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|. One Dimensional Asset Pricing Problems.

The fundamental asset pricing relation is given by

0 = A(t)D(t)dt + E; [d [M(£)P(2)]].

E;[e] is the expectation conditional on current information.

(1)

A(t) is the stochastic discount factor (SDF) for the valuation

of an investment.

D(t) is the dividend payment from the equity per unit of time.

P(t) is the price of equity.



Generic Asset Pricing Models (Continue).

Asset pricing models are generally distinguished by the following
stochastic process for the SDF

an _

A pna(x(t), t)dt + oa(x(t), t)db;.

where x(t) is the state variable, This state variable is assumed to
follow an Ito process.

d
T l(x(t), £)dt + oy (x(t), t)dwy.
X
1(®) stands for mean and o(e) refers to standard deviation. df;

and dw; are Brownian motion.



The Asset Pricing Model leads to an ODE

In the one-dimensional case, this equilibrium price function satisfies
the solution to a second order linear ODE. As an initial value
problem (IVP), it takes the form

P"(x) + a(x)P'(x) + b(x)P(x) = g(x), P(0) = po, P'(0) = p1.
(2)
How can one solve such a problem?
We provide a general technique to quickly and accurately solve the
ODE associated with such models.



Analytic functions.

Definition

Let f(z) be a complex-valued function of z = x + iy defined in an
open set (domain) D of the complex plane C. Suppose that this
function is analytic such that it can be expressed as

< £(k)
f(z):zf (ZO)(Z—ZO)k, for |z —zg| < rand zg = xo + ivo ,

k!
k=0
(3)
where, f(K)(zy) denotes the k-th order complex derivative of f(z)
at z = z.



Campbell and Cochrane's External Habit Model

Their utility function is

— X,
oA (@

where C; is the individual's consumption at time t, and X; is their
habitual level of consumption at time t.

They introduce S7 = C,_?(;)g is the surplus consumption ratio at
time t, C7 is the average consumptlon of all individuals at time t.
The state variable s = In(& aX) In(S) measures the deviation of
consumption from the external habit X relative to its steady state
value In(S).

ds = (¢ — 1)sdt + \(s)odw, (5)
where ¢ < 1. The sensitivity function A(s) is given by

VI—25/5-1 ifs< Q2

Als) = 0 if s> 1= (25) when S = ¢ 1:212.
Yy




[to's Lemma

Let x € R follow the stochastic process,
dx = f(x)dt + S(x)dw,

where f(x) is the instantaneous mean of the state variable x € R.
dw is Brownian motion, so that S(x), provides the instantaneous
impact of these random shocks on the state variable.
Consequently, ¥(x) = S(x)E; (dwdw) S(x) is the instantaneous
variance-covariance matrix for the state variables.

Suppose F(x,t) is C?> for x € R and C' in t. Then

OF OF 1 [ 0°F oF
dF = (E L af(x) 5 (WZ(X)>) dt + aS(X)dw-

Also, the following multiplication rules are true: dwdw = 1dft,
dwdt = 0 and dtdt = 0.



An Example by Campbell and Cochrane

The stochastic discount factor is
AN=ePt[saC] 7. (6)
By Ito's Lemma

dA 2 2
== 9)s—B-n%+ 72" (1+ A(5))?| dt—vyo (1 + A(s))? dw
(7)
~ is coefficient of risk aversion. x is expected consumption growth,
and o is its standard deviation with Brownian motion dw.
dC dD _

ds = (¢ — 1)sdt + A\(s)odw, (9)

where ¢ < 1.



Finding the ODE for Campbell-Cochrane Model

Use Ito's Lemma to find the asset pricing relation (1) in terms
of the price-dividend function p = %, dividend growth and the
SDF.

Substitute in the stochastic processes for SDF (7) and
dividend (consumption) growth (8) into the asset pricing
relation.

Guess that the price-dividend function is a function of the
surplus consumption ratio, p(s), and use Ito’s Lemma to find
stochastic process for the price-dividend ratio.

dp=|p'(s)(¢ —1)s + lp”(s))\(s)zo’2 dt + p'(s)A(s)odw.

