allow for risk-free arbitrage opportunities and expected returns are finite. This implies
that the asset price process constitutes a special semimartingale for which the relevant asset
return variation is given by the associated quadratic variation process, see, e.g., Back (1991)
and Andersen, Bollerslev, and Diebold (2008) for discussion. A general representation of
a continuous-time semimartingale in financial economics is the stochastic volatility (SV)
jump-diffusion. The standard “plain vanilla” realized volatility (RV) estimator is given by
the cumulative sum of equidistant high-frequency intraday squared returns and, under the

2This early application of the price duration approach to volatility estimation appears to have generated
little, if any, subsequent research. We have identified one actual application, namely Park (1993), while
less directly related papers, which fail to cite Cho and Frees (1988), include Zumbach (1998) who considers
the scaling properties of price durations across different thresholds and Kamstra and Milevsky (2005) who
develop a test for the geometric Brownian motion with drift for the S&P 500 index based on the closed-form
expression for the first hitting time distribution.

3A more fertile literature with applications exploiting price durations is the discrete-time parametric ap-
proach to high-frequency trade dynamics using point processes. These are extensions of the Autoregressive
Conditional Duration (ACD) models, pioneered by Engle and Russell (1998). Later work develops Stochastic
Duration and Stochastic Intensity models, but all rely on discrete time ARCH or SV style specifications, see
e.g., Lunde and Timmermann (2004) and the survey by Bauwens and Hautsch (2008)). The conceptual differ-
ences between our approach and this literature mirror the distinction between the realized volatility measures
and high-frequency intraday ARCH and SV models. The realized volatility approach is nonparametric and
model-free, based on a general continuous-time setting and focused on ex-post volatility measurement over
a non-trivial interval, while ACD type models are parametric, cast in discrete time and focus on estimation
of the spot volatility or price intensity at each transaction or quote, that is, an ex-ante forecast of return
variation over the next instant. As such, they represent distinct methodologies, even if they explore similar
quantities.
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given (ideal) conditions, it is consistent for the underlying quadratic return variation as the
intraday return horizon shrinks to zero. The attraction of the standard RV approach is thus
that it constitutes a valid volatility measure for a very general class of underlying processes
while the implementation is model independent. In practice, however, one must contend
with the fact that market imperfections introduce significant microstructure noise in ultra
high-frequency data. Consequently, most implementations of RV estimators are limited to
exploit the data at relatively low frequencies, such as 1-5 minute returns.

A similar natural limitation applies to the duration-based volatility (DV) estimators
developed in this paper. However, the rule of thumb for limiting the impact of noise on the
DV estimators is expressed explicitly in the domain of price thresholds rather than implicitly
in the time domain. In particular, we show that our DV estimators require price thresholds
larger than 2-3 bid-ask log-spreads for the measured price durations to be sufficiently robust
to market microstructure features reflected in real data quotes. Moreover, the DV estimators
are inherently robust to consecutive price duplicates, frequently encountered in real data
due to price discreteness, since such duplicates do not affect the point in time at which the
price is observed to exceed a chosen threshold. These features of the dual duration-based
approach render the DV estimators viable and interesting alternatives for robust volatility
measurement in the presence of microstructure noise without any need for delicate noise
filtering techniques. In particular, we show that our duration-based estimators have excellent
asymptotic efficiency relative to existing comparable noise-robust IV estimators.

When price jumps are present, the standard RV measures include the squared jump
components. A number of extensions of RV have been developed to estimate the jump and
continuous components of volatility separately. In this context, an important feature of
our duration-based approach is that it explicitly limits the impact of jumps exceeding the
chosen price change threshold. Thus, we show that our DV estimators are robust to jumps
in the sense that they are consistent for the continuous part of the quadratic variation as
the threshold shrinks to zero.4 We confirm that these properties carry over to practical set-
tings with actual equity price quote data and further illustrate the point through extensive
Monte Carlo simulation studies. Specifically, analyzing tick-by-tick data for the full sample
of 30 Dow Jones stocks over January 2005 through May 2007, we find that our DV estima-
tors perform well compared with leading sub-sampled RV and bi-power variation estimators
of the integrated variance. Moreover, our duration based estimators are not substantially
harder to implement and are not sensitive to the choice of threshold in the range of 3 to 6
bid-ask log-spreads. Since the duration approach extracts information from the same un-

4This feature is akin to jump truncation in the RV context, see e.g. Mancini (2006), but is a natural feature
of the basic estimation technique rather than necessitating the choice of a separate bandwidth parameter.
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derlying data as RV estimators, but does so in a very different manner, the two procedures
are natural complements, even ignoring the rather compelling efficiency properties of the
duration-based measures. Finally, we note that the same duration-based approach delivers
jump- and noise-robust estimators for the more general notion of integrated power-variation.
Such measures are useful for deriving feasible inference tools for the integrated volatility and
for the construction of formal jump tests among other things.

The remainder of the paper is organized as follows. Section 2 briefly reviews the related
literature and introduces the basic theory of Brownian excursions in the constant volatility
case. Sections 3 and 4 develop the DV estimators following a duration-based dual approach
to RV and derive the asymptotic properties based on a localization argument. Section 5
applies the DV estimators to the set of 30 Dow Jones stocks and confirms that the desirable
robustness and efficiency properties hold when applied to real data. Section 6 separately
investigates the robustness of the DV estimators to noise and jumps in a Monte Carlo
setting. Section 7 concludes.

2 Related Realized Volatility Literature

In the literature on continuous-time volatility estimation, the evolution of the log price of a
single financial asset is typically given in reduced form by a semi-martingale characterized
as the unique (weak) solution to the stochastic differential equation

dst = µt dt+ σt dWt + ∆Xt, s0 ≡ s (1)

The solution to (1) is known as a jump-diffusion process with instantaneous drift µt, instan-
taneous volatility σt and jumps given by the finite activity jump process Xt. Two key objects
of interest in financial applications are the integrated volatility (IV) and quadratic variation
(QV) of the log price process, defined as

IVt =
∫ t

0
σ2
u du , QVt = IVt +

∑
0<u≤t

∆X2
u (2)

The quadratic variation has two separate components, namely, first, the return variation
generated by the diffusive volatility term and, second, the cumulative sum of squared jump
sizes. The latter component is important for a variety of reasons, including the interpretation
of news and practical risk management. However, the former is often of key importance for
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volatility forecasting as the continuous or diffusive component of return variation is the
main driver of the pronounced persistence in return volatility. As such, methods have been
developed to separately identify these two components, as we discuss below.

Although the volatility process of asset returns is itself inherently unobservable, the
volatility path {σt} and jumps {∆Xt} are de facto observable when the econometrician
observes the log price process {st} in continuous time. This is due to the convergence in
probability (see e.g. Karatzas and Shreve (1991, Theorem 1.5.8)):

∀t : p lim
m→∞

∫ t

0
σ2
u du +

∑
0<u≤t

∆X2
u −

m∑
k=0

[
s kt+1

m
− s kt

m

]2 = 0 (3)

In practice, however, the choice of sampling frequency is limited by the liquidity of the
given asset as well as the significant market microstructure noise found in the data from
most financial markets. The presence of such noise in high-frequency returns implies that
the log price process itself is latent and the limit (3) cannot be expected to hold in practice.
Nonetheless, (3) motivates the use of realized volatility (RV), as an estimator of the quadratic
variation:5

RVt =
N∑
i=1

[
sti − sti−1

]2
(4)

The sampling frequency of the N observations {ti}i=1,...,N in (4) is often deliberately chosen
to be lower than the actual frequency of the data in order to ameliorate the potential bias
due to the aforementioned market microstructure effects. Improving the robustness and
efficiency of the basic RV estimator (4) to market micro structure noise as well as devising
methods for estimating integrated volatility (i.e., filtering out jumps) has been an extremely
active area of recent research spurring the development of a new generation of volatility
estimators. These include:

- Subsampled RV estimators in which (4) is applied to relatively low frequency intraday
returns but overlapping subsamples are used to produce a sequence of robust, albeit
individually inefficient, estimators of QV which can be averaged to produce the sub-
sampled QV estimate, see, e.g., Zhang, Mykland, and Ait Sahalia (2005). The resulting

5The term ‘realized volatility’ was coined by Fung and Hsieh (1991) to describe their ad-hoc daily volatility
estimate calculated as the sum of squared 15 min returns across a number of markets, including S&P500
futures, Bond futures and Currency futures. Such measures were only later put in a proper probabilistic
context as an approximation of the quadratic variation of a semi-martingale, see, e.g. Andersen and Bollerslev
(1998) and Barndorff-Nielsen and Shephard (2002)).
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estimator gains in robustness to market microstructure noise but it will estimate the
full QV and does not involve an attempt to correct for jumps.6

- Kernel based RV estimators that are closely related to the subsampled RV estimators
and can be constructed to have good robustness against micro structure noise as shown
by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2007).

- Bi-power variation estimators exploiting the finite activity of large jumps to produce
a jump-robust estimator of IV. Rather than squaring returns, Bi-power estimators
cumulate products of adjacent absolute returns, thereby ensuring that isolated jumps
will cease to matter asymptotically (see e.g. Barndorff-Nielsen and Shephard (2004)).7

- Range based RV estimators that differ from the aforementioned methods which all
conceptually rely on the relationship between squared or absolute returns and volatility
(4). Instead, as a natural extension to Parkinson (1980), range based RV estimators
exploit the distribution of the maximum and minimum of the log-price process. Recent
contributions include Christensen and Podolskij (2007b), Christensen and Podolskij
(2007a) and Dobrev (2007).

In this paper we take a conceptually different approach to robust IV estimation that
relies on the theory of durations for Brownian excursions. While duration based volatility
estimation is not new to financial econometrics, it has to our knowledge not been used for
IV estimation in models of stochastic volatility in a systematic way nor have its robustness
properties been explored. We develop the duration analogues to the sub-sampled RV, bi-
power and range based estimators and show that these have better asymptotic properties
in the hypothetical no-noise continuous time limit and argue that they conceptually should
exhibit similar robustness properties to both market microstructure noise and jumps as the
existing estimators. These conjectures are substantiated by our Monte Carlo simulations
and further supported by our analysis of the tick-by-tick data of Dow Jones 30 index stocks.

6Further refinements along these lines include the Two-scale and Multiscale RV estimators of Zhang,
Mykland, and Ait Sahalia (2005) and Zhang (2006).

7Extensions of this approach include alternative transformations of the bipower variation statistic and
different lag choices between the nearby absolute returns whose product is cumulated. In addition, bipower
variation has been extended to the concept of multi-power variation, see, e.g., Barndorff-Nielsen, Graversen,
Jacod, and Shephard (2006) and Barndorff-Nielsen, Shephard, and Winkel (2006). In addition, many alter-
native jump detection procedures have also been proposed. For a recent overview of these developments, see
Andersen and Todorov (2007).

7



3 Constant Volatility Estimators Based on Passage Times

A great number of classic results exist on the properties of Brownian passage times. Although
these results are limited to the constant drift and volatility case, they can be extended to a
more general class of diffusions by a suitable time-change or localization argument. In this
section we, for simplicity, introduce our estimators under the assumption of zero drift and
constant volatility, deferring the more general stochastic volatility case to Section 4 below.

