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Curse of Dimensionality

• Many economic models are high dimensional

— Dynamic Optimization: Multiple kinds of capital stocks

— DSGE: Multiple consumers/rms/countries

— Games: Multiple players and states

— Bayesian analyses compute high-dimensional integrals

• Claim: “You can’t solve your model because of the curse of dimensionality.”

— Response I: Analyze silly models

! Reduce heterogeneity in tastes, abilities, age, etc.
! Assume no risk
! Assume common information, common beliefs, etc.

— Response II: Do bad math

— Response III: Apply bad math to silly models
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• The message today: “The curse is not so bad”

— “Theorems” about the curse are irrelevant for economics

— There are many underutilized tools from math that can help

— Sensible modelling choices can avoid curse

—Mathematicians are currently developing tools to tackle the curse

— Physicists are working to build computers that will avoid the curse

— If the Boston Red Sox can beat the “Curse of the Bambino” then economists
can beat the “Curse of Dimensionality”

• Economics presents unique computational challenges due to the desire to look at
high dimensional models.

• This continues in the tradition of Hoover Institution Senior Fellows working on
computational methods for high-dimensional problems; seeMetropolis-Rosenbluth-
Rosenbluth-Teller-Teller (1953) for an earlier example.
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Specic Responses to the Challenges of Dimensionality

• Math Tools

— Compute derivatives e!ciently

— Approximate functions e!ciently

— Choose an e!cient domain

— Approximate integrals e!ciently

— Use functional analysis

• Modelling Suggestions

— Use continuous time

— Get rid of kinks

— Use nite-dimensional models

4



• Look to the future

— Use “experimental mathematics” - Monte Carlo people do it all the time, why
not the rest of us?

— Use high-power and high-throughput computing tools - supercomputers, dis-
tributed computing, and grid computing

— Study Griebel-Wozniakowski Theorem

— Be prepared for quantum computing
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Dynamic Example - Dynamic Programming

• Basic Bellman equation:

V (x) = max
u"D(x)

!(u, x) + " E{V (x+)|x, u)} # (TV )(x). (12.7.1)

• Computational task:

— Choose a nite-dimensional parameterization (e.g., polynomials, splines, etc.)

V (x)
.
= V̂ (x; a), a " Rm (12.7.2)

and a nite number of states

X = {x1, x2, · · · , xn}, (12.7.3)

— Objective: nd coe!cients a " Rm such that V̂ (x; a) “approximately” satises
the Bellman equation.
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• Value function iteration: For each xj, (TV )(xj) is dened by

vj = (TV )(xj) = max
u"D(xj)

!(u, xj) + "

!
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• In practice, we compute an approximation to T

— Integration step: use some numerical quadrature formula

E{V (x+; a)|xj, u)} =
!
V̂ (g(xj, u, #); a)dF (#)

.
=
"

$

%$V̂ (g(xj, u, #$); a)

—Maximization step: for xi " X, evaluate

vi = (T V̂ )(xi)

— After nding the new vj, execute a tting step:

! Data: (vi, xi), i = 1, · · · , n
! Objective: nd an a " Rm such that V̂ (x; a) best ts the data

— Value function iteration iterates on the coe!cient vector a.
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• Dimension is important at many stages

— Optimizing over u " Rm implies m2 elements in Hessian

— In simple methods, the cost of approximating the n - D value function V (x)
and choosing points xj is $ kn - curse of dimensionality!

— In simple methods, integrating conditional expectation with q - D shocks has
cost $ kq - curse of dimensionality!
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AVAILABLE MATH TOOLS

FOR MULTIDIMENSIONAL PROBLEMS

• Most economists use methods motivated by one-dimensional methods when they
solve multidimensional models; the result is ine!cient

— Product rule for integration

— Cartesian grids for discretizing multidimensional state spaces

• There are many powerful tools that are designed for multidimensional problems
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Math Tool I: Evaluate Derivatives E!ciently

• Derivatives are important in perturbation methods and in any method that uses
nonlinear equation solvers, but common belief is that these methods, such as
Newton’s method, are not practical due tothe cost of computing derivatives.