2
(10)
Substitute the stochastic process for the price-dividend ratio
(10) into the asset pricing relation from step 2.
Use Ito’s rules and apply conditional expectation to Brownian
motion to yield an ODE for the equilibrium price-dividend
function, p(s).



The IVP Campbell-Cochrane Model

The Cambell-Cochrane Model

Solve the following initial-value problem for the price-dividend
function p(s):

a(s)p” = al(s)p’ + al(s)p— 1, p(0) =po, p'(0)=p1,

where

(a) co(s) = [B+ (v = D)X = 4(1 — ¢)s — G [yA(s) +7 — 1]
(b) ci(s) = (1 — @)s + o?(y — 1)A(s) + o?YA(s)?

(c) ca(s) = FA(s)?
(d)

d) Sensitivity Function:

. _ g2
0 if s > 152

1 o . 1-82
)\(s):{g 1-2s—1 ifs< >



Cauchy-Kovalevsky Theorem

If the coefficients and output function in the initial value problem:

y'=a(x)y' + b(x)y' +g(x); y(0)=x, y(0)=xy» (11)
can be represented by the power series:
o0 (o) (e}
a(x) = Z ax®, b(x) = Z bixk, g(x) = ngxk for |x| <r,
k=0 k=0 k=0

then the initial value problem (11) has a unique power series
solution y(x) = Y32 ykx* for [x| < r.



Simplifying the coefficients
r(s)=+v1-2s for|s| <rp=(1-5%)/2.

(a) CO(S) _ [28+2(y-1 ));2 0'2]52_0' 'y + o? '7 '7(1 (15)5 s+ isfyr(s)
(b) cu(s) = ZGD 4 UmeF2otns 2“;%(5)
2 c2
(c) cfs) = (21;25 - %25 - %r(s)
(d) Sensitivity Function: \(s) = %r(s) -1

The coefficients ¢y(s), ci(s), c2(s) can be written in the form:

c(ao, a1,a2;s) = ap + a1s + axr(s) for|s| <rp.



Derivatives of c(ag, a1, az;s) at s =0

By mathematical induction, one can get

r(s) if k=0,
(2k=3)11 -
(1 or )k r(s) ifk>2.

Since c(ag, a1, a2;s) = ag + ais + axr(s), we get

ag + a2 if k=0,
c(”)(ao,al, ax;0) = ay— a» if k=1,
—a(2k — 3 if k> 2

and
ao + az if k=0,

Ec(k)(ao, a1, ax; 0) = ay — ao if k=1,
' I i k> 2




The Power Series of Coefficients

co(s), ci(s), and c(s) can be represented by the power series
c(s) = Zc-(k)sk for |s| < ro = (1 — 5%)/2,

where cj(k) = ﬂcgk) 0) is the k™ Taylor coefficient of ¢;(s) at

s=0and;j=0,1,2---. Note that c»(s) # 0 for |s| < ro.

[

Corollary

The Campbell-Cochrane model has a unique power series solution:

o0
p(s) = Zpksk for |s| < ry.
k=0



Recurrence Relation for the py

Substitute

o0
p= Zpks p = Z(k+1)pk+1sk, p' = (k+1)(k+2)prs2s”

k=0 k=0

into the differential equation cx(s)p” = ci(s)p’ + co(s)p— 1. In
addition, substitute in the power series for the coefficients c¢y(s),
ci(s), and cx(s). After calculating the product of power series we
end up with

00 k (k
S (S G1)G + 2pra |

J:

(cl G+ Dpj1 + ¢ 7')Pj) s 1.

M=~ T

k=0
oo

k=0

.
Il
o



Recurrence Relation for the py (Continue)

Match the coefficients.

k k

(k (k k—j
> D02 = Y (G + Vi + & py) ~dko.
j=0 j=0

Recurrence Relation for the py

26" pr = {%p1 + Vpo — 1,

(k + 1)(k +2)$? peso

— (k+1) (c( )~ k! )) P+ (7 + ) o1+ o

k
j=2



Error Analysis

Normal Form

The price-dividend function p(s) satisfies

!l

p" = a(s)p’ + b(s)p+g(s) for [s| < ro = (1—5%)/2,

—

where a(s) = &) p(s) = zgg)

,and g(s) = — =

o(s)”

Definition

The error of the approximation p(s) & pa(s) = > 7_, pks* for
Is| < rois



Error Analysis (Continue)

Theorem

Let M,, Mp, Mg be the maximal values of |a(z)|, |b(z)|,
the circle of radius r < (1 — 52)/2 in the complex plane:

C={z=s+yi: |zl =vs2+y2=r}.