3.1 Duality between transition times and the magnitude of Brow-

nian increments

Consider a Brownian motion {Bt} with constant instantaneous volatility σ and zero drift

Bt = σ
∫ t

0
dW (t), t ≥ 0, B0 ≡ 0

If the object of interest is to obtain an estimate of the instantaneous variance of the process,
one can rely on the fact that the increments ht = (Bt0+t − Bt0) over a given time interval t
satisfy ht ∼ N(0, σ2t) leading to the moment condition

E
[
h2
t

]
= σ2t (5)

from which σ2 can be estimated e.g. based on a sample of equispaced returns. This is of
course the basic logic underlying the RV estimator (4). Rather than measuring the (squared)
size of Brownian increments over a fixed time interval, one can instead measure the time it
takes the Brownian motion to travel a given distance. Denoting the fixed distance h, we can
measure time in several alternative ways, each giving rise to a distinct estimator:

first exit time : τh = inf{t > 0 | |Bt| > h}
first range time : τh = inf

{
t > 0

∣∣∣∣ max
0≤s≤t

Bs − min
0≤s≤t

Bs > h
}

first hitting time : τh = inf{t > 0 | Bt = h}

(6)

In the sequel, we use the term “passage time” to denote either of these three measures of
duration. As we shall see below, estimators based on the expected first exit time are the
natural analogues to RV estimators based on (5) while the estimators based on the expected

8



first range time are the natural analogues to the intraday range estimator of Christensen
and Podolskij (2007b) and the generalized range proposed by Dobrev (2007).8

The moment generating functions for the passage times τh are well known but the prob-
ability densities (shown in Figure 1) are only known in closed form for the first hitting time
(see e.g. Borodin and Salminen (2002)). From the simple form of the moment generating
functions given in Table 1, it is immediately clear (see Lemma A.2) that

τh
D= h2

σ2 τ̃ 1 (7)

where τ̃ 1 is the passage time of a standard Brownian motion with respect to the threshold
h = 1. This implies that the case of a general volatility σ2 and threshold h can always
be reduced to the baseline case of a standard Brownian motion and unit threshold through
scaling of all passage times by the factor σ2

h2 . This fact will be extremely convenient since it
allows us to derive all relevant passage time properties from the baseline case.

3.2 Estimation based on passage time moments

The expected passage times can be retrieved from the moment generating functions for the
first exit time, the first range time and the first hitting time given in Table 1:

E [τh] =


h2

σ2 (first exit time)
1
2
h2

σ2 (first range time)
∞ (first hitting time)

(8)

A method of moments estimator of volatility can then be obtained based on an observed
sample of passage times, except in the case of the first hitting time which does not have a
first moment. Comparing (5) and (8), the duality between fixed-threshold passage times and
fixed-time interval Brownian increments is clear and gives rise to two separate yet closely
related approaches to variance estimation. The moment condition for the first exit time
was used by Cho and Frees (1988) who studied the effect of price discretization on volatility
estimation and considered (8) as a more robust alternative to the existing return-based
estimation procedures. Kamstra and Milevsky (2005) used the moment for the first hitting

8Passage times for other Brownian functionals can be defined in a similar way. For example, the maximum
drawdown of a Brownian motion can be used to define the first drawdown time, which is identical in
distribution to the first exit time and leads to estimators of exactly the same form as the first exit time.
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time, but in the case of a Brownian motion with drift so that the expected hitting time
is finite. An important, but often overlooked, issue that arises when applying the moment
conditions of the form (8) to estimate σ2 is that they can suffer from quite severe small
sample biases induced by Jensen’s inequality. This is because the expected passage time is
inversely proportional to the instantaneous variance. For a given sample of passage times of
size N , we show in Proposition A.3, that9

E
[

h2

1
N

∑N−1
i=0 τ i,h

]
= µ

(N)
1 σ2 where µ

(N)
1 =


1 + 2

3N +O( 1
N2 ) (first exit time)

1 + 1
3N +O( 1

N2 ) (first range time)
1
N

(first hitting time)
(9)

In applications it is often more convenient to work with an unbiased estimator for which
no sample size dependent correction is necessary. A particularly convenient small sample
unbiased estimator can be based on the first moment of the reciprocal passage times derived
in Corollary A.4:

E
[
h2

τh

]
≡ µ1 σ

2 =


2C σ2 (first exit time)

(4 log 2) σ2 (first range time)
σ2 (first hitting time)

(10)

where µ1 = µ
(1)
1 and C ≈ 0.91597 is the Catalan constant. The moment conditions (10)

have, to our knowledge, not previously been applied to the problem of volatility estimation.
Moreover, we see that while the expected hitting time is infinite, the expected reciprocal
hitting time is well behaved. The reciprocal passage time moment (10) leads to the local
volatility estimator, based on a single observed transition,

σ̂2
h = 1

µ1

h2

τh
(11)

where the value of the scaling factor µ1 is given in equation (10) and Table 1. The estimator
(11) will be the basic building block in constructing an estimator of IV in Section 4 below.

9The exact value of the Jensen correction factors µ(N)
1 can be calculated explicitly for each N. For the

first exit time, we have µ(1)
1 ≡ µ1 = 2C, µ(2)

1 = log(4), . . . , µ(5)
1 = 5

25 (18C − 11), . . . where C ≈ 0.91597 is the
Catalan constant. Thus the Jensen effect is quite substantial for small N but is well approximated by (9)
for N ≥ 20.
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In Corollary A.7 we show that the estimator σ̂2
h satisfies

E[σ̂2
h] = σ2 and V[σ̂2

h] ≈


0.7681 σ4 (first exit time)
0.4073 σ4 (first range time)
2.0000 σ4 (first hitting time)

(12)

Note that the range time based estimator is the most efficient since it exploits more informa-
tion about the joint infimum and supremum of the process than the first exit or first hitting
time. The variance of the estimator depends on the fourth moment (the so called quarticity)
of the log price process but crucially does not depend on the choice of threshold h.10

When applying (8) or (10) to the estimation of volatility in markets with periodic market
closures, one faces the familiar issue of right censoring. This implies that the distribution of
the observed passage times τh will depend on the amount of time remaining until markets
close since it is a draw from a conditional distribution where the conditioning event is that
the transition took place prior to end-of-trading. The effect of censoring is illustrated in
Figure 2 for the baseline case (σ/h = 1). The x-axis represents the time remaining until
end-of-trading and the horizontal dashed thin lines denote the unconditional expectation of
the reciprocal stopping times given in (10). It is clear from the figure that the impact of
censoring is quite severe for the first hitting time as we approach the censoring time but much
less pronounced for the exit time and especially the first range time. To see the effect for an
arbitrary (σ, h), the distributional identity (7) implies that the time axis should be scaled
by σ2/h2. Thus we see that the conditioning will tend to have a large impact whenever the
(unconditional) expected passage time represents a large fraction of the remaining time until
the end of a trading day. As a practical matter, we find that the conditioning can safely be
ignored for estimation purposes when there is more than 3 (first exit time) or 2 (first range
time) expected passage times until end of trading. For the first hitting time on the other
hand, the conditional expectation should always be used.

The appropriate censored moment, E
[

1
τh
|τh ≤ T

]
, is known in closed form for the first

hitting time and can be represented as an infinite series for the first exit and first range times.
Estimation using the conditional moment is therefore feasible. However, it is important to
note the relationship between the expected reciprocal passage times and σ2 will no longer
be linear and, moreover, the appropriate Jensen correction terms will depend on both the
time remaining as well as the true σ2. We therefore advocate a different approach, exploiting

10The reciprocal passage times can be used also to define (locally) unbiased estimators of any integer power
σp based on the moment E[τ−p/2

h ], as shown in Appendix A.2. In particular, local estimators of volatility,
σ, or quarticity, σ4, can be considered and the corresponding integrated quantities constructed as in Section
4 below. These and related developments are the subject of ongoing research.
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the time-reversibility of the Brownian motion. In particular, we define the equivalent (in
distribution) backward passage times:

first exit time : τ−h = inf{t > 0 | |B−t| > h}
first range time : τ−h = inf

{
t > 0

∣∣∣∣ max
0≤s≤t

B−s − min
0≤s≤t

B−s > h
}

first hitting time : τ−h = inf{t > 0 | B−t = h}

(13)

In applications, this allows us to use the regular (forward) passage times (6) during the
first half of a trading day and the reverse (backward) passage times (13) during the second
half thereby effectively eliminating the need for conditioning for all but the most extreme
thresholds.

3.3 Finite Activity Jumps

The occurrence of jumps is a prominent feature of many financial time series and it is clear
from (2) that RV will not be a consistent estimator of IV in this case. This fact has lead to the
development of jump robust IV estimators, most notably the bi-power variation (BV) estima-
tor of Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006) and subsequent multi-power
variation estimators developed in Barndorff-Nielsen, Shephard, and Winkel (2006).11 While
these estimators are consistent for IV, the occurrence of large jumps still pose a significant
challenge in finite samples as seen in the Monte Carlo experiments in Section 6 below.

By contrast, the duration based volatility estimators (DV) inherently posses a significant
degree of jump robustness due to the implicit jump truncation at the chosen threshold level:
if a large jump occurs it may lead to an early threshold crossing (and hence an upward bias
in the local volatility estimate), but the amount by which the jump exceeds the threshold
will not matter. As the threshold is lowered, jumps will cease to matter in the limit.

The discreteness of actual data will in practice limit the ability to lower thresholds beyond
a certain point. It is therefore of interest to study simple modifications of the baseline DV
estimator which exhibit additional jump robustness in finite samples. One such, asymptoti-
cally equivalent estimator, is the “previous tick” DV estimator. The previous tick estimator
is identical to the regular DV, except that it utilizes the threshold, h̃, corresponding to the
observed log-price at the time tick just prior to the crossing of the target threshold h. Since
(large) jumps tend to lead to an immediate threshold crossing, this method eliminates the

11Numerous tests for the presence of jumps have been also developed, e.g. Barndorff-Nielsen and Shephard
(2004), Ait-Sahalia and Jacod (2006), and Lee and Mykland (2007).
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effect of jumps.12 We show in Section 6 below, that the previous tick DV estimators which we
label “robust” indeed are successful in eliminating most of the effect of jumps for empirically
relevant larger thresholds.

3.4 Microstructure Noise

It is well-known that high-frequency price observations are noisy due to various market
microstructure features and possible data errors. This leads to a natural signal-to-noise
trade-off when estimating the variance of the unobserved log-price process. An intuitive
appeal of the duration-based approach in this regard is that the threshold level can be chosen
large enough relative to the noise level to ensure a desired degree of robustness. In order
to formally assess the level of robustness of our passage time estimators to microstructure
noise we adopt the following AR(1) noise structure:

p̃i = pi + ui (14)

ui = ρui−1 + εi

where p̃i are the noisy log-price observations, pi are the unobserved log-prices, and εi ∼
N(0, (1− ρ2)ω2) are the innovations of the AR(1) noise process ui so that the noise process
has the unconditional moments E[ui] = 0, E[u2

i ] = ω2.
This specification allows us to explicitly study the effect of different noise levels ω2 and

degrees of noise persistence ρ on the overall quality of our passage time estimates. The
leading special cases of interest are:

(i) ρ = 0, in which case we obtain the ubiquitous Gaussian i.i.d. specification represen-
tative of transaction price data.

(ii) ρ >> 0, in which case we obtain a persistent autoregressive specification representa-
tive of quote data.13

Given a sample of noisy log-price observations p̃i, one can use standard projection meth-
ods to express the expectation of pi conditional on all observables, which in this case is
also equivalent to applying the Kalman filter to the state-space representation (14). For
our purposes it is of primary interest to recover more generally the expected squared ratio

12Whenever a crossing of threshold h was due to a Brownian increment, h̃ will tend to be close to h while
h̃ may be substantially smaller than h in the case of a jump crossing. In absence of jumps and for large h,
the difference between the previous tick estimators and the original passage time estimators are negligible.

13Hasbrouck (1999), and more recently Zhang, Russell, and Tsay (2007), report estimates of ρ as high as
0.4 for the latent cost component of 15-minute quotes, which formally corresponds to ρ > 0.99 if brought to
a 3-second frequency.
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between the observed log-price difference and the underlying true log-price difference for
passage times at different threshold levels. These ratios of observed versus latent transition
magnitudes can be directly interpreted as relative bias measures for our duration-based esti-
mators (and, conversely, the ratios of unobserved versus observed transition magnitudes can
be interpreted as the corresponding bias correction factors).