• The facts:

— Analytic derivatives are slow; for example

Analytic Derivatives +,- *,÷ Power Total Total
ops time

function u = (x& + y& + z&)' 2 0 4 6 22

gradient ux = &'x&%1 (x& + y& + z&)
'%1 4 3 5 32

uy = &'y
&%1 (x& + y& + z&)'%1 4 3 5 32

uz = &'z
&%1 (x& + y& + z&)'%1 4 3 5 32

total: 12 9 15 36 96

Hessian &400
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— Finite di"erences are slow; for example

Finite Di"erence Derivatives +,- *,÷ Power Total Total
ops time

function u = (x& + y& + z&)' 2 0 4 6 22

gradient ux = (u (x +!, y, z)% u) /! 3 1 4 24
uy = (u (x, y +!, z)% u) /! 3 1 4 24
uz = (u (x, y, z +!)% u) /! 3 1 4 24

grad total: 9 3 12 24 72

Hessian &150
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• E!cient Di"erentiation: Derivatives can be computed cheaply

+,- *,÷ ab Total Clock
ops time

function x1 = x&, y1 = y&, z1 = z& 0 3 3 15
A = x1 + y1 + z1 2 2 2
u = A' 1 1 5

2 0 4 6 22

gradient x2 = x1/x, y2 = y1/y, z2 = z1/z, 3 3 3
A1 = ' & u/A 3 3 3
(ux, uy, uz) = A1 (x2, y2, z2) A1 3 3 3

grad. cost 9 9
15 31
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• Automatic Di"erentiation

— Take a computer program, and write another computer program that computes
gradients, Jacobians, Hessians, 3-tensors of third derivatives, etc.

— Implementation: ADIC, ADIFOR, and others

• Two kinds of gains

— Fewer operations: Theorem: (Griewank) For an n-dimensional function f :

! Cost (Jacobian) < 5 Cost (f) (usually less)
! Cost (Hessian) < 5 n Cost (f) (usually less)

— Less use of expensive operations: power (~10 adds), exponential (~5 adds), log
(~10 adds), etc.

• Insights are old

—Many, including Leigh Tesfatsion, recognized these ideas by mid 1980’s.

— Software development was slow. Tesfatsion was an early contributor.
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• Current applications and implications

— Use Newton method (and discard DFP, BFGS, and BHHH)
! AD is in software; AMPL and GAMS, Gauss
! L-B-J: already exploits sparseness, could exploit AD
! Example of application: Solve stochastic dynamic games
· Pakes-Maguire and others use Gauss—Seidel methods - sssslooooowwwww
· Ferris-Judd-Schmedders using GAMS/PATH: 40,000 states, 240,000 un-
knowns; done in 5 minutes on a laptop

— Perturbation methods
! Judd, Guu, Gaspar, Anderson, Juillard, Collard, Kim-Kim, Jesus Fernandez-
Villaverde, Juan Rubio.

! Some use AD ideas into their code: Anderson-Levin-Swanson

• Future applications

— Automatic comparative statics
— Implement Implicit Function Theorem: implicitly di"erentiate F (x, y (x)) = 0
to get power series for y (x)

— Implement asymptotic methods: Weierstrass preparation, Lyapunov-Schmidt
reduction, Laplace expansions etc.
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Math Tool II: E!cient Function Approximation

• Linear polynomial methods:

f (x, y, z, ...) =
m"

i=1

ai(i (x, y, z, ...) , (i multivariate polynomials

— Simple tensor product approach produces approximations like
m"

i=0

m"

j=0

m"

k=0

aijx
iyjzk

— Proper notion of “degree” in multivariate context is sum of powers

degree
#
xiyjzk

$
= i+ j + k

— Complete polynomials like
"

i+j+k'm

aijkx
iyjzk

have far fewer terms by a ratio of nearly d!, but are almost as good

— See Gaspar-Judd (1997)
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• Splines: build approximations from functions with support

— One dimension is easy
m"

i=0

aiBi (x)

— Tensor approach is bad;
m"

i=0

m"

j=0

aijBi (x)Bj (y)

— Radial basis functions to the rescue:

! Functional form uses scattered centers pi in
N"

i=1

ai( ((x% pi()

! ( choices include

e%r
2
,

1
)
1 + r2

,
1

1 + r2
,
)
1 + r2, ...

