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I. One Dimensional Asset Pricing Problems.

The fundamental asset pricing relation is given by

0 = Λ(t)D(t)dt + Et [d [Λ(t)P(t)]] . (1)

Et [•] is the expectation conditional on current information.

1 Λ(t) is the stochastic discount factor (SDF) for the valuation
of an investment.

2 D(t) is the dividend payment from the equity per unit of time.

3 P(t) is the price of equity.



Generic Asset Pricing Models (Continue).

Asset pricing models are generally distinguished by the following
stochastic process for the SDF

dΛ

Λ
= µΛ(x(t), t)dt + σΛ(x(t), t)dθt .

where x(t) is the state variable, This state variable is assumed to
follow an Ito process.

dx

x
= µx(x(t), t)dt + σx(x(t), t)dωt .

µ(•) stands for mean and σ(•) refers to standard deviation. dθt

and dωt are Brownian motion.



The Asset Pricing Model leads to an ODE

In the one-dimensional case, this equilibrium price function satisfies
the solution to a second order linear ODE. As an initial value
problem (IVP), it takes the form

P ′′(x) + a(x)P ′(x) + b(x)P(x) = g(x), P(0) = p0, P ′(0) = p1.
(2)

How can one solve such a problem?
We provide a general technique to quickly and accurately solve the
ODE associated with such models.



Analytic functions.

Definition

Let f (z) be a complex-valued function of z = x + iy defined in an
open set (domain) D of the complex plane C. Suppose that this
function is analytic such that it can be expressed as

f (z) =
∞∑

k=0

f (k)(z0)

k!
(z − z0)

k , for |z − z0| < r and z0 = x0 + iy0 ,

(3)
where, f (k)(z0) denotes the k-th order complex derivative of f (z)
at z = z0.



Campbell and Cochrane’s External Habit Model

Their utility function is

[Ct − Xt ]
1−γ

1− γ
, (4)

where Ct is the individual’s consumption at time t, and Xt is their
habitual level of consumption at time t.

They introduce Sa
t =

C a
t −Xj

C a
t

is the surplus consumption ratio at
time t, C a

t is the average consumption of all individuals at time t.
The state variable s = ln(C a−X

C a )− ln(S̄) measures the deviation of
consumption from the external habit X relative to its steady state
value ln(S̄).

ds = (φ− 1)sdt + λ(s)σdω, (5)

where φ < 1. The sensitivity function λ(s) is given by

λ(s) =





√
1− 2s/S̄ − 1 if s < 1−(S̄)2

2 ,

0 if s > 1−(S̄)2

2 when S̄ = σ
√

φγ

1−φ− b
γ

.



Ito’s Lemma

Let x ∈ R follow the stochastic process,

dx = f (x)dt + S(x)dω,

where f (x) is the instantaneous mean of the state variable x ∈ R.
dω is Brownian motion, so that S(x), provides the instantaneous
impact of these random shocks on the state variable.
Consequently, Σ(x) = S(x)Et (dωdω)S(x) is the instantaneous
variance-covariance matrix for the state variables.

Lemma

Suppose F (x , t) is C 2 for x ∈ R and C 1 in t. Then

dF =

(
∂F

∂t
+

∂F

∂x
f (x) +

1

2

(
∂2F

∂x∂x ′
Σ(x)

))
dt +

∂F

∂x
S(x)dω.

Also, the following multiplication rules are true: dωdω = 1dt,
dωdt = 0 and dtdt = 0.



An Example by Campbell and Cochrane

The stochastic discount factor is

Λ = e−βt [SaC ]−γ . (6)

By Ito’s Lemma

dΛ

Λ
=

[
γ(1− φ)s − β − γx̄ +

γ2σ2

2
(1 + λ(s))2

]
dt−γσ (1 + λ(s))2 dω

(7)
γ is coefficient of risk aversion. x̄ is expected consumption growth,
and σ is its standard deviation with Brownian motion dω.

dC

C
=

dD

D
= x̄dt + σdω. (8)

ds = (φ− 1)sdt + λ(s)σdω, (9)

where φ < 1.