Figures 3 and 4 plot the relative bias of the first exit time and first range time estimators
respectively, obtained for three different threshold levels as a function of the noise persistence
ρ. The top graph on each figure is for the case of noise-to-signal ratio λ = 0.25 (moderate
noise level), while the bottom graph is for the case of noise-to-signal ratio λ = 1.00 (high
noise level). The chosen threshold levels 3, 5, 7 are chosen to span the range of thresholds
of greatest interest for application on real data and are expressed accordingly in units of the
notional average intraday log-spread (as in sections 5 and 6 below). It is worth noting that
thresholds much lower than 3 log-spreads are probably untenable in practice as we would
expect the noise-to-signal ratio to be prohibitively high for small thresholds.

The main conclusions to be drawn from this analysis (Figures 3 and 4) are as follows.
First, both passage time estimators are sufficiently robust to: (i) moderate noise (λ = 0.25)
with arbitrary persistence, and, (ii) persistent noise (ρ > 0.9) regardless of the noise level.
Second, the first exit time is naturally more robust to noise than the first range time. Third,
the higher the chosen threshold level, the more robust to noise are the resulting passage time
estimators. Fourth, the passage time estimators exhibit significant upward biases (above
2%) only in the case of non-persistent noise (ρ ≈ 0) at high level (λ = 1.00).

These initial results provide formal evidence in support of our intuition that by setting
the threshold level large enough relative to the noise level, the duration-based estimators
do indeed possess an inherent degree of robustness to noise in many cases. If one is willing
to be parametric about the noise structure, the outlined projection approach (or Kalman
filtering) can of course be used to develop an explicit feasible noise correction of the passage
time estimators in high-noise scenarios. We relegate this for future research, relying for
now on demonstrating the success of the duration-based approach in moderate noise and/or
persistent noise settings.

3.5 Discretely Sampled Observations

A final concern that must be addressed is time discretization, i.e. the fact that prices are
observed on a discretely spaced time grid. In order to be feasible, the proposed estimators
must be corrected for the discrepancy between the first passage times of the unobserved
process and those measured on an observed finite sample of points. In particular, the first
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passage times of a random walk overstate the Brownian first passage times. One reason
for this is that the maxima of a random walk always will understate the true unobserved
maxima of the underlying Brownian motion, so that it takes somewhat longer on average for
the random walk to break a given threshold level. The finer is the discretization step, the
smaller is the discrepancy between the random walk extrema and the Brownian extrema.

This issue is addressed by Asmussen, Glynn, and Pitman (1995). They derive exact
asymptotic results for the amount by which the maximum M̃ of a random walk based on k
equidistant observations in a finite interval understates the Brownian maximum M in the
same interval (see appendix, Lemma A.8). We adapt their results to obtain an asymptotic
correction for the passage time estimators proposed above. Our main insight stemming from
Asmussen, Glynn, and Pitman (1995), is that knowledge of the moments of the discrepancy
due to discretization allows us to approximate the ratio between moments of the Brownian
maximum/range and the random walk maximum/range as a function of the number of
sample points k:

E
[
M2

]
≈ fM(k)× E

[
M̃2

]
E
[
R2
]
≈ fR(k)× E

[
R̃2
]

where the scaling factors fM(k) and fR(k) approach 1 from above as k gets large (see ap-
pendix), but crucially do not depend on the parameter of interest σ2.

From this it follows that for any given threshold h one needs to scale up the finite sample
volatility estimators based on the first exit time and the first range time by a factor of
fM(k) and fR(k) respectively, where k is the (varying) number of observations between the
start and end point of each h-excursion14. By aggregating the resulting estimates at each
sample point on a given grid we obtain a novel and feasible realized duration-based volatility
estimator (DV) dual to RV in the sense that it is based on measuring passage times rather
than price increments. The next section lays out a unified theoretical framework for DV
based on first exit times and DV based on first range times.

14Though easy to implement, this approach cannot yield an exact small sample correction since it is not
designed to account for the possibility of early crossings (i.e. Brownian excursions crossing the threshold in
between random walk observations) in a passage time context. Without further small sample adjustment, this
will lead to a downwards bias for the smallest thresholds while the bias quickly diminishes as threshold levels
increase. An exact, albeit more computationally intensive, correction is possible by viewing the unobserved
Brownian path conditional on the observed random walk as a sequence of connected Brownian bridges for
which crossing probabilities and crossing time distributions can readily be calculated in the case of first
hitting times and first exit times. For the first range time the situation is slightly more complex and is the
subject of ongoing research.
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4 Stochastic Volatility Estimators Based on Passage

Times

When volatility is randomly varying throughout the trading day, we can no longer assume
that observed passage times are identically distributed. This leads us to consider instead local
volatility estimation as proposed by Foster and Nelson (1996) and more recently Mykland
(2006). Based on consistent estimators of local volatility, an IV estimator can then be
constructed as the corresponding Riemann sum.

Consider then a fixed time grid 0 ≡ t0 < t1 < . . . < tN ≡ 1 consisting of N , not
necessarily equispaced, intervals with ∆i = ti+1 − ti denoting the mesh size and where the
time unit is chosen to ensure that the length of the trading day is unity. We will assume that
the volatility process is “well behaved” in the sense that it can be locally approximated by a
piecewise constant function as the mesh size tends to zero, e.g. due to Lipschitz continuity.
We also assume independence of the volatility process and the Brownian motion driving
returns (i.e. “no leverage”) for our theoretical results although our Monte Carlo studies
suggest no adverse effect on the DV estimators of introducing such dependence.

At a given grid point, ti, we wish to construct an estimator of the local volatility. Given
a threshold size h, we can, starting from ti, look for the next passage time τ+

h (ti) and use
the estimator 1

µ1

h2

τ+
h

(ti)
. However, we can in principle do better: Since the Brownian motion

is time reversible, we can also, starting from ti, look back in time for the next passage time
τ−h (ti) and construct the independent estimator 1

µ1

h2

τ−
h

(ti)
.

//|

τ+
h (ti−1)

�� |

τ−h (ti)

}}

τ+
h (ti)
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~~
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We thus have two independent estimators of local volatility at ti which suggests using the
bi-directional local volatility estimator:

̂̂σ2
h(ti) = 1

2µ1

[
h2

τ+
h

(ti)
+ h2

τ−
h

(ti)

]
(bi-directional)

σ̂2
h(ti) = 1

µ1

h2

τ+
h

(ti)
or 1

µ1

h2

τ−
h

(ti)
(uni-directional)

(15)
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By independence, we have the local variance estimates:

V[ ̂̂σ2
h(ti)] V[σ̂2

h(ti)]
(first exit time) 0.3841 σ4

ti
0.7681 σ4

ti

(first range time) 0.2037 σ4
ti

0.4073 σ4
ti

(first hitting time) 1.0000 σ4
ti

2.0000 σ4
ti

(16)

In practice, however, we do not use the bi-directional estimators due to the aforemen-
tioned censoring issue.15 Instead we use the uni-directional estimator based on τ+

h (ti) for
grid points ti that fall in the first half of the trading day and τ−h (ti) for grid points falling
in the second half of the trading day. We thus have a sequence of local variance estimates
{σ̂2

h(ti)}i=1,...,N based on passage time durations from which we can construct the estimate
of integrated variance on [0; 1] as

D̂V N,h =
N−1∑
i=0

σ̂2
h(ti) ∆i (17)

where ∆i = 1
N

in the case of an equispaced time grid. Note that the distribution of (17) will
depend on h although the distribution of each individual estimate σ̂2

h(ti) does not. This is
because the covariance between neighboring volatility estimates, i.e. Cov(σ̂2

h(ti), σ̂2
h(ti−1)),

will likely involve overlapping transitions when h is large relative to the mesh size. However,
the threshold h can be chosen independently of N and we can consider letting h tend to zero
at an appropriate rate so that terms in (17) have arbitrarily low correlation. In Proposition
A.16, we show that the appropriate rate is h = o(N−1/2) and the resulting estimator satisfies

√
N

(
D̂V N,h − IV

)
∼ Mixed Normal

(
0, ν

∫ 1

0
σ4
u du

)
(18)

where ν is the constant in (16). Note that the asymptotic distribution depends on the
unknown integrated quarticity. However, it is easy to show that the same localization argu-
ment can be used to consistently estimate other integrated moments of interest such as the
integrated quarticity itself, thus enabling the calculation of confidence bands for IV.

In practice, the observation record is discrete and we only observe the value of the process
15In markets such as FX, where 24 hour trading prevails, the bidirectional approach could yield substantial

efficiency gains.
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at the N grid points, thus rendering the convergence rate N−1/2 of the estimator D̂V N,h

infeasible. Instead we can consider the construction of a set of local volatility estimates on a
coarser sub-grid, consisting of K grid points {ti1 , . . . , tiK}. Here K = o(N), K →∞ so that
the number of observations between adjacent grid points increases with the sample size and
the discretization error tends to zero for suitably chosen threshold levels:

√
K

(
D̂V K,h − IV

)
∼ Mixed Normal

(
0, ν

∫ 1

0
σ4
u du

)
(19)

Note that the convergence rate is now the slower K−1/2. Part of this efficiency loss can
of course be mitigated by averaging the estimator over all possible sub-grids of mesh size
∆ = K−1. This situation is analogous to the sub-sampling strategy for the RV estimator
advocated by Zhang, Mykland, and Ait Sahalia (2005).

The value of the variance factor ν is about 0.8 for the unidirectional first exit time DV
and about 0.4 for the unidirectional first range time DV (see table 1) although these values
will be reduced further by the subsampling scheme. This compares to 1.3 for subsampled
RV and about 1.5 for subsampled BV (the values for RV and BV without subsampling are
2.0 and 2.6 respectively).16 Thus, for suitably chosen threshold levels both the first exit
time DV and the first range time DV should in practice be considerably more efficient than
subsampled RV (in the absence of jumps) or subsampled BV (when jumps are present).

In what follows, we conduct extensive empirical analysis on real and simulated data
with the main goal of comparing the finite sample efficiency of the DV estimators vis-a-vis
subsampled BV as the benchmark jump-robust (and sufficiently noise-robust) estimator of
the integrated variance.17 In order to design realistic Monte Carlo experiments, we first
analyze the full set of Dow Jones 30 stocks and document that both the first exit time DV
and the first range time DV significantly outperform (optimally) subsampled BV: the DV
estimators achieve the same mean estimate of the integrated variance with a lower standard
deviation while remaining very highly correlated with the subsampled BV estimates.

16Subsampling of RV with important extensions to optimal two-scale and multi-scale RV estimators in the
presence of microstructure noise has been advocated by Zhang, Mykland, and Ait Sahalia (2005) and Zhang
(2006). Subsampling of BV has been empirically documented to have similar merits by Dobrev (2007),
although the asymptotic distributiuonal properties have yet to be studied.

17We leave for future research the comparison to range-based estimators of IV developed by Christensen
and Podolskij (2007b), Christensen and Podolskij (2007a) and Dobrev (2007).
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5 A Realized Volatility Analysis of the Dow Jones 30

In recent years the Dow Jones 30 stocks have an increasingly dense (near second-by-second)
record of intraday transaction prices and quotes. This provides an excellent laboratory for
testing the empirical performance of our passage time volatility estimators on real data. For
our analysis we use NYSE TAQ data for the period January 1, 2005 to May 31, 2007. Table 2
summarizes basic descriptive statistics for the Dow Jones components, including companies
that have been included in or excluded from the index during this period. Ignoring short
trading days around major holidays we obtain a sample of 601 regular trading days of nearly
second-by-second intraday data for each stock from 9:30 am to 4:00 pm.