! RBFs can be excellent approximations. Need to gure out best choices for
pi points.

! RBFs can be very e"ective on PDEs similar to ones from economics.
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• Smolyak points and sparse grids

— E!cient way to approximate smooth high dimensional functions

— Krueger-Kubler found them to be very e"ective in stochastic OLG

—Mertens used them to solve ve-D option pricing problem

— Judd and Mertens are applying them to Bayesian econometrics
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Math Tool III: Dene the Domain E!ciently

• Choosing the domain of our problem (e.g., states in a DP or dynamic GE model)
is important

—Want to include values for state that are part of the solution

— Choosing too large a domain will create unnecessary computational burdens.

• More choices with higher dimensions

— One dimension: Domain is interval; just need to know max and min

— Two dimensions: More choices - square/rectangle, sphere/ellipse, simplex, etc.

— Three dimensions: More choices - cube, sphere, ellipsoid, cylinder, simplex, etc.

• Judd (1992), Gaspar-Judd (1997) made mechanical choice of hypercubes.
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• Cube versus Sphere

— Spheres are much more compact:

! In cube of unit length at edge, length of longest diagonal is n1/2

! Ratio of sphere to cube volume is
!n/2

(n/2)! , n even
2n/2+1!n/2

1·3·5·...·n , n odd

! Smaller volume reduces costs of approximation; allows one to exploit peri-
odicity

! Smaller volume reduces cost of integration

— If solution has a central tendency, then it rarely visits vertices

—Mathematicians are developing methods for spheres: orthogonal polynomials
for hyperspherical coordinates, quadrature rules for spheres
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n Vn

1 2.00000
2 3.14159
3 4.18879
4 4.93480
5 5.26379
6 5.16771
7 4.72477
8 4.05871
9 3.29851
10 2.55016

Table 2: Volume of the unit cube for the dimensions 1 to 10.
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Figure 5: Ratio of the volumes of unit hypersphere and embedding hypercube of side-
length 2 up to the dimension 14.

As it was the case for the hypersimplex, the volume of a hypersphere goes to 0,
independent from the size of its radius. Table 2 gives the volumes of some unit cubes
for n= 1; : : : ;10. The hypersphere forn= 5 has the biggest volume, but this depends
on R. Especially, forR= 1=

p
2, the hypersphere attains its maximum in “our” 3-

dimensional world.

As an example consequence for search spaces, the ratio of volumes of unit hy-
persphere and embedding hypercube (with a sidelength of 2) will be considered (see
figure 5). Despite of the fact that the volume of the hypercube goes to infinity, and the
hypersphere touches all faces of the hypercube (i.e. at 2npoints), the volume of the em-
bedded hypersphere goes to 0! Moreover, forn> 10 we could neglect this volume part
within the hypercube for all practical computations. This is an important distinction
between search methods, which explores the hypercube, and search methods, which
explores the hypersphere. The last ones will not “see” very much from their world.

Also, it has to be noted that the term “high dimension” may refer to values ofn as
small as 10 or so.

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil

Ken Judd
Pencil



an edge corresponds to a scheme of size 1. As an example, the scheme00* repre-
sents the edge going from corner(0;0;0) to the corner(0;0;1), or the scheme**0
the lower face of a cube.

The count of schemes of sizek equals the number of possibilities for selectingk
wildcard positions out ofn, multiplied with the number of possibilities to assign 0 or
1 to the remainingn� k positions, i.e. 2n�k. Therefrom it follows for the countNn

k of
k-dimensional hypercubes bordering then-dimensional hypercube:

Nn
k = 2n�k

�
n
k

�
: (1)

Equation (1) was used to derive the values in table 1. The number of hypersurfaces, to
which a corner belongs, can be found in a similar manner. It has to be counted, how
many schemes of sizen�1 are realized by a given bitstring. This are justn schemes,
one for each bit position. The remaining 2n�n = n hypersurfaces of the hypercube
are disjoint to that corner, and each connecting line from the corner to an inner point
of one of those disjoint hypersurfaces completely lies within the hypercube.