Finding the ODE for Campbell-Cochrane Model

1 Use Ito’s Lemma to find the asset pricing relation (1) in terms
of the price-dividend function p = P

D , dividend growth and the
SDF.

2 Substitute in the stochastic processes for SDF (7) and
dividend (consumption) growth (8) into the asset pricing
relation.

3 Guess that the price-dividend function is a function of the
surplus consumption ratio, p(s), and use Ito’s Lemma to find
stochastic process for the price-dividend ratio.

dp =

[
p′(s)(φ− 1)s +

1

2
p′′(s)λ(s)2σ2

]
dt + p′(s)λ(s)σdω.

(10)
4 Substitute the stochastic process for the price-dividend ratio

(10) into the asset pricing relation from step 2.
5 Use Ito’s rules and apply conditional expectation to Brownian

motion to yield an ODE for the equilibrium price-dividend
function, p(s).



The IVP Campbell-Cochrane Model

The Cambell-Cochrane Model

Solve the following initial-value problem for the price-dividend
function p(s):

c2(s)p
′′ = c1(s)p

′ + c0(s)p − 1; p(0) = p0, p′(0) = p1,

where

(a) c0(s) = [β + (γ − 1)x̄ ]− γ(1− φ)s − σ2

2 [γλ(s) + γ − 1]2

(b) c1(s) = (1− φ)s + σ2(γ − 1)λ(s) + σ2γλ(s)2

(c) c2(s) = σ2

2 λ(s)2

(d) Sensitivity Function:

λ(s) =

{
1
S̄

√
1− 2s − 1 if s ≤ 1−S̄2

2

0 if s > 1−S̄2

2



Cauchy-Kovalevsky Theorem

Theorem

If the coefficients and output function in the initial value problem:

y ′′ = a(x)y ′ + b(x)y ′ + g(x); y(0) = y0, y ′(0) = y1 (11)

can be represented by the power series:

a(x) =
∞∑

k=0

akxk , b(x) =
∞∑

k=0

bkxk , g(x) =
∞∑

k=0

gkxk for |x | < r ,

then the initial value problem (11) has a unique power series
solution y(x) =

∑∞
k=0 ykxk for |x | < r .



Simplifying the coefficients

Definition

r(s) =
√

1− 2s for |s| < r0 = (1− S̄2)/2.

(a) c0(s) = [2β+2(γ−1)x̄−σ2]S̄2−σ2γ2

S̄2 + σ2γ2−γ(1−φ)S̄2

S̄2 s + σ2γ
S̄

r(s)

(b) c1(s) = σ2(S̄2+γ)

S̄2 + (1−φ)S̄2−2σ2γ

S̄2 s − σ2(1+γ)

S̄
r(s)

(c) c2(s) = σ2(1+S̄2)

2S̄2 − σ2

S̄2 s − σ2

S̄
r(s)

(d) Sensitivity Function: λ(s) = 1
S̄
r(s)− 1

Summary

The coefficients c0(s), c1(s), c2(s) can be written in the form:

c(a0, a1, a2; s) = a0 + a1s + a2r(s) for |s| < r0 .



Derivatives of c(a0, a1, a2; s) at s = 0

By mathematical induction, one can get

r (k)(s) =





r(s) if k = 0,
− 1

1−2s r(s) if k = 1,

− (2k−3)!!
(1−2s)k

r(s) if k ≥ 2.

Since c(a0, a1, a2; s) = a0 + a1s + a2r(s), we get

c(n)(a0, a1, a2; 0) =





a0 + a2 if k = 0,
a1 − a2 if k = 1,

−a2(2k − 3)!! if k ≥ 2

and

1

k!
c(k)(a0, a1, a2; 0) =





a0 + a2 if k = 0,
a1 − a2 if k = 1,

− (2k−3)!!
k! a2 if k ≥ 2



The Power Series of Coefficients

c0(s), c1(s), and c2(s) can be represented by the power series

cj(s) =
∞∑

k=0

c
(k)
j sk for |s| < r0 = (1− S̄2)/2,

where c
(k)
j = 1

k!c
(k)
j (0) is the k th Taylor coefficient of cj(s) at

s = 0 and j = 0, 1, 2 · · · . Note that c2(s) 6= 0 for |s| < r0.