We apply our first exit time and first range time estimators on the series of mid-quotes
after filtering out spread outliers as usual in order to avoid distortions due to bid-ask bounce
and possible data errors. We also filter out consecutive duplicate mid-quotes since the mea-
surement of first passage times is driven exclusively by the first time a given threshold
level is reached. The daily sample sizes without duplicates vary from about two to eight
thousand quotes, roughly corresponding to an effective highest sampling frequency of three
seconds. Microstructure noise still distorts the measured returns and, hence, the measured
transition times and corresponding duration-based volatility estimates. However, when con-
sidering large enough thresholds (e.g. 4-6 log-spreads) the transition time distortions will
be relatively small and the quality of our first exit time and first range time DV estimates
should be comparable to the quality of subsampled RV and BV estimates at modest sam-
pling frequencies such as 2 to 5 min. As we have found in section 3.4, the impact of noise on
our duration-based measurements is close to negligible for moderate noise levels and higher
degree of noise persistence typical for mid-quotes. Thus, being agnostic about the exact
structure of the noise process, the robustness argument for DV based on a large enough
threshold is analogous to the one that justifies the use of subsampled RV or BV at a sparse
enough frequency.18

We compare the finite sample efficiency of DV vis-a-vis subsampled BV as the benchmark
jump-robust estimator of the integrated variance. The results of our analysis in the form of
signature plots are presented in Appendix C (for the average across all stocks) and Appendix
D (for individual stocks). We first determine a near-optimal sampling frequency for the
subsampled BV estimator for the stocks in our sample. Figure 8 in Appendix C represents
the cross-sectional average signature plot of BV versus RV as a function of the sampling
frequency in seconds. A key feature to notice is that BV is severely downward sloping for

18The main advantage of DV in this regard is that the choice of threshold level directly limits the local
noise import at each grid point, while the choice of sampling frequency for RV and BV controls the average
noise import across all grid points.
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frequencies from 3 to 120 seconds, while RV flattens much faster above the 15 or 30 second
sampling frequency. It is known that the increasing gap between RV and BV at frequencies
higher than 2 minutes is due to the increased number of zero returns at those frequencies.
This is explicitly confirmed by the last column of Table 2 containing descriptive statistics.
The median number of zero returns lasting longer than 30 seconds on each day is 161, those
lasting longer than 1 minute are about 48 on each day, while the zero returns lasting longer
than 2 minutes are only about 11 per day. Importantly, this pattern is observed without
much variation across different stocks (reported in the table) or different trading days (not
reported in the table). Therefore, the 2-minute frequency for the subsampled BV estimator
appears to be a nearly optimal choice in the cross-section.

Next, treating the 2-minute subsampled BV as the benchmark estimator of the integrated
variance, we analyze the cross-sectional average of our DV estimators for threshold levels
expressed in units of the average log-spread. As evident from Figure 9 in Appendix C, for
threshold level set to 4 log-spreads and above both our first exit time DV estimates and
first range time DV estimates on average agree with the 2-min BV estimates. What is even
more striking, though, is that essentially the same pattern of the signature plots emerges
also for each individual stock (see appendix D). At the same time, for thresholds larger than
4 log-spreads the standard deviation of our DV estimates is markedly lower than the one of
2-min subsampled BV (see Figure 10 in Appendix C), while the average correlation between
our DV estimates and the 2-min subsampled BV estimates exceeds 0.9 (see Figure 11 in
Appendix C).

Overall, robustly across all stocks for threshold level 4 log-spreads and above we obtain
a similar mean level of our DV estimates as 2-min subsampled BV, very high correlation
with BV but markedly lower variance. This provides encouraging initial evidence that our
DV estimators can significantly outperform subsampled BV as a jump-robust benchmark
estimator of the integrated variance in real-world settings of interest. The next section
further reinforces this conclusion by means of Monte Carlo experiments for a rich set of
carefully calibrated models.

6 Monte Carlo Experiments

In this section we document the performance of the proposed duration-based DV estimators
on finite samples of simulated data from a wide selection of jump-diffusion models. For each
model specification, we mimic the discreteness of stock quotes observed in real data samples
from frequently traded stocks. In particular, we generate random quote arrivals at an average
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rate of one every three seconds over the trading hours from 9:30 am to 4:00 pm during each
of 2500 trading days (roughly 10 years of data). We then analyze the performance of the
first exit time DV and first range time DV estimators across a range of realistic threshold
levels vis-a-vis 2-min subsampled BV (in scenarios with jumps) and 2-min subsampled RV
(in scenarios without jumps).

In the Monte Carlo experiments we seek to calibrate the threshold levels for calculating
the DV estimators to ensure that the environment is reminiscent of the setting in the section
dealing with the Dow Jones 30 stock data in Section 5. To this end, we exploit the empirically
stable relationship between the average log-spread and daily volatility (the ratio typically
falls in the range [0.02, 0.04] with a mean of 0.03, as shown in the second to last column of
table 2). We therefore express the thresholds in units of the mean log-spread and further
assume that the log-spread equals 0.03 times the daily volatility in our simulations. In this
way, we maintain consistency between our plots on real and simulated data as a function of
the threshold expressed in units of the mean log-spread. Furthermore, we focus on thresholds
in the range from 1 to 10 times the mean log-spread, corresponding to the range from 0.03
to 0.3 times the daily volatility. This choice is reasonable as it implies a mean duration of
the first exit times ranging from about 20 seconds for the smallest threshold to about 30
minutes for the largest threshold and mean duration of the first range times ranging from
about 10 seconds to about 15 minutes.

The full set of data generating processes is described in detail in Appendix A.1. In
order to gain more thorough understanding of the performance of our DV estimators, we
first consider in detail the case of ideal sampling without microstructure noise and then
repeat the analysis for two distinct AR(1) noise structures, namely non-persistent (or i.i.d.)
noise representative for transaction prices and highly-persistent noise representative for mid-
quotes. For each model specification, we produce signature plots of the relative bias of the
integrated variance estimates as a function of the threshold level and report in table format
the corresponding relative efficiency factor vis-a-vis 2-min subsampled BV (in scenarios with
jumps) or 2-min subsampled RV (in scenarios without jumps).19 The objective is to include
relevant scenarios which mimic important qualitative features of the equity market results
within an empirically relevant setting. As such, our extensive set of relative performance
results for the simulated data serve to corroborate our interpretation of the findings for the
Dow Jones 30 stock data in Section 5.

In particular, Figures 5, 6, 7 plot the relative bias of each IV estimator, while Tables 3, 4,
19The relative bias is calculated as the sample mean of ÎV /IV , while the relative efficiency factor at the

2-min sample frequency is calculated as the sample mean of 195(ÎV − IV )2/IQ, where IV and IQ are
the true simulated integrated variance and integrated quarticity on each day, while ÎV is the obtained IV
estimate on each day.
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and 5 show the relative mean squared error of each IV estimator (in the form of an efficiency
factor at the benchmark 2-min frequency) across a broad range of considered models. The
first two rows of each table correspond to the 2-min sub-sampled RV and BV estimators.
The subsequent rows represent the first exit time and first range time based estimators for
thresholds ranging from 3 to 8 log-spreads. The passage time estimators are the previous
tick versions of the estimators that are more robust to jumps in finite samples (see Section
3.3). Below we discuss these results in greater detail first for our Monte Carlo experiments
without microstructure noise and then with microstructure noise.

6.1 Simulations Without Microstructure Noise

6.1.1 Deterministic Volatility

In the constant volatility model SV0-C the annualized volatility is set to 20%, so that the
daily variance is 1.59 × 10−4 (assuming 252 trading days per year). Figure 5-A shows that
the first exit time DV and first range time DV estimators behave very similarly in terms of
their finite sample biases as a function of the threshold level and there is virtually no bias for
threshold level larger than 3 log-spreads. The first column in Table 3 displays the relative
efficiency factor of the two DV estimators for thresholds in the no-bias range from 3 to 8
log-spreads vis-a-vis the 2-min subsampled BV and RV benchmark. Both DV estimators are
considerably more efficient than the 2-min BV and RV benchmarks over a very wide range
of thresholds from 3 to 5 log-spreads for the first exit time and from 3 to 7 log-spreads for
the first range time. The efficiency of each DV estimator decreases as the threshold level
goes up due to the inflated variance stemming from the increasing overlap between observed
passage times starting from neighboring grid points. Importantly, for any given threshold
the first range time estimator is consistently more efficient than the first exit time estimator
and beats the 2 minute BV benchmark in relative MSE sense by a sufficiently large factor
for all thresholds in the range 3-7 log-spreads.

The overall conclusion from Figure 5 (panel A) and Table 3 (column 1) is that there is
a wide range of threshold levels, roughly 3-5 log-spreads for the first exit time and 3-7 log-
spreads for the first range time, offering substantial efficiency gains over 2-min subsampled
BV as a measure of the daily integrated variance.
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6.1.2 Stochastic Volatility

Although the asymptotics of our DV estimators is not affected by (non-explosive) intraday
variation in volatility, it is important to investigate the extent to which there still might be
a detrimental impact from time-varying or stochastic volatility on the finite sample perfor-
mance documented under constant volatility. To this end, we repeat the same analysis for
a number of alternative data generating processes involving stochastic volatility: SV1A-C
(one-factor affine), SV1L-C (one-factor log), and SV2A-C (two-factor affine). The models
are described in detail in Appendix A.1 and they are all calibrated to obtain the same av-
erage annualized volatility of 20%. We present the results for models without the "leverage"
effect (i.e. correlation between the process driving stochastic volatility and the Brownian
motion driving returns) consistent with the theoretical results derived in the Appendix. We
have, however, confirmed that simulating models with the leverage effect does not change
our results or conclusions in any significant manner.

Our main finding is that there is very little difference between the observed relative
performance of DV versus BV under each stochastic volatility model in comparison to the
constant volatility case. For example, representative for all three models, Figure 5-B for
model SV2A-C shows that both DV estimators are virtually unbiased for threshold level
larger than 3 log-spreads exactly as in the constant volatility case (c.f. figure 5-A ). Likewise,
the first four columns of Table 3 show that the relative MSE gains of DV versus 2-min
subsampled DV for each stochastic volatility model are practically about the same as those
documented under constant volatility.

The finding that our results are robust to time-varying volatility should not be surprising
given that (for small enough thresholds) volatility is locally constant to a good first order of
approximation, which is the main requirement for our DV estimators to work well in practice.
Thus, the range of thresholds for which the DV estimators achieve superior performance
relative to the 2-min subsampled BV remains 3-5 log-spreads (first exit time) and 3-7 log-
spreads (first range time).

6.1.3 Stochastic Volatility with U-Shaped Intraday Pattern and Jumps

It is well known that intraday stock returns exhibit a pronounced U-shaped pattern of
intraday volatility along with other activity-related variables such as trading volume, number
of transactions, and quoted spread. On average, the variance in the first hour of trading
is often three times larger than the variance in the middle of the day and peaks again to
a somewhat lower level in the last hour of trading. Therefore, we augment our baseline
stochastic volatility specifications with a deterministic time-of-the-day volatility multiplier
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having a U-shaped pattern. In particular, our time-of-the-day multiplier takes an additive
form of exponentials popular in the market microstructure literature (see Appendix A.1 for
details of the implementation).

Likewise, to accommodate naturally occurring infrequent instantaneous price revisions
that can lead to path discontinuities (e.g. upon the arrival of big news), we add also a finite
activity jump component to our baseline stochastic volatility specifications. This allows us
to study the performance of our DV estimators on "jump" days subject also to a realistic
strong U-shaped intraday volatility pattern that interferes with the jumps by generating large
enough pure diffusive increments at the start and end of the day. In particular, we simulate
one jump on each day with a 25% average contribution to the daily diffusive integrated
variance and carry out the same relative performance analysis as above.

An important feature of the first exit time and first range time DV estimators established
in the theory section is their asymptotic robustness to jumps due to the inherent truncation
via the chosen threshold of arbitrary large log-price increments (the smaller the threshold,
the higher the degree of jump-robustness). In particular, in section 3.3 we have motivated
the "previous tick" method for calculating the passage times involved in our DV estimators
that achieves nearly perfect immunity to the presence of a single large jump on each day both
asymptotically and in finite samples. Therefore we focus our analysis on these asymptotically
equivalent "robust" versions of our first exit time DV and first range time DV estimators.