All other entries in table 1 are obvious.
The volume of an-dimensional unit hypercube is 1. Forn! ∞, the volume of a

hypercube withl > 1 goes to infinity, while forl < 1 it goes to 0. Also, the length of
the diagonal of a unit hypercube (

p
n) goes to infinity, the hypercube becomes more

and more extended. According to [4], the hypercube can be imagined as a highly
anisotropical body, more ressembling a spherical “hedgehog” than a convex body. The
inner ball-like part with radius 1=2 is covered with a large number (2n) of “spikes” of
length

p
n=2 (going to infinity for largen) (see figure 4). ”‘The surfaces of cubes are

so horribly jagged that they might even be thought of as being almost fractal.”’ ([4],
p. 42).

n-dimensional
unit cube of

volume 1 n-dimensional ball
within the cube

(radius 1/2)

2n "Spikes" of
length n1/2/2 ≈ ∞

Figure 4: ”‘Spiking Hypercube”’ [4].

Finally, a short computation will show the change of relative volumina within the
hypercube, when problem dimension increases. On the main diagonal of a hypercube,
a random pointP is selected with coordinatesp1 = p2 = : : : = pn = p and p > 1=2.
This way, two subcubes of the hypercube are defined, with one including the point
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Math Tool IV: Use E!cient Integration Methods
Engineer Gaussian-Style Formulas

• Integration formulas for one dimension and for weighting functionW (x) are
! 1

%1
f(x) W (x) dx

.
=

n"

i=1

%if (zi)

— n point formula, 2n parameters (points and weights)

— Uses n evaluations of f

— Exactly integrates all polynomials of degree 2n% 1.

• Simple approach for higher dimensions:

— Take product of one-dimensional methods:
! 1

%1
f (z) W1 (z1) ..Wd (zd) dx

.
=

m"

i1=1

· · ·
m"

id=1

%1i1%
2
i2
· · ·%did f (z

1
i1
, z2i2, · · · , z

d
id
)

— Curse of dimensionality - number of points used is exponential in dimension d
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• There are other approaches

— Do not have to use simple Cartesian grids

— Consider X = {(x, y, z) |x, y, z " {%1, 1}}. The rule
4

3
(f(1, 0, 0) + f(%1, 0, 0) + f (0, 1, 0) + f (0,%1, 0) + f (0, 0, 1) + f(0, 0,%1))

uses 6 points and exactly integrates all degree 3 polynomials
%
1, x, y, z, x2, y2, z2, xyz, xy2, x2y, xz2, x2z, yz2, y2z

&

over [%1, 1]3

—More generally, in dimension d you can use 2d points and exactly integrate all
degree 3 polynomials over [%1, 1]d with

!

[%1,1]d
f
.
= %

d"

i=1

#
f (uei) + f (%uei)

$
,

where ei is ±1 in dimension i and

u =

'
d

3

(1/2
, % =

2d%1

d

— In general, there are nongrid sets of points that can be used - monomial rules.
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• New research direction I: Find rules that are good for many polynomials

— Choose points zi and weights %i, i = 1, ..,m, to create a quadrature rule,

Q (f ; z,%) =
n"

i=1

%if (zi)

to minimize errors over a large set of f functions, not just low order polynomials

! The literature is for one-dimensional problems:

min
z,%

*"

i=0

'
Q
#
xi; z,%

$
%
!
xi dx

(2

! A few mathematicians do this - Gismalla, Cohen, Minka
! This is not done often since “you can’t publish the results”.
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— I created one for a two-D disk:

!We need new formulas if we switch to spheres
! Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared
errors of formula applied to xiyj, i, j ' 20.

! Use unconstrained optimization software; use many restarts to avoid local
solution

! Result was

0.2227 (f [%0.8871, 0] + f [0,%0.8871] + f [0, 0.8871] + f [0.8871, 0])
+ 0.2735 (f [%0.6149, 0.6149] + f [%0.6149,%0.6149]
+f [0.6149,%0.6149] + f [0.6149, 0.61496])

+ 1.0744f [%0.3628, 0] + 1.0744f [0, 0.3628]
+1.0744f [0,%0.3628] + 1.0744f [0.3628, 0]

with relativized errors of 10(-5) on average and 10(-4) at worst on degree 20
polynomials

! Result had interesting symmetry - 3 groups of 4 points lying on 3 circles -
which gives indication as to what symmetries I should try in higher dimen-
sions.
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— General strategy: Look for formulas with small numbers of points to nd de-
sirable patterns for point sets, then assume those patterns when searching for
bigger formulas.