Corollary

The Campbell-Cochrane model has a unique power series solution:

p(s) =
∞∑

k=0

pksk for |s| < r0.



Recurrence Relation for the pk

Substitute

p =
∞∑

k=0

pksk , p′ =
∞∑

k=0

(k+1)pk+1s
k , p′′ =

∞∑

k=0

(k+1)(k+2)pk+2s
k

into the differential equation c2(s)p
′′ = c1(s)p

′ + c0(s)p − 1. In
addition, substitute in the power series for the coefficients c0(s),
c1(s), and c2(s). After calculating the product of power series we
end up with

∞∑

k=0




k∑

j=0

c
(k−j)
2 (j + 1)(j + 2)pj+2


 sk

=
∞∑

k=0




k∑

j=0

(
c

(k−j)
1 (j + 1)pj+1 + c

(k−j)
0 pj

)

 sk − 1.



Recurrence Relation for the pk (Continue)

Match the coefficients.

k∑

j=0

c
(k−j)
2 (j+1)(j+2)pj+2 =

k∑

j=0

(
c

(k−j)
1 (j + 1)pj+1 + c

(k−j)
0 pj

)
−δk,0.

Recurrence Relation for the pk

2c
(0)
2 p2 = c

(0)
1 p1 + c

(0)
0 p0 − 1,

(k + 1)(k + 2)c
(0)
2 pk+2

= (k + 1)
(
c

(0)
1 − kc

(1)
2

)
pk+1 +

(
c

(k−1)
0 + c

(k)
1

)
p1 + c

(k)
0 p0

+
k∑

j=2

[
c

(k−j)
0 + jc

(k−j+1)
1 − j(j − 1)c

(k−j+2)
2

]
pj .



Error Analysis

Normal Form

The price-dividend function p(s) satisfies

p′′ = a(s)p′ + b(s)p + g(s) for |s| < r0 = (1− S̄2)/2,

where a(s) = c1(s)
c2(s)

, b(s) = c0(s)
c2(s)

, and g(s) = − 1
c2(s)

.

Definition

The error of the approximation p(s) ≈ pn(s) =
∑n

k=0 pksk for
|s| < r0 is

Rn(s) = p(s)− pn(s) =
∞∑

k=n+1

pksk .



Error Analysis (Continue)

Theorem

Let Ma, Mb, Mg be the maximal values of |a(z)|, |b(z)|, |g(z)| on
the circle of radius r < (1− S̄2)/2 in the complex plane:

Cr = {z = s + yi : |z | =
√

s2 + y2 = r}.

For n ≥ 2 and |s| < r , we have

|Rn(s)| ≤ Mg + [(r + 1)|p1|+ |p0|] M
2

·
∞∑

k=n+1

k−1∏

l=2

[
l − 1

(l + 1)r
+

(l + r)M

(l + 1)l

]
|µr |k

for |s| < µr with µ ∈ (0, 1), where M = max{Ma, Mb}.



Cauchy Integral Formula

Cauchy Integral Formula

a(k)(0)

k!
=

1

2πi

∮

Cr

a(z)

zk+1
dz for k = 0, 1, 2, . . . .

The Complex Plane C = {z = s + yi : s, y are real numbers}

x

y

O r−r

Cr = {z = s + yi : s2 + y2 = r2}



Why we have to worry about Complex plane?

Suppose we look at

y(x) =
1

1 + x2
,

which is well defined on real line. However, when we complexify
the function we get

y(z) =
1

1 + z2
,

with z = x + yi . In the complex plane, the function has a
singularity at z = i , since i2 = −1. As a result, the function has a
radius r < 1.



Finding Ma, Mb, and Mg

Use a(z) = c1(z)
c2(z) , b(z) = c0(z)

c2(z) , g(z) = − 1
c2(z) , and

0 < λ(r) ≤ λ(z) ≤
√

λ(−r)2 + 2r/S̄2 for z ∈ Cr .