Figure 5-C for model SV2A-UJ (representative for all four models with jumps) shows
that, indeed, the combined presence of jumps and a strong U-shape volatility pattern has
very little impact on the relative bias of our DV estimators. While the 2-min subsampled BV
exhibits a noticeable upward bias due to finite-sample jump distortion20, both DV estimators
remain unbiased for threshold levels 3 to 6 log-spreads and less biased than BV for thresholds
up to 8 log-spreads. Importantly, as revealed by the last four columns of Table 3, this leads
also to further improvement of the relative MSE factors of the DV estimators vis-a-vis 2-
min subsampled BV. Thus, the overall conclusion from Figure 5 and Table 3 is that as a
jump-robust integrated variance estimator DV for thresholds 3-6 log-spreads outperforms the
2-min subsampled BV benchmark by an even wider margin on days with jumps compared
to days without jumps.

20It is well known that the BV estimator does not fully eliminate the impact of jumps and in fact has an
upward bias of roughly 5.4% in our simulations.
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6.2 Simulations With Microstructure Noise

Next we further extend our simulation setup by producing noisy observations based on the
AR(1) microstructure noise specification of equation 14 introduced in Section 3.4. Our goal
is to study the effect of different noise levels (noise-to-signal ratio λ) and different noise
persistence (first order autocorrelation ρ) on the relative efficiency of our DV estimators.
We focus our analysis on four distinct cases:

(A) Non-persistent noise (ρ = 0) at moderate level (λ = 0.25)
(B) Persistent noise (ρ = 0.99) at moderate level (λ = 0.25)
(C) Non-persistent noise (ρ = 0) at high level (λ = 1.00)
(D) Persistent noise (ρ = 0.99) at high level (λ = 1.00)
Based on our findings in Section 3.4 with regard to the degree of distortion of individ-

ual passage time measurements, we should expect a dramatic deterioration of the relative
efficiency of the first exit time DV and, even more so, the first range time DV only in case
(C) of non-persistent noise at high level. This is indeed our main finding when we repeat
our previous analysis under the considered noise specifications first for the four SV-C models
without jumps and U-shaped volatility pattern and then for the four SV-UJ models with
U-shaped pattern and jumps.

6.2.1 Noise Impact on DV Under Stochastic Volatility

Figure 6 shows that moderate noise at any persistence (first row panels A and B) or persistent
noise at any level (second column panels B and D) have a negligible impact on the relative
bias of our DV estimators compared to the case without noise (Figure 5, panel B). By
contrast, non-persistent noise at high level (Panel C) appears to be quite detrimental. As
predicted by our analysis in Section 3.4, now there is an upward bias of our DV estimators
across the full range of empirically relevant thresholds. Likewise, comparing the MSE factors
with noise reported in Table 4 to their corresponding values without noise (Table 3) shows
that the relative efficiency of DV versus 2-min subsampled BV and RV is largely unaffected
by moderate noise at any persistence (columns with λ = 0.25) or persistent noise at any level
(columns with ρ = 0). However, non-persistent noise at high level (columns with λ = 1.00)
leads to severe deterioration of the relative efficiency of DV, making it somewhat worse than
2-min subsampled BV, which unlike DV remains nearly unbiased also in this case.

The overall conclusion to be drawn from this analysis is that the presence of microstruc-
ture noise should not generally be a major concern for our duration-based approach, as long
as the noise-to-signal ratio is moderate or the noise is sufficiently persistent. The special
case of non-persistent noise at a detrimentally high level is easy to detect by inspecting
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whether the DV signature plots as a function of the threshold level are upward sloping as
the thresholds go down. Clearly, this is not the case for our sample of mid-quotes for the
Dow Jones 30 stocks (see signature plots in Appendix C and D), further corroborating the
interpretation of our empirical findings in Section 5.

6.2.2 Noise Impact on DV Under Stochastic Volatility with U-Shaped Intraday

Pattern and Jumps

As a final check of the relative performance of our DV estimators, we repeat the above
analysis with microstructure noise for our SV-UJ models featuring a pronounced U-shape
intraday pattern and jumps. We arrive at exactly the same conclusion for such "jump" days
after comparing Figure 7 with the corresponding signature plots without noise (Figure 5,
panel B), as well as Table 5 with the corresponding efficiency factors without noise (Table 3).
Leaving aside the special case of non-persistent noise at a detrimentally high level, both the
first exit time DV and the first range time DV significantly outperform 2-min subsampled
BV as jump-robust estimators of the integrated variance over a wide range of thresholds
from 3 to 6 log-spreads.

7 Conclusion

In this paper we propose a new methodology for integrated variance estimation based on
a localization argument and the theory of Brownian passage times. We exploit suitably
scaled reciprocal passage times for a given threshold as the dual analog to squared/absolute
returns and ranges for a given time unit and introduce novel duration-based estimators
DV as natural counterparts to commonly used RV estimators. Our DV estimators are
asymptotically superior to subsampled RV and BV estimators in the infeasible case with
continuous observations and no jumps. Moreover, the proposed duration-based estimators
perform very well in finite samples in both Monte Carlo experiments and an empirical analysis
of the stocks in the Dow Jones 30 index. The rationale behind this performance is quite
intuitive: as long as the threshold is chosen large enough, the market microstructure noise
distortion of the observed passage times will be small. On the other hand, as long as the
threshold is small enough, individual large jumps will automatically be truncated and thus
will only affect the local volatility estimate at a single grid point. As we have demonstrated
in the Monte Carlo experiments, this jump robustness can be further strengthened by using
the previous tick versions of the DV estimators. This leaves us with an intermediate range
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of thresholds ranging from roughly 3 to 6 log-spreads for which our estimators have good
robustness properties with respect to both jumps and microstructure noise.21 Importantly,
the estimates are relatively stable with respect to the choice of threshold within this range and
practical implementation will therefore not need to involve any delicate first step estimation
of an ‘optimal’ threshold.

Overall, the very encouraging results for the Dow Jones 30 stocks and a broad range of
Monte Carlo experiments present supportive evidence that the asymptotic efficiency of the
introduced realized duration-based volatility estimators can be exploited in practice. At the
same time, certain aspects of the behavior of our DV estimators on real data call for further
investigation. In particular, future research is needed to shed more light on what type of
assets and markets offer the most suitable high-frequency price-time data for duration-based
volatility estimation.

The duration based approach outlined in this paper for robust integrated variance esti-
mation applies more generally to the robust estimation of other power variations, of which
the integrated quarticity is of particular interest in finance applications. The estimation of
these quantities follows immediately from the results in Appendix A.2, which outlines the
basic duality between reciprocal passage times and certain magnitude-based functionals of
the Brownian motion. Another intriguing avenue of future research is multivariate exten-
sions of duration based techniques to the estimation of covariances. We leave these and other
natural extensions for future work.

21Although the asymptotic properties of the DV estimators have been derived assuming “no leverage”,
extensive Monte Carlo experiments have confirmed that leverage does not affect the performance of the DV
estimators.
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A Technical Appendix
A.1 Monte Carlo Experiment
The models considered in our Monte Carlo experiments are SV0 (constant deterministic volatility),
SV1A (one-factor affine stochastic volatility), SV1L (one-factor log stochastic volatility), SV2A
(two-factor affine stochastic volatility). In each model, the price process follows a driftless Brownian
motion with instantaneous volatility σ(t):

dp(t) = σ(t) dW1(t)

We analyze separately core model specifications SV-C and extended specifications SV-UJ incor-
porating a U-shaped intraday volatility pattern and jumps.

A.1.1 Core Stochastic Volatility Models SV-C

The deterministic and one-factor volatility models are described by

SV0-C : σ(t) = θ
SV1A-C : dσ2(t) = η

[
θ − σ2(t)

]
dt+ νσ(t) dW2(t)

SV1L-C : d log σ2(t) = η
[
θ − log σ2(t)

]
dt+ ν dW2(t)

with the leverage effect in the one-factor models captured by the instantaneous correlation

ρ = corr(dW1(t), dW2(t))

The parameters for the one factor models are calibrated as in Andersen, Benzoni, and Lund
(2002).

The two-factor stochastic volatility model is described by

SV2A-C : σ2(t) = σ2
1(t) + σ2

2(t)
dσ2

1(t) = η1
[
θ1 − σ2

1(t)
]
dt+ ν1σ1(t) dW21(t)

dσ2
2(t) = η2

[
θ2 − σ2

2(t)
]
dt+ ν2σ2(t) dW22(t)

with W21,W22 independent and the leverage effect captured by the instantaneous correlations

ρ1 = corr(dW1(t), dW21(t))
ρ2 = corr(dW1(t), dW22(t))

The two factor model parameters are calibrated as in Andersen, Bollerslev, and Meddahi (2005).
Across all model specifications, the unconditional IV of each day is calibrated to θ = θ1 + θ2 =

0.000159 corresponding to an annualized volatility of 20% (assuming 252 trading days per year).
This roughly matches the average level of volatility observed in our DJ 30 sample between January
2005 and May 2007.

A.1.2 Models SV-UJ with Intraday U-Shaped Volatility Pattern and Jumps

We extend each of the above four core models to incorporate both a deterministic intraday U-shaped
volatility pattern and price jumps, resulting in the models SV0-UJ, SV1A-UJ, SV1L-UJ, and
SV2A-UJ.
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Following Hasbrouck (1999) we model the diurnal volatility U-shape as the sum of two expo-
nentials:

E [σ(t)] = C +A
[
e−at + e−b(1−t)

]
, t ∈ [0; 1]

where the constants are calibrated to produce a strong asymmetric U-shape with variance at the
open (t = 0) more than 3 times the midday variance (t = 1/2) and variance at the close about 1.5
times the midday variance.

Price jumps are introduced by extending the log-price process as

dp(t) = σ(t) dW1(t) + dJt

where the Poisson jump process (Jt) is assumed independent of (W1,W2). In order to stress test
our estimator, we calibrate the process to match “jump days” on which a single Gaussian jump
accounts for an average increase of 25% in realized volatility (i.e. the jump contribution JV is 25%
of IV or, equivalently, 20% of QV = IV + JV).

A.2 Duality Results
Proposition A.1 Define the following standard Brownian functionals

Ht = sup
θ∈[0;t]

Bθ, Mt = sup
θ∈[0;t]

|Bθ| , Rt = sup
θ∈[0;t]

Bθ − inf
θ∈[0;t]

Bθ

and let (for h > 0)

τHTh = inf{t|Ht = h}, τETh = inf{t|Mt = h}, τRTh = inf{t|Rt = h}

be the first range time, first exit time and first hitting time respectively, then we have the following
identities in distribution

H1
D= 1(

τHT1
)1/2 , M1

D= 1(
τET1

)1/2 , R1
D= 1(

τRT1
)1/2 ,

Proof. The scaling property of Brownian motion

Bt/h2
D= 1
h
Bt

implies that :

Pr {Ht < h} = Pr
{

sup
0≤t≤1

1
h
Bt < 1

}
= Pr

{
sup

0≤t≤h−2
Bt < 1

}

= Pr
{
τHT1 > h−2

}
= Pr

 1(
τHT1

)1/2 < h


The corresponding results for Mt and Rt are obtained analogously.

It follows that the passage time estimators of σp based on [τHT1 ]−p/2, [τET1 ]−p/2, [τRT1 ]−p/2
are the duals to the corresponding magnitude-based estimators using Hp

1 , M
p
1 , R

p
1. The powers of

particular interest for finance applications are p = 1, 2, 4.
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A.3 Passage time results
Lemma A.2 Let τh be the first exit time, the first hitting time or the first range time as given in

(6) for a driftless Brownian motion with constant volatility σ2, then

τh
D= h2

σ2 τ̃1

where τ̃1 is the corresponding passage time of a standard Brownian motion with threshold h = 1.