— General principal: Use your time to come up with ideas, and use the computer
to do the tedious work.

! Idea here: use formulas that integrate a set of polynomials.
! Tedious work here: searching for optimal rule that satises some criterion.
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Engineer Formulas That Use More Information

• One-Dimensional Gauss-Turan methods use derivatives
! 1

%1
f (x) dx

.
=

n"

i=1

%i,0f(zi) +
n"

i=1

%i,1f
+(zi) +

n"

i=1

%i,2f
++(zi)

— n-point formula has 4n parameters, and uses n evaluations of f , f +, and f ++ to
integrate rst 4n polynomials

— In one dimension, the cost of f and rst two derivatives is about same as three
f ’s, so no gain in one dimension.
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• However, Gauss-Turan has potential for high-dimensional integrals

— The formula
! 1

%1

! 1

%1
f(x, y) dx dy=

n"

i=1

%i,0f(xi, yi)

+
n"

i=1

(%i,xfx(xi, yi) + %i,yfy(xi, yi))

+
n"

i=1

(%i,xxfxx(xi, yi) + %i,xyfxy(xi, yi) + %i,yyfyy(xi, yi))

computes f and ve derivatives each point - has 7n parameters and can inte-
grate rst 7n polynomials

— Using automatic di"erentiation, multidimensional Gauss-Turan will beat regu-
lar quadrature rules that use only f values
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Ignore Monte Carlo Propaganda

• If X were distributed uniformly on [0, 1], then
! 1

0

f(x) dx = E {f (X)} = If

• Monte Carlo idea: Generate N draws from U [0, 1], {xi}Ni=1, and approximate
! 1

0

f(x) dx #
1

N

N"

i=1

f (xi) (1)

• Monte Carlo Propaganda

— Best deterministic methods converge at rate N%1/d

—MC converges at rate N%1/2 for any dimension d (by Central Limit Theorem)

— So, MC breaks the curse of dimensionality but deterministic methods cannot.
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• Observations about Monte Carlo Propaganda

— Implementations of MC use pseudorandom sequences which are deterministic
instead of random numbers

— Therefore, MC propaganda says that MC won’t work if you use standard “ran-
dom number” generators

— Implementations of MC converge at rate N%1/2 for any dimension d

— Therefore, there do exist deterministic methods which converge at rate N%1/2

for any dimension d.

— Therefore, MC propaganda is logically inconsistent!

29



• MC propagandists pull a bait-and-switch

— They use worst-case analysis (Bakhvalov, 1959) when they say “Best determin-
istic methods for integrating C1 functions converge at rate N%1/d”

— They use (the weaker) probability-one criterion when they say “MC methods
converge at rate N%1/2”

• Mathematical Facts:

—MC worst-case convergence rate is N%0 - no convergence - since there always
is some sequence where MC does not converge

— LCM methods converge at N%1/2 for smooth functions in worst case; proofs
(see Neiderreiter) are number-theoretic.

— Economists do not cite the other often more relevant results in Bakhvalov
(1959), such as if f is Ck and periodic on the hypercube, there are deterministic
rules which converge at rate N%k independent of dimension
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Math Tool V: Functional Analysis

• Economics problems often reduce to nding unknown functions dened by func-
tional equations

— Dynamic programming: contraction xed point map on space of bounded func-
tions using L* norm.

— Recent work in DP has used Holder spaces - other Banach spaces

— Dynamic games: must solve equations like

0 = G (x, S (x) , S (S (x)) , S + (S (x)))

• Functional analysis tells us how to generalize calculus (e.g., Taylor series, IFT,
etc.) to spaces of functions
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• Use IFT in Ck Holder spaces to solve dynamic game

— Hyperbolic discounting

! Krusell-Kuruscu-Smith (2002) used high-order conjectural variation approach;
produced many solutions

! Judd (2005) used Banach space IFT to prove local existence and uniqueness,
and demonstrated nonlocal validity of expansion

— Stochastic growth model

! Perturbation method applied to stochastic growth, as done for example in
Judd (1998), is not justied by linearization around steady state.