Forn> 2 and |s| < r, we have

on

Mg +[(r +1)|p1| + |pol] M
2

< -1 (+r)M
2 H[l+1)r e

k=n+1 [=2

[Rn(s)] <

for |s| < pr with u € (0,1), where M = max{M,, Mp}.



Cauchy Integral Formula

Cauchy Integral Formula

W) _ 1 J a(z)
a a\z
e ) G k=012

The Complex Plane C = {z = s+ yi: s,y are real numbers}

y

/X_{z_s+yi:52+y2_rz}
X
_r!Jr




Why we have to worry about Complex plane?

Suppose we look at
1

y(x) = ma

which is well defined on real line. However, when we complexify

the function we get
(2)= 1
Z)= ——
y 1 + 22 )

with z = x + yi. In the complex plane, the function has a
singularity at z = i, since i> = —1. As a result, the function has a
radius r < 1.



Finding M,, M}, and M,

Use a(z) = U2) p(z) = &) g(z) = —

and

a(z)’

0<A(r) < \2) < \/)\ )2+2r/52 forze C,.
One can get

_21-9¢)r 2y-1
Ma =3t T a0
2[v(1 = ¢)r —1)X —1\?
m, = 2D ¢)U24Ar(€);r(v )]+( b |)7

+ 27,

2

M = a2X\(r)?’



The Values of Parameters

o = standard deviation of consumption growth =~ 0.003233
S = average surplus consumption ratio ~ 0.07737

~v = coefficient of risk aversion = 2

¢ = persistence of surplus consumption ratio =~ 0.9896

X = steady-state consumption growth ~ 0.001567

B = discount factor ~ 0.005738



Initial Conditions.

po = price-dividend at steady-state ~ 219.6, where

219.6 = 18.3 % 12 is the average historic price-dividend ratio in
Campbell and Cochrane.

p1 = rate of change of price-dividend ~ 111.76

e(s)] — RP(s) — o s s
p(s) = {Ec[Re(s)] — RP(s) — o®y(1 + A(s))} p(s)

. (12
A+ AE) 12
Then evaluating (12) at s = 0 determines the second initial
condition
0.2
 AER©I- -2
p1=p'(0) =

. . (13)
(51

The value of p; is found by replacing E; [R®(0)] — r? with the
average equity premium. In the simulation this initial
condition is used to set p; = 111.76.



Price-dividend function in the CC model.

The radius of convergence for CC model is at least

1-52

rn = ~ 0.4990.

The parameter values are r? = 0.00078, x = 0.00157, ¢ = 0.9896,
v =2, 0=0.00323, b=0, pg = 219.60, p; = 111.76, S = 0.0448
and pr = 0.32. The x-axis gives the surplus consumption ratio on
the support of the distribution S = [Se™0-32 50-32] =
[0.032,0.061]. The y-axis records the price-dividend ratio.
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Approximation Error.

The error analysis for the Campbell and Cochrane model. The
parameter values are r? = 0.00078, x = 0.00157, ¢ = 0.9896,

v =2, 0=0.00323, b=0, pg = 219.60, p; = 111.76, S = 0.0448
and ur = 0.32. The y-axis for the dotted line compares the 475t"
order Taylor polynomial for the price-dividend ratio with the first
order Taylor polynomial. In addition, the solid line compares the
475t order Taylor polynomial for the price-dividend ratio to it's
fourth order Taylor polynomial.
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Equity Premium and Standard Deviation of Stock Returns.

The x-axis gives the surplus consumption ratio on the support of
the distribution S = [Se0-32, 5e932]. The y-axis records the
equity premium and standard deviation. The equity premium line is
the bottom curve, while the top curve represents the standard
deviation.
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Two dimensional asset pricing model.