Proof. This is clear from the moment generating functions given in Table 1:

E
[
e
−α
(
τ̃1

h2
σ2

)]
= E

[
e
−
(
αh

2
σ2

)
τ̃1
]

= Lτh(α)

Proposition A.3 If {τ i,h} is an i.i.d sample of N first passage times from the interval [−h;h] of
a driftless Brownian motion with B0 = 0 and constant volatility σ, then the expected value of the
volatility estimator based on the first exit time moment is given by

E
[

h2

1
N

∑N
i=1 τ i,h

]
= µ

(N)
1 σ2

where

µ
(N)
1 =


N
∫∞

0
1

[cosh(
√

2λ)]N
dλ (first exit time)

N
∫∞

0
1[

cosh(
√
λ/2)

]2N dλ (first range time)
1
N (first hitting time)

Moreover, asymptotically as N →∞

µ
(N)
1 =

{
1 + 2

3N +O( 1
N2 ) (first exit time)

1 + 1
3N +O( 1

N2 ) (first range time)

Proof. By independence the moment generating function of the convolution τ1,h + · · · + τN,h is
given by [Lτh(α)]N . We therefore have

E
[

h2

1
N

∑N
i=1 τ i

]
= h2N

∫ ∞
0

[Lτh(α)]N dα

The result then follows from the change of variables λ = αh2

σ2 . The asymptotic approximation can
be derived for the first exit time and the first range time via a mean value expansion:

E
[

h2

1
N

∑N
i=1 τ i

]
= E

[
h2

Eτ + 1
N

∑N
i=1 (τ i − Eτ)

]
= σ2 × E

 1

1 +
1
N

∑N

i=1(τ i−Eτ)
Eτ
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A second order Taylor expansion of 1/(1 + x) around 1 yields:

≈ σ2 × E

1−
1
N

∑N
i=1 (τ i − Eτ)

Eτ
+
( 1
N

∑N
i=1 (τ i − Eτ)

Eτ

)2

− · · ·


≈ σ2 ×

[
1 +

E 1
N2
∑N
i=1 (τ i − Eτ)2

(Eτ)2 +O(1/N2)
]

= σ2
[
1 + 1

N

Vτ
(Eτ)2 +O(1/N2)

]

from which the result follows by calculation of the first two moments of the relevant passage time
using the moment generating function.

Corollary A.4 The expectation of the reciprocal passage time satisfies

E
[
h2

τh

]
≡ µ1 σ

2 =


2C σ2 (first exit time)

(4 log 2) σ2 (first range time)
σ2 (first hitting time)

Proof. Apply Proposition A.3 with N = 1.

Proposition A.5 If {τ i,h} is an i.i.d sample of N first exit times from the interval [−h;h] of a
driftless Brownian motion with B0 = 0 and constant volatility σ, then the second moment of the
volatility estimator based on the first exit time moment is given by

E

 h4(
1
N

∑N
i=1 τ i,h

)2

 = µ
(N)
2 σ4

where

µ
(N)
2 =


N2 ∫∞

0
∫∞

Λ
1

[cosh(
√

2λ)]N
dλ dΛ (first exit time)

N2 ∫∞
0
∫∞

Λ
1[

cosh(
√
λ/2)

]2N dλ dΛ (first range time)
3
N2 (first hitting time)

Proof. By independence the moment generating function of the convolution τ1,h + · · · + τN,h is
given by [Lτh(α)]N . We therefore have

E

 1(∑N
i=1 τ i,h

)2

 =
∫ ∞

0

∫ ∞
A

[Lτh(α)]N dα dA

Corollary A.6 The second moment of the reciprocal passage time satisfies

E
[
h4

τ2
h

]
≡ µ2 σ

4 =


6 β(4) σ4 (first exit time)
9 ζ(3) σ4 (first range time)

3 σ4 (first hitting time)

Proof. Apply Proposition A.5 with N = 1.
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Corollary A.7 Let σ̂2
i = 1

µ1
h2

τh(ti) be the volatility estimate based on a single passage time obser-
vation τh(ti), then E[σ̂2

i ] = σ2 and

V[σ̂2
i ] =

(
µ2
µ2

1
− 1

)
σ4 =


(

6 β(4)
4β(2)2 − 1

)
σ4 ≈ 0.7681 σ4 (first exit time)(

9 ζ(3) σ4

(4 log 2)2 − 1
)
σ4 ≈ 0.4073 σ4 (first range time)(

3
22 − 1

)
σ4 ≈ 2.000 σ4 (first hitting time)

Proof. Apply Corollary A.4 and A.6.

A.4 Discretization bias correction
We state the multiplicative discretization bias corrections based on the following asymptotic results
due to Asmussen, Glynn, and Pitman (1995).

Lemma A.8 Let Bt be a driftless Brownian motion on [0; 1] with volatility σ2 and let Xt = B [tN ]
N

be the embedded (discretely observed) random walk observed at N points. Define M = sup
t∈[0;1]

|Bt|,

R = sup
t∈[0;1]

Bt − inf
t∈[0;1]

Bt, MN = sup
t∈[0;1]

|Xt|, RN = sup
t∈[0;1]

Xt − inf
t∈[0;1]

Xt. Then

E[MN ] = E[M ] + ζ(1/2)√
2π

σ√
N

+ o( 1√
N

)

E[RN ] = E[R] + 2ζ(1/2)√
2π

σ√
N

+ o( 1√
N

)

E[M2
N ] = E[M2] + 2

√
π

2
ζ(1/2)√

2π
σ2
√
N

+ o( 1√
N

)

E[R2
N ] = E[R2] + 4

√
8
π

ζ(1/2)√
2π

σ2
√
N

+ o( 1√
N

)

where ζ(1/2)/
√

2π ≈ −0.5826.

Proof. Follows by specializing Proposition 3 in Asmussen, Glynn, and Pitman (1995) for MN and
RN .

Corollary A.9 The following relationships hold approximately for the absolute maximum M and
the range R of a Brownian motion and the absolute maximum MN and the range RN of a random
walk in the same interval, as defined above:

E
[
M2

]
≈ fM (N)× E

[
M2
N

]
E
[
R2
]
≈ fR(N)× E

[
R2
N

]
where

fM (N) = 1− 1
2C ζ(1/2) 1√

N

fR(N) = 1− 2
π ln 2ζ(1/2) 1√

N
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and C is Catalan’s constant.

Proof. Obtained by rearranging the last two expressions and substituting the known values
E
[
R2] = 4 ln 2 σ2 and E

[
M2] = 2C σ2.

A.5 Constant Volatility
For simplicity we here limit attention to the uni-directional IV estimation. The derivation for the
bi-directional case follows analogously. Let 0 ≡ t0, t1, . . . , tN ≡ 1 be a set of grid points partitioning
the interval [0; 1] and let ∆i = ti+1 − ti be the mesh size. The passage time based IV estimators
are of the form

D̂V N,h =
N−1∑
i=0

µ−1
1

h2

τh(ti)
∆i (20)

where µ1 is the constant given in Table 1 for the first hitting time, first exit time and first range
time based estimators respectively. It is then clear that E[D̂V N,h] = σ2 = IV so that the estimator
is unbiased.

The variance of the estimator D̂V N,h is given by

V ar[D̂V N,h] =
N−1∑
i=0

V ar[µ−1
1

h2

τh(ti)
] ∆2

i + µ−2
1 h4∑

i 6=j
∆i∆jCov

(
1

τh(ti)
,

1
τh(tj)

)
(21)

We would like to show that, if h shrinks to zero at an appropriate rate, then V ar[D̂V N,h] = O (1/N)
and, moreover, that the local estimates of volatility at distinct grid points are asymptotically
independent (i.e the second term in (21) is o(1/N)).

The first term is
N−1∑
i=0

V ar[µ−1
1

h2

τh(ti)
] ∆2

i =
(
µ2
µ2

1
− 1

)
σ4

N−1∑
i=0

∆2
i

A sufficient condition for this term to be O(1/N) is therefore that the mesh size satisfies max
0≤i≤N

∆i =
O(1/N).

Next we consider the second term involving the covariance between reciprocal passage times
measured from distinct grid points ti < tj with ∆i,j = tj − ti (to simplify notation we write
τh(ti) = τ i and τh(tj) = τ j) :

Cov

(
1
τ i
,

1
τ j

)
= E

(
1
τ i

1
τ j

)
− E

( 1
τ i

)
E
(

1
τ j

)

For the cross product of reciprocal waiting times we have22:

E
(

1
τ i

1
τ j

)
= E

(
1
τ i

1
τ j

∣∣∣∣∣ τ i < ∆i,j

)
Pr {τ i < ∆i,j}+ E

(
1
τ i

1
τ j

∣∣∣∣∣ τ i ≥ ∆i,j

)
Pr {τ i ≥ ∆i,j}

22Note that τ j is not independent of τ i. We exploit here that E
(

1
τj

∣∣∣ τ i ≥ ∆i,j

)
= E

(
1
τj

)
since the event

{τ i ≥ ∆i,j}, as of time tj , only reveals information about the initial value at tj of the process but nothing
about the subsequent passage time τ j .
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≤ E
( 1
τ i

∣∣∣∣ τ i < ∆i,j

)
E
(

1
τ j

)
Pr {τ i < ∆i,j}+ E

(
1
τ j

∣∣∣∣∣ τ i ≥ ∆i,j

)
1

∆i,j
Pr {τ i ≥ ∆i,j}

≤ E
( 1
τ i

)
E
(

1
τ j

)
+ E

(
1
τ j

)
1

∆i,j
Pr {τ i ≥ ∆i,j}

This leads to the estimate

Cov

(
1
τ i
,

1
τ j

)
≤ E

(
1
τ j

)
1

∆i,j
Pr {τ i ≥ ∆i,j} = µ1

σ2

h2
1

∆i,j
Pr {τ i ≥ ∆i,j}

The probability Pr {τ i ≥ ∆i,j} can be bounded by the hitting time probability (Table 1) for which:

Pr {τ i ≥ ∆i,j} =
∫ ∞

∆i,j

h

σ
√

2πt3/2
e−

h2
2tσ2 dt = − 2√

π

∫ ∞
∆i,j

e−
h2

2tσ2 d

√
h2

2tσ2

= − 2√
π

∫ 0

h

σ
√

2∆i,j

e−z
2
dz = 2√

π

∫ h

σ
√

2∆i,j

0
e−z

2
dz

= Erf
[

h

σ
√

2∆i,j

]
=
√

2
π

1
σ
√

∆i,j
h+O

 h3

∆3/2
i,j

 ,

where the last equality follows from the Taylor series expansion of the Erf function,

Erf[x] = 2√
π

∞∑
n=0

(−1)n

(2n+ 1)n!x
2n+1 .

Thus, for small h,

Cov

(
1
τ i
,

1
τ j

)
≤
√

2
π
µ1
σ

h

1
∆3/2
i,j

+O

 h

∆5/2
i,j


and

µ−2
1 h4∑

i 6=j
∆i∆jCov

(
1
τ i
,

1
τ j

)
≤
√

2
π
µ−1

1 σh3∑
i 6=j

∆i∆j

∆3/2
i,j

+
∑
i 6=j

∆i∆j

∆5/2
i,j

O
(
h5
)

(22)

Under the (slightly) strengthened assumption that ∀i : ∆i = O(1/N), we have∣∣∣∣∣∣
∑
i 6=j

∆i∆j

∆3/2
i,j

∣∣∣∣∣∣ ≈ 1√
N

∑
i 6=j

1
|j − i|3/2

= O
(√

N
)

∣∣∣∣∣∣
∑
i 6=j

∆i∆j

∆5/2
i,j

∣∣∣∣∣∣ ≈
√
N
∑
i 6=j

1
|j − i|5/2

= O
(
N3/2

)

so that (22) will be of order o(1/N) if h = o(N−1/2). Thus the local volatility estimates corre-
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sponding to distinct grid points are asymptotically uncorrelated if the squared thresholds shrink
faster than the mesh size:

Proposition A.10 Define D̂V N,h =
∑N−1
i=0 µ−1

1
h2

τh(ti)∆i as the IV estimator based on passage time
durations (either the first hitting time, the first exit time or the first range time), where N denotes
the number of grid points and h denotes the threshold level. If the mesh size is ∆i = O(1/N) and
the threshold is chosen to be h = o(N−1/2), then, as N →∞

√
N(D̂V N,h − IV ) D−→ N(0, (µ2/µ

2
1 − 1) σ4)

where the constants µ1, µ2 are given in Table 1.