! Start with deterministic model to get, e.g., C (k) for k " [k0, k1]
! Adduncertainty - &; compute the functionC& (k) , C&& (k) , C&&& (k) , C&&&& (k) ,
etc., functions for k " [k0, k1]

! Construct series expansion
)n

i=0
&i

i!C&i (k) that is uniformly valid for k "
[k0, k1], not just around steady state.

— General idea: Di"erentiate in Banach spaces to derive equations that x f# (k) ,
f## (k), f### (k), etc., for k on some interval that includes the steady state.Use
IFT in Ck Holder spaces to solve dynamic game

• More general results are proved by using hard implicit function theorems.
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MODELLING CHOICES THAT

PRODUCE MANAGEABLE MATHEMATICAL PROBLEMS

• Many modelling choices are not essential for the economics.

• Economists often make choices that to make analysis tractable.

• Economists should make choices to reduce computational problems
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Modelling Suggestion I: Use Continuous Time
•We pay a high price when we choose discrete-time formulations

• Dynamic programming: Bellman equation

— Deterministic case for for consumption function
! Discrete-time:

kt+1=F (kt)% ct
V (k)=u (C (k)) + "V (F (k)% C (k))

u+ (C (k))="V + (F (k)% C (k))
V + (k)="V + (F (k)% C (k))F + (k)

compositions involving unknowns -V (F (k)% C (k))) andV + (F (k)% C (k)))
! Continuous-time:

dk

dt
=F (k)% c

'V (k)=u (C (k)) + (F (k)% C (k))V + (k)
u+ (C (k))="V + (k)

'V +(k)=F + (k)V + (k) + (F (k)% C (k))V ++ (k)

NO compositions of unknowns! Just multiplications. Problem is linear in
coe!cients of V (k) if we approximate it by "iai(i (k) V (k)
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— Compositions are far more costly than derivatives

! Discrete-Time Bellman series expansion:

%V (k) + u (C (k)) + bV (F (k)% C (k))
bytes 864 3920 9320 23000 55296 1.4(5) 3.2(5) 7.7(5) 1.8(6) 4.0(6)
time 0.00 0.02 0.02 0.03 0.06 0.08 0.08 0.08 0.95 3.08

! Continuous-Time Bellman series expansion

%rV (k) + u (C (k)) + (F (k)% C (k))V + (k)
bytes 528 2624 7824 18600 39032 75104 1.5(5) 3(5) 6.1(5) 1.2(6)
time 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.03 0.05
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— Stochastic case

! Discrete time: composition plus multidimensional integral

E {V (F (kt, C (kt)) , )t+1) |)t}

! Continuous time: !, ,, and Hessian; NO integrals

V + (k) (F (k)% C (k)) + &2V ++ (k)

— Projection methods are much better in continuous-time

! Equations are purely local
! Locality increases parallelization possibilities
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• Stochastic games:

— Doraszelski-Judd: continuous-time games are orders of magnitude faster to
solve than discrete-time games.

— If you are at X, your “next” state can be any C state in continuous time, any
D state in discrete time.

Ddn,up D0,up, C0,up Dup,up
- . /

Ddn,0, Cdn,00= D0,0 =1Dup,0, Cup,0
2 3 4

Ddn,dn D0,dn, C0,dn Dup,dn

— In n dimensions, the di"erence is 3n versus 2n.

