Solving the Bewley Model with AMPL

Peter Karadi (NYU)
Lorenz Kueng (UC Berkeley)
Moritz Kuhn (U Mannheim)
Matthias Lux (NYU)
Panos Stavrinides (UPenn)

ICE 2008

August 7th, 2008

The Income Fluctuation Problem

$$V(a, \varepsilon) = \max_{c, a'} \left\{ u(c) + \beta E_{\varepsilon} V(a', \varepsilon') \right\}$$

s.t. $c = (1+r)a + w\varepsilon - a'$
 $a' \ge a$

Stationary RCE

 $\{V, a', c, H, K, r, w, \lambda^*\}$ such that:

Stationary RCE

 $\{V, a', c, H, K, r, w, \lambda^*\}$ such that:

1. Households and Firms optimize

Stationary RCE

 $\{V, a', c, H, K, r, w, \lambda^*\}$ such that:

- 1. Households and Firms optimize
- 2. Markets clear:

$$H = \int \varepsilon d\lambda^*$$
 $K = \int a'(a, \varepsilon) d\lambda^*$
 $F(K, H) = \int c(a, \varepsilon) d\lambda^* + \delta K$

Stationary RCE

 $\{V, a', c, H, K, r, w, \lambda^*\}$ such that:

- 1. Households and Firms optimize
- 2. Markets clear:

$$H = \int \varepsilon d\lambda^*$$
 $K = \int a'(a, \varepsilon) d\lambda^*$
 $F(K, H) = \int c(a, \varepsilon) d\lambda^* + \delta K$

3. Stationary distribution:

$$\lambda^*(\mathcal{B}) = \int Q((a, \varepsilon), \mathcal{B}) d\lambda^*$$

$$Q((a, \varepsilon), \mathcal{B}) = \mathbb{I}(a'(a, \varepsilon) \in \mathcal{B}) \sum_{\varepsilon' \in \mathcal{B}} \pi(\varepsilon, \varepsilon')$$

The Dark Ages vs. Enlightenment

1. Traditionally: NFXP

The Dark Ages vs. Enlightenment

1. Traditionally: NFXP

2. ICE: Solve it at once

Our Approach - PE

Problem: Binding borrowing constraint!

$$c_{con} = (1+r)a + w\varepsilon - \underline{a}$$

$$u'(c_{unc}) = \beta(1+r)E_{\varepsilon}(u'(c'))$$

$$c = \min\{c_{con}, c_{unc}\}$$

$$a' = (1+r)a + w\varepsilon - c$$

$$a' \ge a$$

Policy Functions

Euler Equation Errors

Euler Equation Errors II

Our Approach - GE

policy function iteration

$$c_{unc} = u'^{-1} \left[\beta(1+r) E_{\varepsilon} u' \left(c(a', \varepsilon') \right) \right]$$

Our Approach - GE

policy function iteration

$$c_{unc} = u'^{-1} \left[\beta(1+r) E_{\varepsilon} u' \left(c(a', \varepsilon') \right) \right]$$

• Discretization of $a'(a, \varepsilon)$.

Our Approach - GE

policy function iteration

$$c_{unc} = u'^{-1} \left[\beta(1+r) E_{\varepsilon} u' \left(c(a', \varepsilon') \right) \right]$$

• Discretization of $a'(a, \varepsilon)$.

.

$$P'\lambda = \lambda$$

The Equilibrium Solution

Figure: IID Income Shock

The Renaissance

• Starting values

The Renaissance

- Starting values
- Kinks (i)

The Renaissance

- Starting values
- Kinks (i)
- Kinks (ii)