One can get

Ma =
2(1− φ)r

σ2λ(r)2
+

2|γ − 1|
λ(r)

+ 2γ,

Mb =
2 [γ(1− φ)r + β + (γ − 1)x̄ ]

σ2λ(r)2
+

(
γ +

|γ − 1|
λ(r)

)2

,

Mg =
2

σ2λ(r)2
.



The Values of Parameters

σ = standard deviation of consumption growth ≈ 0.003233

S̄ = average surplus consumption ratio ≈ 0.07737

γ = coefficient of risk aversion ≈ 2

φ = persistence of surplus consumption ratio ≈ 0.9896

x̄ = steady-state consumption growth ≈ 0.001567

β = discount factor ≈ 0.005738



Initial Conditions.

1 p0 = price-dividend at steady-state ≈ 219.6, where
219.6 = 18.3 ∗ 12 is the average historic price-dividend ratio in
Campbell and Cochrane.

2 p1 = rate of change of price-dividend ≈ 111.76

p′(s) =
{Et [R

e(s)]− Rb(s)− σ2γ(1 + λ(s))}p(s)

γσ2λ(s)(1 + λ(s))
. (12)

Then evaluating (12) at s = 0 determines the second initial
condition

p1 = p′(0) =

{
Et [R

e(0)]− rb − γσ2

S̄

}
p0

γσ2

S̄

(
1
S̄
− 1

) . (13)

The value of p1 is found by replacing Et [Re(0)]− rb with the
average equity premium. In the simulation this initial
condition is used to set p1 = 111.76.



Price-dividend function in the CC model.

The radius of convergence for CC model is at least

r0 =
1− S̄2

2
≈ 0.4990.

The parameter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896,
γ = 2, σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76, S̄ = 0.0448
and µr = 0.32. The x-axis gives the surplus consumption ratio on
the support of the distribution S = [S̄e−0.32, S̄e0.32] =
[0.032, 0.061]. The y -axis records the price-dividend ratio.
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Approximation Error.

The error analysis for the Campbell and Cochrane model. The
parameter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896,
γ = 2, σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76, S̄ = 0.0448
and µr = 0.32. The y -axis for the dotted line compares the 475th

order Taylor polynomial for the price-dividend ratio with the first
order Taylor polynomial. In addition, the solid line compares the
475th order Taylor polynomial for the price-dividend ratio to it’s
fourth order Taylor polynomial.

s
K0.3 K0.2 K0.1 0 0.1 0.2 0.3

Error

K0.025

K0.020

K0.015

K0.010

K0.005

0.005



Equity Premium and Standard Deviation of Stock Returns.

The x-axis gives the surplus consumption ratio on the support of
the distribution S = [S̄e−0.32, S̄e0.32]. The y -axis records the
equity premium and standard deviation. The equity premium line is
the bottom curve, while the top curve represents the standard
deviation.
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Figure 5



Two dimensional asset pricing model.

Consider the initial value problem (IVP) for second-order linear
PDE of the form

∂2p

∂t2
= A(x , t)

∂2p

∂x2
+ B(x , t)

∂2p

∂x∂t
(14)

+C (x , t)
∂p

∂x
+ D(x , t)

∂p

∂t
+ E (x , t)p + g(x , t),

p(x , 0) = p0(x), and
∂p

∂t
(x , 0) = p1(x), (15)

where the coefficients are analytic functions near (x , t) = (0, 0).



Two dimensional Cauchy-Kovalevsky Theorem.

Theorem

If all the coefficients and the output function in the differential
equation (14) are analytic in a neighborhood U of (0, 0) in R2 and
if p0(x) and p1(x) are analytic in a neighborhood V of (0) in R,
then the initial value problem (14), and (15) has a unique solution
in a neighborhood W of (0, 0) in R2



Region of convergence.

Theorem

If the coefficients A, B, C, D, E and the force term g in (14) are
analytic in the set {(x , t) ∈ R2 : |x | < r1, |t| < r2}, and
furthermore the coefficients are bounded in absolute value by M
and the force term g is bounded in absolute value by L, then the
region of analyticity of the solution contains the set

{
(x , t) ∈ R2 :

∣∣∣∣
ρ1x

r1
+

ρ2t

r2

∣∣∣∣ <

(
1− M(ρ1/r1)

(ρ2/r2)
− M(ρ1/r1)

2

(ρ2/r2)2

)}
,

(16)
where ρ1 > 1 and ρ2 > 1 large enough so that

ρ1

ρ2
<

r1
r2

(√
1

4
+

1

M
− 1

2

)
.