! Pakes-Maguire has curse of dimensionality
! Doraszelski-Judd does not have curse of dimensionality
!Why choose discrete-time models? Bad habit? REStud says “Data is in
discrete time.”
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Modelling Suggestion II: Use Finite-But-Large Dimensional States

• Many economists have problems with innite-dimensional states, such as the dis-
tribution of income over a continuum of individuals

• Alternative approach: Assume there is only a nite number of people

• Example: DP problem with N factories

— ki - capital stock in factory i

— f (ki) - DRTS production function

— gi (ki,t+1 % ki,t) - adjustment costs for investment, Ii,t = ki,t+1 % ki,t.
— Bellman equation

V (k)=max
I
u (c) + "V (k + I)

c="if (ki)% "igi
#
Ii (k)

$

— Equations dening V (k) and I (k):

V (k)=u (c) + "V (k + I (k))

0=%u+ (c) (1 + *Ii (k)) + Vi (k + I (k))

— Idea: Use perturbation method to compute Taylor series for V (k) and the
Ii (k)
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— Problems:

! Vi is a vector of length N ; Vij is a matrix with N2 elements;

! Ii (k) is a list ofN functions; Iij (k) is anN×N matrix; Iijm (k) is (N,N ×N)
tensor, etc.

! If N = 109, that is a lot of unknowns

— Solution: Exploit symmetry

! V (x) is a polynomial combination of fundamental symmetric polynomials
"

i

xi,
"

i5=j

xixj,
"

i5=j 5=k 5=i

xixjxk, ...

! At steady state,
· Vi = Vj, 6i, j
· Vii = V11, 6i; Vij = V12, 6i 5= j
· Viii = V111, 6i; Viij = V112, Vijj = V122, 6i 5= j; Vijm = V123, 6i 5= j 5= m 5=
i

! Similarly for Ii functions
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— High-order Taylor series are feasible

! The number of unknowns when computing q’th derivative is 2q independent
for any N .

! Solutions depend on N ; take N 7* to nd innite population solution

! Risk - idiosyncratic and aggregate - can be added with little extra computa-
tional cost.

— Similar to Gaspar-Judd (1997) use of symmetry, but far more e!cient

— Approximate decision rules in terms of moments

! Like Krusell-Smith (1997), but K-S makes ad hoc choice of moments based
on unreliable accuracy tests.

! This is asymptotically valid and choice of moments is determined by math.
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Modelling Suggestion III: Get Rid of Kinks

• General observation: the more smoothness, the easier the computation.

• Economists love to put kinks and discontinuities in their models

— These formulations make distinctions very clear

— Kinks and discontinuities create many computational problems particularly
when you go to multiple dimensions

— However, real world is never so clear.

— Adding real-world fuzziness will make computing easier.
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• Example: Hubbard and Judd (1986)

—Wanted to examine tax policy implications of borrowing constraints.

! Assumed one could not borrow against future wages; equivalent to

r (W ) =

*
r, W > 0

*, W < 0
or u (c,W ) =

*
u (c) , W > 0

%*, W < 0

! Results were interesting; for example, positive taxation of interest income is
desirable.

! Any multidimensional extension would be hampered by computational di!-
culties

— Is this economically reasonable? Debt is not innitely painful

! First, go to parents and other family members, and, second, run up credit
card debt.

! In general, there is a set of sources of credit, with rising interest rates
! Empirical fact: people do have debt!

— Smooth r (W ) is more realistic and more tractable
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FUTURE TOOLS

• Economists should not just think in terms of the hardware, algorithms, and soft-
ware available today.

• Some new tools will be particularly valuable for solving high dimensional models.
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Methodology: Pure Math vs. Experimental Math

• Mathematical proofs are nice but not necessary.

• Example: MC methods as practiced in economics

—Monte Carlo is very useful and sound but NOT supported by probability
theorems.

— Real proof is

! Suppose f (x) =
)*

i=0 aix
i on [0, 1] and

)*
i=K aix

i is negligible for some K
! Suppose computations show that a proposed pMC sequence Xi properly
computes

+
xidx at rate N%1/2 for each i < K.

! Then, this pMC sequence will compute
+
f (x) accurately at rate N%1/2

• This is experimental mathematics,NOT probability theory!

• Experimental math:

— Test out conjecture on many cases to explore validity

— Combine computational results with pure math to arrive at conclusions with
known range of validity

— Computational results may inspire theorems, such as Neiderreiter analysis of
LCM.
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• Problem is not with using MC, but with understanding logical underpinnings.

—MC in practice is not based on probability theory

— It is inspired by probability theory, but theorems do not apply

— This inspiration led to searches for pseudo-MC sequences which, by testing,
were found to do a good job on some problems

•Why are these logical points important?