A.6 Stochastic volatility
Assumption (SV) Assume that the volatility process is independent of the Brownian motion and
that

∃κ > 0 : sup
s,t
|σ2
s − σ2

t | < κ|s− t| (SV1)

∀i : ∆i = O
(

1
N

)
(SV2)

inf
t
σ2
t ≥ ε > 0 (SV3)

h = o(N−1/2) (SV4)

The IV estimation error can be decomposed as

IV − D̂V N,h =
∫ 1

0
σ2
u du−

N−1∑
i=0

σ̂2
ti∆i =

∫ 1

0
σ2
u du−

N−1∑
i=0

σ2
ti∆i︸ ︷︷ ︸

Riemann approximation

+
N−1∑
i=0

(
σ2
ti − σ̂

2
ti

)
∆i︸ ︷︷ ︸

sum of local estimation errors

(23)

where the local estimator of volatility at the grid point ti is given by σ̂2
ti = µ−1

1
h2

τh(ti) and define the
passage time with stochastic volatility as in (6) where Bt =

∫ t
0 σu dWu

The first term in (23) is easily dealt with:

Lemma A.11 The Riemann approximation error is O(N−1) as the mesh size, max
i

∆i → 0.
Proof. This follows readily from the Lipschitz assumption (SV1) and mesh size assumption (SV2),

∣∣∣∣∣
∫ 1

0
σ2
u du−

N−1∑
i=0

σ2
ti∆i

∣∣∣∣∣ =
N−1∑
i=0

∫ ∆i

0

∣∣∣(σ2
ti+u − σ

2
ti)
∣∣∣ du ≤ N−1∑

i=0

∫ ∆i

0
κu du = 1

2κ
N−1∑
i=0

∆2
i = O

( 1
N

)
(24)

This implies that, under Assumption SV, the Riemann approximation error will not matter
asymptotically.
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Next we turn to the sum of local estimation errors which we shall first consider term by term.
We will need the following lemmas and definitions.

Lemma A.12 If Assumption SV is satisfied, then, conditional on the value of IV =
∫ 1
0 σ

2
u du, the

terms in the sum
∑N−1
i=0

(
σ2
ti − σ̂

2
ti

)
∆i are asymptotically uncorrelated in the sense that

∑
i 6=j

∆i∆jCov
(
σ̂2
ti , σ̂

2
tj

)
= o(N−1)

Proof. From the Lipschitz assumption, it follows that sup
t∈[0;1]

σ2
t ≤ σ̄2

max ≡ IV + 1
2κ must hold.

Borrowing from the arguments in the constant volatility case we then have

Cov

(
h2

τh(ti)
,

h2

τh(tj)

)
≤ h4 E

(
1

τh(tj)

)
1

∆i,j
Pr {τh(ti) ≥ ∆i,j} ≤ h4 µ1

σ̄2
max
h2

1
∆i,j

Pr {τh(ti) ≥ ∆i,j}

and the asymptotic uncorrelatedness follows from the conditions of Assumption SV (in particular
(SV2)− (SV4)) which imply that the right hand side is o(1/N).

We are therefore justified in focusing on the asymptotic behavior of the local estimation error
at each grid point. We proceed by introducing the time changed process:

Definition A.13 For each ti, let B∗ be a Brownian motion with B∗0 = 0 and define the time change
Tt =

∫ t
0 σ

2
ti+udu and the stopping times (depending on which estimator is considered)

τ∗h(ti) =


inf
{
t |

∣∣∣B∗Tt∣∣∣ > h
}

(first exit time)

inf
{
t | max

0≤u≤t
B∗Tt − min

0≤u≤t
B∗Tt > h

}
(first range time)

inf
{
t | B∗Tt > h

}
(first hitting time)

τ̃∗h(ti) =



inf
{
t |

∣∣∣∣B∗tσ2
ti

∣∣∣∣ > h

}
(first exit time)

inf
{
t | max

0≤u≤t
B∗
tσ2
ti

− min
0≤u≤t

B∗
tσ2
ti

> h

}
(first range time)

inf
{
t | B∗

tσ2
ti

> h

}
(first hitting time)

τmax
h = inf { t | B∗tε > h}

Lemma A.14 We have the following relationships (for a given passage time estimator)

τh(ti)
D= τ∗h(ti) (i)

0 ≤ τ∗h(ti) ≤ τmax
h = Op(h) (ii)

E
[

1
τ̃∗
h

(ti)

]
= µ1

σ2
ti
h2 (iii)

1
τ̃∗
h

(ti) −
1

τ∗
h

(ti) = Op(1) (iv)
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Proof. (i) follows directly from a standard time change argument. (ii) is immediate from the
definition and the fact that τmax

h can be seen as the first hitting time of a Brownian motion with
constant volatility ε. Similarly (iii) follows from the interpretation of τ̃∗h(ti) as the first passage
time of a constant volatility Brownian motion. To get (iv) we exploit the pathwise relationship
σ2
ti τ̃
∗
h(ti) =

∫ τ∗h(ti)
0 σ2

ti+udu and the Lipschitz assumption (SV1) :

σ2
tiτ
∗
h −

1
2κτ

∗2
h ≤

∣∣∣∫ τ∗h0 σ2
ti+u du

∣∣∣ ≤ σ2
tiτ
∗
h + 1

2κτ
∗2
h (25)

Thus we have the bounds on τ∗h in terms of τ̃∗h :

−σ2
ti +

√
σ4
ti + 2κσ2

ti τ̃
∗
h

κ
≤ τ∗h ≤

σ2
ti −

√
σ4
ti − 2κσ2

ti τ̃
∗
h

κ

from which it follows that

lim inf
τ̃∗
h
→0

1
τ̃∗h
− 1
τ∗h

= lim inf
τ̃∗
h
→0

τ∗h − τ̃∗h
τ̃∗hτ

∗
h

= lim
τ̃∗
h
→0

−σ2
ti +

√
σ4
ti + 2κσ2

ti τ̃
∗
h − κτ̃∗h

τ̃∗h

(
−σ2

ti +
√
σ4
ti + 2κσ2

ti τ̃
∗
h

) = − κ

2σ2
ti

lim sup
τ̃∗
h
→0

1
τ̃∗h
− 1
τ∗h

= lim sup
τ̃∗
h
→0

τ∗h − τ̃∗h
τ̃∗hτ

∗
h

= lim
τ̃∗
h
→0

σ2
ti −

√
σ4
ti − 2κσ2

ti τ̃
∗
h − κτ̃∗h

τ̃∗h

(
σ2
ti −

√
σ4
ti − 2κσ2

ti τ̃
∗
h

) = + κ

2σ2
ti

Finally, since τ̃∗h = Op(h), we have that 1
τ̃∗
h
− 1

τ∗
h

= Op(1) as h→ 0.

Lemma A.15 Let σ̂∗2ti = µ−1
1

h2

τ∗
h

(ti) and σ̃∗2ti = µ−1
1

h2

τ̃∗
h

(ti) then σ̂2
ti

D= σ̂∗2ti and σ̂∗2ti − σ̃
∗2
ti = Op(h2).

Proof. Follows directly from Lemma A.14.

We are now ready to present our main result for the passage time estimator under stochastic
volatility.

Proposition A.16 Let D̂V N,h denote the passage time based IV estimator (either the first hitting
time, the first exit time or the first range time) where N denotes the number of grid points. Under
the conditions of Assumption SV we have as N →∞

√
N(D̂V N − IV )

∣∣∣ IV D−→ N(0, (µ2/µ
2
1 − 1)

1∫
0

σ4
u du)

where ν = (µ2/µ
2
1 − 1) is given in (16).

Proof. First note that from Lemma A.15 and Assumption SV, we have

(σ2
ti − σ̂

2
ti) ∆i

D= (σ2
ti − σ̂

∗2
ti ) ∆i

= (σ2
ti − σ̃

∗2
ti ) ∆i︸ ︷︷ ︸

“constant” volatility term

+ (σ̃∗2ti − σ̂
∗2
ti ) ∆i︸ ︷︷ ︸

stochastic volatility term

(26)
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where E
(
(σ2
ti − σ̃

∗2
ti ) ∆i

)
= 0 and V ar

[
(σ2
ti − σ̃

∗2
ti ) ∆i

]
= (µ2/µ

2
1−1)σ4

ti∆
2
i . The “stochastic volatil-

ity” term is (σ̃∗2ti − σ̂
∗2
ti ) ∆i = Op(N−4) and thus will not play a role asymptotically:

√
N

N−1∑
i=0

(
σ2
ti − σ̂

2
ti

)
∆i
D=
√
N

N−1∑
i=0

(σ2
ti − σ̃

∗2
ti ) ∆i + o(N−2)

Conditional on IV, Lemma A.12 guarantees that the terms are asymptotically uncorrelated so that
(taking ∆i = 1/N) :

V ar

[
√
N

N−1∑
i=0

(σ2
ti − σ̃

∗2
ti ) ∆i

]
= (µ2/µ

2
1 − 1)

N−1∑
i=0

σ4
ti∆i

which leads to

√
N

N−1∑
i=0

(σ2
ti − σ̃

∗2
ti ) ∆i

D−→ N(0, (µ2/µ
2
1 − 1)

1∫
0

σ4
u du)
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Table 2: Descriptive statistics for the 33 stocks that were part of the Dow Jones 30 index
between January 1, 2005 and May 31, 2007.

Symbol

Average
Price

($)

Average
2-min RV 

(x10-4)

Average
2-min BV 

(x10-4)

Average
Log Spread 

(x10-4)

Average Ratio
Log Spread/Sigma

Average # zero returns 
per day lasting above

    30s /  60s  / 120s
AA 30 2.22 2.10 4.80 0.03 161 /  48 / 11
AIG 64 1.00 0.95 2.73 0.03 127 /  30 /   5
AXP 55 0.81 0.76 2.84 0.03 161 /  48 / 11
BA 74 1.26 1.19 2.97 0.03 113 /  21 /   3
BAC 48 0.68 0.64 2.87 0.04 161 /  49 /  11
C 49 0.77 0.73 2.70 0.03 144 / 42  /   9
CAT 71 1.62 1.54 3.01 0.02 131 /  27 /    4
CVX 63 1.64 1.58 2.88 0.02   82 /  15 /    2
DD 45 1.19 1.12 3.48 0.03 154 /  45 /  10
DIS 29 1.08 1.01 4.46 0.04 177 /  67 /  19
EK 26 2.19 1.93 5.48 0.04 189 /  81 /  28
GE 35 0.63 0.59 3.35 0.04 182 /  70 /  20
GM 30 3.70 3.49 5.09 0.03 162 /  51 /  13
HD 39 1.35 1.28 3.69 0.03 149 /  39 /   8
HPQ 32 1.61 1.50 4.32 0.04 163 /  55 /  14
IBM 86 0.84 0.80 2.43 0.03  89  /  14 /   2
INTC 22 1.67 1.51 4.63 0.04 206 /  99 /  35
IP 34 1.36 1.25 4.28 0.04 191 /  71 /  20
JNJ 64 0.52 0.49 2.47 0.04 130 /  32 /   6
JPM 42 0.88 0.83 3.27 0.04 163 /  52 /  12
KO 44 0.59 0.55 3.15 0.04 166 /  57 /  15
MCD 36 1.22 1.13 3.90 0.04 164 /  55 /  14
MMM 78 0.91 0.87 2.74 0.03 141 /  31 /   5
MO 74 1.09 0.93 2.38 0.02 142 /  33 /   5
MRK 37 1.58 1.38 3.84 0.03 165 /  54 / 13
MSFT 27 0.94 0.84 3.80 0.04 199 / 106/ 43
PFE 26 1.12 1.06 4.63 0.05 184 /  71 / 21
PG 58 0.72 0.69 2.69 0.03 144 /  38 /   7
T 27 1.08 1.00 4.94 0.05 177 /  77 / 27
UTX 68 1.07 1.01 3.16 0.03 127 /  27 /   4
VZ 35 0.98 0.91 3.81 0.04 165 /  61 / 18
WMT 48 0.91 0.88 3.01 0.03 130 /  32 /   6
XOM 64 1.39 1.34 2.27 0.02  90 /  17 /   2
Mean ALL: 47 1.23090 1.14720 0.00035 0.03 152 /  49 /  13
Median ALL: 48 1.08398 1.00552 0.00033 0.03 161 /  48 /  11
Max ALL: 86 3.69647 3.48752 0.00055 0.05 206 / 106/  43
Min ALL: 22 0.52107 0.49326 0.00023 0.02   82 /  14 /    2
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Table 3: Relative mean squared error (MSE) factors for models without mi-
crostructure noise. We report the MSE factors for each estimator and each model as the
sample mean of 195(ÎV − IV )2/IQ, where IV and IQ are the true simulated integrated variance
and integrated quarticity on each day. The MSE factor for 2-min subsampled RV is thus ≈ 1.33
which is the theoretical value shown by Zhang, Mykland, and Aït Sahalia (2005). Each row corre-
sponds to a given estimator and each column to one of the models described in detail in Appendix
A.1. Thus model SV0 is a model without stochastic volatility while SV1A and SV2A are one and
two factor stochastic volatility models with affine structure. Model SV1L is a one-factor model
written in log volatility. Entries in bold denote that the MSE factor is smaller than 2-min sub-
sampled RV (for models without jumps) or smaller than 2-min subsampled BV (for models with
jumps). In the case of the passage time estimators, the previous tick method is used for models
including jumps.