Consider the initial value problem (IVP) for second-order linear
PDE of the form

9%p 9%p 9?p
92 = = A(x, t)8x2 + B(x, t)axat (14)
op
+C(x, t) +D( t)a—i-E(X, t)p + g(x, t),
op
p(x,0) = po(x), and a(xao) = p1(x), (15)

where the coefficients are analytic functions near (x, t) = (0,0).



Two dimensional Cauchy-Kovalevsky Theorem.

Theorem

If all the coefficients and the output function in the differential
equation (14) are analytic in a neighborhood U of (0,0) in R? and
if po(x) and p1(x) are analytic in a neighborhood V of (0) in R,
then the initial value problem (14), and (15) has a unique solution
in a neighborhood W of (0,0) in R?



Region of convergence.

Theorem

If the coefficients A, B, C, D, E and the force term g in (14) are
analytic in the set {(x,t) € R?: |x| < r, |t| < n}, and
furthermore the coefficients are bounded in absolute value by M
and the force term g is bounded in absolute value by L, then the
region of analyticity of the solution contains the set

<(p-TEa B

where p1 > 1 and pp > 1 large enough so that

1 1 1
P2 n 4 M 2

px , pat
r r

{(x, t) € R%:




Wachter's (2002) extension of Campbell and Cochrane.

Consumption growth is made more realistic.
dc = xdt + o1dwy, (17)

and
dx = (¢ — 1)(x — X)dt + o2dwy, (18)

where E; [dwidwsy] = p. Every thing else the same as in Campbell
and Cochrane.
The stochastic process for the SDF is now

% =[v(p—1)s—B—vx—yx+ 722(7%(1 +A(s))?| dt (19)
—y01(1 + A(s)) dwr

so that it is a function of both the surplus consumption ratio and
consumption growth.



IVP in Wachter

Using the same procedures as in Campbell and Cochrane’s model
the price dividend function p(s, x) now satisfies a second order

linear PDE 2 2 o o
00 p P
S o = ()55 + el (20)
op op
—i—cl(s)& + (c2(s) = (¥ — l)x)a + (co(s)+(y—=1)x)p—1.

The coefficients cy(s), ci(s), and cx(s) are the same as in the
Campbell and Cochrane model. There are two additional
coefficients

2 c2 2 2
C]_1(5) =cC (_O-l(]é;_zS)7 %7 ?:5) 3 and

c(s) =c <P0102,0, —paigz;S) ,



Initial Conditions.

Let po(s) = p(s) which is the analytic solution of the
Campbell and Cochrane model

Now the partial derivative g’s’ at x = 0 is identical to p'(s). As
a result, the standard deviation of stock returns at x = 0 can

be written as

2
¥ (s,0) = \/ S(s)2 + Zngi((z))gz(s, 0) + o2 [p(ls)g’x’(s, 0)} .

Here ¥ (s) is the standard deviation of stock returns in the
Campbell and Cochrane model. This equation is a quadratic
function in the initial condition 85(5 0) = p(s) which can be
solved for its positive root.

05,00 = { () + VEG 07 — (1 - A} 22 )

02

The positive root is used so that the price-dividend ratio
increases when dividend growth increases. Suppose
Y (s,0) = X(s)VrK% + 1.



Price-dividend function in Wacter's model.

The price-dividend function in the Wachter model when the initial

condition is gx(s 0) { p+ PP+ /12} S)Z ) with k = 1.29.

The parameters for Wachter's model are r? = 0.00016,

X = 0.00163, ¢ = 0.9851, v = 1.1, b = 0.0067, p = 0.35,
o1 = 0.00289, o> = 0.00075, ¥ = 0.9669, S = 0.0302 and
r = 0.4995. The x-axis gives the surplus consumption ratio,
[Se~12401 Sel?41] = [0.0219, 0.0463], the y-axis is the
consumption growth x € [—402, 402] = [—0.0031,0.0031].
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Conclusion

% Asset pricing models can be represented by either an ODE
or PDE. Most applied models assume analytic functions for the
mean and standard deviation of the stochastic discount factor and
state variables. As a result, the Cauchy-Kovalevsky Theorem may
be used to prove that the solutions for stock price or returns are
also an analytic function. Thus, Taylor polynomial approximations
provide quick and accurate representation of the solution to most
applied asset pricing problems.