Wachter’s (2002) extension of Campbell and Cochrane.

Consumption growth is made more realistic.

dc = xdt + σ1dω1, (17)

and
dx = (ψ − 1)(x − x̄)dt + σ2dω2, (18)

where Et [dω1dω2] = ρ. Every thing else the same as in Campbell
and Cochrane.
The stochastic process for the SDF is now

dΛ

Λ
=

[
γ(φ− 1)s − β − γx̄ − γx +

γ2σ2
1

2
(1 + λ(s))2

]
dt (19)

−γσ1(1 + λ(s)) dω1 ,

so that it is a function of both the surplus consumption ratio and
consumption growth.



IVP in Wachter

Using the same procedures as in Campbell and Cochrane’s model
the price dividend function p(s, x) now satisfies a second order
linear PDE

σ2
2

2

∂2p

∂x2
= c11(s)

∂2p

∂s2
+ c12(s)

∂2p

∂s∂x
(20)

+c1(s)
∂p

∂s
+ (c2(s)− (ψ − 1)x)

∂p

∂x
+ (c0(s) + (γ − 1)x)p − 1 .

The coefficients c0(s), c1(s), and c2(s) are the same as in the
Campbell and Cochrane model. There are two additional
coefficients

c11(s) = c

(
−σ2

1(1 + S̄2)

2S̄2
,
σ2

1

S̄2
,
σ2

1

S̄
; s

)
, and

c12(s) = c
(
ρσ1σ2, 0,−ρσ1σ2

S̄
; s

)
,



Initial Conditions.

1 Let p0(s) = p(s) which is the analytic solution of the
Campbell and Cochrane model

2 Now the partial derivative ∂p
∂s at x = 0 is identical to p′(s). As

a result, the standard deviation of stock returns at x = 0 can
be written as

Σ(s, 0) =

√
Σ(s)2 + 2σ2ρ

Σ(s)

p(s)

∂p

∂x
(s, 0) + σ2

2

[
1

p(s)

∂p

∂x
(s, 0)

]2

.

Here Σ(s) is the standard deviation of stock returns in the
Campbell and Cochrane model. This equation is a quadratic
function in the initial condition ∂P

∂x (s, 0) = p(s) which can be
solved for its positive root.

∂p

∂x
(s, 0) =

{
−ρΣ(s) +

√
Σ(s, 0)2 − (1− ρ2)Σ(s)2

} p(s)

σ2
. (21)

The positive root is used so that the price-dividend ratio
increases when dividend growth increases. Suppose
Σ(s, 0) = Σ(s)

√
κ2 + 1.



Price-dividend function in Wacter’s model.

The price-dividend function in the Wachter model when the initial

condition is ∂p
∂x (s, 0) =

{
−ρ +

√
ρ2 + κ2

}
p(s)Σ(s)

2σ2
with κ = 1.29.

The parameters for Wachter’s model are rb = 0.00016,
x̄ = 0.00163, φ = 0.9851, γ = 1.1, b = 0.0067, ρ = 0.35,
σ1 = 0.00289, σ2 = 0.00075, ψ = 0.9669, S̄ = 0.0302 and
r = 0.4995. The x-axis gives the surplus consumption ratio,
[S̄e−124σ1 , S̄e124σ1 ] = [0.0219, 0.0463], the y -axis is the
consumption growth x ∈ [−4σ2, 4σ2] = [−0.0031, 0.0031].



Equity Premium function in Wacter’s model.



Conclusion

F Asset pricing models can be represented by either an ODE
or PDE. Most applied models assume analytic functions for the
mean and standard deviation of the stochastic discount factor and
state variables. As a result, the Cauchy-Kovalevsky Theorem may
be used to prove that the solutions for stock price or returns are
also an analytic function. Thus, Taylor polynomial approximations
provide quick and accurate representation of the solution to most
applied asset pricing problems.