— All agree that Monte Carlo is a very important and useful tool.

— Recognition of the true foundation for MC will encourage us to develop other
methods based on a similarly disciplined combination of analysis and compu-
tational experimentation.
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• Potential applications of experimental math

— Search for best integration methods for economics problems

! Minimize error on concave and/or monotone integrands
! Minimize error for expectations of marginal utility over range of CRRA util-
ity functions

— Search for best approximation methods for economics problems.

! Choose interpolation points according to general criterion
! Choose interpolation methods best for concave/monotone functions
! Find best centers for radial basis functions
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Hardware: Computing Speed

•We need more speed to do the necessary heavy lifting - searches for good methods,
symbolic manipulation, experimental mathematics - implicit in the ideas men-
tioned above.

• Economists do not use existing computing power

—Massively parallel architectures - 104 processors in BlueGene

— Network computing - Condor, BOINC, Globus, ...

— Available resources - modern solvers (Filter, CPlex, Knitro, Snopt, Ipopt,
NEOS,...), MPI

• Current projects

— Dynamic programming on MW Condor and supercomputers

— Dynamic games on DAGMAN Condor
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• More speed is coming in the next couple of years

—Massively parallel architectures - 105 processors in next BlueGene

—Multicore processors, on desktops and inside supercomputer processors.

— Economics problems are better able to exploit supercomputer power than stan-
dard physics problems.

— Even more opportunity for economists to fall further behind other elds.
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Numerical Analysis: Griebel-Wozniakowski Theorem

• Question: Are there good rules out there to defeat the curse of dimensionality?

• Answer: Yes, if we formulate problem in reasonable spaces.

• “On the Optimal Convergence Rate of Universal and Non-Universal Algorithms
for Multivariate Integration and Approximation” by Griebel and Wozniakowski

— Consider functions that belong to reproducing kernel Hilbert spaces (RKHS).

— Bad news

! Any algorithm for integration that works for all RKHS (a so-called “universal
algorithm”) displays a curse of dimensionality.

· Economists want universal algorithms
· Economic models often have simple structures, implying particular RKHS
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— Good news

! For any specic RKHS, there is an algorithmwith at leastN%1/2 convergence
for multivariate integration (like MC) - no curse of dimensionality!

! If the kernel is a product of univariate kernels (as is often the case in eco-
nomics), i.e.,

!

[0,1]n
g (x) dF (x) =

!

[0,1]

...

!

[0,1]

g (x) dF1 (x1) ...dFn (xn)

· Then there is an algorithm that converges at the same rate as the slowest
univariate algorithm

· Many univariate algorithms have exponential convergence
· Hence, there exist some excellent rules!

— Proof is nonconstructive, but tells us that computer searches will likely succeed.
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Quantum Computing

• New technology may break curse of dimensionality

• Quantum computer example

— Load quantum computer with a function f and a number n.

— ZAP it and it becomes n computers (more precisely, the quantum state of the
computer will be a superposition of the n possible states)

— ZAP it so that computer i computes f (i), i = 1, .., n

— Take a random draw among the f (i) on the n computers biased in favor the
larger f (i)

! Get max f (i) with probability 1% n%1

! Time is $ N1/2!
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• Quantum complexity theory

— Examines possible e!ciency of quantum computer algorithms.

— There are examples of where quantum computing breaks curse of dimensionlity.

— “Path Integration on a QuantumComputer,” Traub andWozniakowski (2001).

! Path integration on a quantum computer is tractable - i.e., no curse of di-
mensionality.

! Path integration on a quantum computer can be solved
· roughly #%1/2 times faster than on a classical computer using randomiza-
tion, and

· exponentially faster than on a classical computer with a worst case assur-
ance.

! The number of quantum queries is the square root of the number of function
values needed on a classical computer using randomization.

— In general, integration is faster on a quantum computer than a classical com-
puter - Brassard-Hoya-Mosca-Tapp.
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CONCLUSION

• The curse of dimensionality can often be avoided in economic analysis

— If you formulate models in the right way

— If you use best available math

— If you use modern hardware and software

• New developments are making this easier to do.

• The path is clear, but there is a lot of work to do to build the road.
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