SV0-C SV1A-C SV1L-C SV2A-C SV0-UJ SV1A-UJ SV1L-UJ SV2A-UJ

2-min 1.318 1.315 1.314 1.347  -  -  -  - 

2-min 1.495 1.511 1.510 1.505 1.945 2.027 2.028 2.053

h = 3 0.398 0.413 0.412 0.407 0.386 0.393 0.394 0.389

h = 4 0.582 0.591 0.590 0.578 0.513 0.517 0.517 0.523

h = 5 0.911 0.889 0.888 0.898 0.815 0.817 0.817 0.816

h = 6 1.356 1.289 1.289 1.343 1.243 1.239 1.239 1.260

h = 7 1.908 1.835 1.834 1.906 1.820 1.801 1.802 1.806

h = 8 2.572 2.475 2.476 2.556 2.601 2.542 2.548 2.481

h = 3 0.274 0.296 0.294 0.293 0.242 0.254 0.256 0.253

h = 4 0.436 0.447 0.449 0.418 0.376 0.387 0.389 0.376

h = 5 0.596 0.647 0.642 0.597 0.552 0.579 0.579 0.554

h = 6 0.825 0.816 0.817 0.819 0.788 0.774 0.776 0.782

h = 7 1.096 1.059 1.056 1.122 1.085 1.066 1.068 1.079

h = 8 1.437 1.406 1.402 1.449 1.500 1.473 1.469 1.463
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Core Models SV-C 
Avg Sample Freq 3sec without Noise

Models SV-UJ with U-Shaped Volatility and 
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Su
bs

am
pl

ed
 

BV
N

    
  R

V
N

Fi
rs

t E
xi

t T
im

e
D

V
N

,h

44



Table 4: Relative mean squared error (MSE) factors for models with microstruc-
ture noise without intra-day U-shape and jumps. We report the MSE factors for
each estimator and each model as the sample mean of 195(ÎV − IV )2/IQ, where IV and IQ are
the true simulated integrated variance and integrated quarticity on each day. The MSE factor for
2-min subsampled RV is thus ≈ 1.33 which is the theoretical value shown by Zhang, Mykland,
and Aït Sahalia (2005). Each row corresponds to a given estimator and each column to a given
AR(1) noise structure and one of the models described in detail in Appendix A.1. Thus model SV0
is a model without stochastic volatility while SV1A and SV2A are one and two factor stochastic
volatility models with affine structure. Model SV1L is a one-factor model written in log volatility.
We consider two levels of noise to signal ratio: moderate (λ = 0.25) and high (λ = 1.0) and two
levels of noise persistence: low (ρ = 0.0) and high (ρ = 0.99). Entries in bold denote that the MSE
factor is smaller than 2-min subsampled RV.

SV0-C SV2A-C SV0-C SV2A-C SV0-C SV2A-C SV0-C SV2A-C

2-min 1.323 1.349 1.378 1.393 1.318 1.347 1.318 1.347

2-min 1.494 1.502 1.532 1.535 1.495 1.505 1.495 1.505

h = 3 0.335 0.325 3.472 3.447 0.393 0.403 0.378 0.388

h = 4 0.595 0.568 1.943 1.879 0.582 0.573 0.577 0.567

h = 5 0.939 0.895 1.650 1.555 0.913 0.894 0.913 0.889

h = 6 1.382 1.344 1.806 1.720 1.358 1.347 1.359 1.346

h = 7 1.923 1.887 2.192 2.122 1.908 1.906 1.909 1.900

h = 8 2.592 2.521 2.757 2.661 2.576 2.553 2.577 2.545

h = 3 0.555 0.539 7.605 7.563 0.276 0.292 0.268 0.282

h = 4 0.548 0.520 3.729 3.689 0.432 0.414 0.424 0.409

h = 5 0.677 0.652 2.567 2.534 0.597 0.602 0.594 0.600

h = 6 0.878 0.855 2.167 2.086 0.829 0.812 0.826 0.810

h = 7 1.158 1.131 2.130 1.991 1.097 1.126 1.098 1.118

h = 8 1.512 1.468 2.223 2.129 1.442 1.449 1.441 1.440

Core Models SV-C 
Avg Sample Freq 3sec with AR(1) Microstructure Noise
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          Noise Persistence ρ=0.0           Noise Persistence ρ=0.99

Noise-to-Signal Ratio 
λ = 0.25

Noise-to-Signal Ratio 
λ = 1.00

Noise-to-Signal Ratio 
λ = 0.25

Noise-to-Signal Ratio 
λ = 1.00
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Table 5: Relative mean squared error (MSE) factors for models with microstruc-
ture noise and including intra-day U-shape and jumps. We report the MSE factors
for each estimator and each model as the sample mean of 195(ÎV − IV )2/IQ, where IV and IQ
are the true simulated integrated variance and integrated quarticity on each day. The MSE factor
for 2-min subsampled RV is thus ≈ 1.33 which is the theoretical value shown by Zhang, Mykland,
and Aït Sahalia (2005). Each row corresponds to a given estimator and each column to a given
AR(1) noise structure and one of the models described in detail in Appendix A.1. Thus model SV0
is a model without stochastic volatility while SV1A and SV2A are one and two factor stochastic
volatility models with affine structure. Model SV1L is a one-factor model written in log volatility.
We consider two levels of noise to signal ratio: moderate (λ = 0.25) and high (λ = 1.0) and two
levels of noise persistence: low (ρ = 0.0) and high (ρ = 0.99). Entries in bold denote that the
MSE factor is smaller than 2-min subsampled BV. In the case of the passage time estimators, the
previous tick method is used for all models.

SV0-UJ SV2A-UJ SV0-UJ SV2A-UJ SV0-UJ SV2A-UJ SV0-UJ SV2A-UJ

2-min  -  -  -  -  -  -  -  - 

2-min 1.986 2.096 2.151 2.265 1.946 2.054 1.948 2.056

h = 3 0.289 0.290 2.873 2.811 0.380 0.384 0.364 0.369

h = 4 0.556 0.551 1.848 1.804 0.513 0.521 0.511 0.513

h = 5 0.887 0.887 1.723 1.690 0.813 0.818 0.815 0.816

h = 6 1.322 1.331 1.980 1.937 1.241 1.256 1.248 1.257

h = 7 1.902 1.873 2.456 2.385 1.820 1.801 1.825 1.804

h = 8 2.677 2.543 3.163 2.996 2.602 2.480 2.605 2.490

h = 3 0.564 0.555 7.026 6.956 0.245 0.254 0.242 0.251

h = 4 0.586 0.565 3.737 3.682 0.376 0.377 0.375 0.375

h = 5 0.722 0.731 2.722 2.707 0.547 0.555 0.551 0.559

h = 6 0.967 0.937 2.485 2.408 0.793 0.784 0.796 0.785

h = 7 1.256 1.225 2.498 2.411 1.092 1.074 1.099 1.072

h = 8 1.677 1.620 2.720 2.593 1.497 1.466 1.500 1.471

Models SV-UJ with U-Shaped Volatility and 25% Mean Jump Contribution to IV
Avg Sample Freq 3sec with AR(1) Microstructure Noise

          Noise Persistence ρ=0.0           Noise Persistence ρ=0.99
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First Range 
Time (τRT)

First Exit 
Time (τET)

First Hitting 
Time (τHT)

0

1

0 1 2 3 4 5
Duration (τ)

Figure 1: The passage time densities for the baseline case (h
σ

= 1). The first
range time (thin line), the first exit time (dashed line) and the first hitting time (thick line).

5

E[1/τRT|τRT<T] E[1/τET|τET<T] E[1/τHT|τHT<T]

0
0 1 2 3 4 5

Time Remaining until Censoring (T)

4 log2

2 C

1

Figure 2: Conditional expectation of reciprocal passage times for the base-
line case (h

σ
= 1). The expected reciprocal first range time (thin line), the expected

reciprocal first exit time (dashed line), and the expected reciprocal hitting time (thick line).
The respective unconditional expectations are indicated by three horizontal thin dashed
lines, where C ≈ 0.91597 is the Catalan constant.
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Figure 3: This Figure shows the relative (upward) bias of the first exit time passage time estimator
as a function of the persistence of the noise. The x-axis is the first order autocorrelation of the
noise which is of the AR(1) type. Panel A shows the “moderate” noise scenario where the noise to
signal ratio is λ = 0.25. Panel B shows the “high” noise scenario where the noise to signal ratio is
λ = 1.0
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Figure 4: This Figure shows the relative (upward) bias of the first range time passage time estimator
as a function of the persistence of the noise. The x-axis is the first order autocorrelation of the
noise which is of the AR(1) type. Panel A shows the “moderate” noise scenario where the noise
to signal is λ = 0.25. Panel B shows the “high” noise scenario where the noise to signal ratio is
λ = 1.0.
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Figure 5: Signature plots based on Monte Carlo experiments described in Section 5. The
figure shows the mean relative bias ÎV /IV of the first exit time DV and first range time DV
as a function of the threshold.
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Panel C: Stochastic Volatility Model SV2A-UJ with U-Shaped Pattern and Jumps
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C Cross-Sectional Average DJ30 Signature Plots
This section displays the average performance of the duration-based integrated variance estimators
(first exit time DV and first range time DV) across the 33 stocks which were part of the Dow Jones 30
index at any point during the period January 2005 through May 2007. The performance is compared
to the 2-minute subsampled bi-power estimator (BV or BV1) and the 2 minute subsampled realized
volatility estimator (RV). The distinction between the two BV estimators is whether adjacent
absolute returns are multiplied (BV) or whether one return is skipped (BV1) as suggested by
Andersen, Bollerslev, and Diebold (2007).
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Figure 8: The cross-sectional average signature plot for the sub-sampled BV and RV esti-
mators as a function of the sample frequency in seconds. The average is taken across the 33
DJ30 stocks in our sample.
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Figure 9: The cross-sectional average signature plot for duration-based integrated variance
estimators (DV) as a function of the threshold level (measured in units of the average intraday
log-spread).
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Figure 10: The cross-sectional average standard deviation of duration-based integrated vari-
ance estimators (DV) as a function of the threshold level (measured in units of the average
intraday log-spread).
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Figure 11: The cross-sectional average correlation of the 2-minute subsampled BV estimator
with duration-based integrated variance estimators (DV) as a function of the threshold level
(measured in units of the average intraday log-spread).
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D Individual DJ30 Signature Plots
Signature plots for the duration-based integrated variance estimators for the 33 Dow Jones 30
index from January 2005 through May 2007. The benchmark estimators are the 2-min subsampled
realized volatility (RV) and bi-power (BV) estimators.
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