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Part I

Introduction, Applications, Example, and Formulations
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Structural Estimation

• Great interest in estimating models based on economic structure
• Demand Estimation: BLP(1995), Nevo(2000)
• Dynamic programming models of individual behavior: Rust (1987)
• Nash equilibria of games – static, dynamic
• Dynamic stochastic general equilibrium

• General belief: Estimation is a major computational challenge
because it involves solving model many times

• Our goal: Teach you more computational efficient ways of
estimating structural models

• Our finding: Many supposed computational “difficulties” can be
avoided by using optimization tools developed in numerical analysis
over the past 40 years
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Current Views on Structural Estimation

• Erdem et al. (Marketing Letters, 2005)

Estimating structural models can be computationally
difficult. For example, dynamic discrete choice models are
commonly estimated using the nested fixed point algorithm (see
Rust 1994). This requires solving a dynamic programming
problem thousands of times during estimation and numerically
minimizing a nonlinear likelihood function....[S]ome recent
research ... proposes computationally simple estimators for
structural models ... The estimators ... use a two-step approach.
....The two-step estimators can have drawbacks. First, there can
be a loss of efficiency. .... Second, stronger assumptions about
unobserved state variables may be required. .... However,
two-step approaches are computationally light, often require
minimal parametric assumptions and are likely to make
structural models accessible to a larger set of researchers.
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Simple Consumer Demand Example

• Data and Model
• Data on demand, q, and price p, but demand is observed with error ε
• True demand is q − ε
• Assume a parametric form for utility function u (c;β) where β is a

vector of parameters
• Economic theory implies

uc (c;β) = uc (q − ε;β) = p

• Standard Approach
• Assume, for example, a functional form for utility u (c) = c− βc2

• Solve for demand function c = (1− p) /(2β)
• Hence, for some εi, the i’th data point satisfies

qi = (1− pi) /(2β) + εi

• Choose β to minimize the sum of squared errors∑
i=1

(qi − (1− pi) /(2β))2
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Simple Consumer Demand Example

• Limitations

• Need to solve for demand function, which is hard if not impossible
• For example, suppose

u (c) = c− β
(
c2 + γc4 + δc6

)
with first-order condition

1− β
(
2c + 4γc3 + 6δc5

)
= p

• There is no closed-form solution for demand function!
• What were you taught to do in this case? Change the model!

• Proper Procedure

• Deal with the first-order condition directly since it has all the
information you can have.

• Recognize that all you do is find the errors that minimize their sum of
squares and are consistent with structural equations.
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Simple Consumer Demand Example

• For our consumption demand model, this is the problem

min
εi,β

∑
i=1

ε2
i

subject to uc (qi − εi;β) = pi, ∀i [F.O.C.]

• In the case of the quadratic utility function, this reduces to

min
ci,εi,β

∑
i=1

ε2
i

subject to 1− 2βci = pi, ∀i [F.O.C.]
qi = ci + εi

• Degree-six utility function with MPEC approach solves

min
ci,εi,β

∑
i=1

ε2
i

subject to 1− β
(
2ci + 4γc3

i + 6δc5
i

)
= pi, ∀i [F.O.C.]

qi = ci + εi

• Big problem but constraint Jacobian is sparse

Che-Lin Su Structural Estimation



Simple Consumer Demand Example

• Even when you can solve for demand function, you may not want to

• Consider the case

u (c) = c− β1c
2 − β2c

3 − β3c
4

u′ (c) = 1− 2β1c− 3β2c
2 − 4β3c

3

• Demand function is

q = 1
12β3

W − 1
4

8β1β3−3β2
2

β3W − 1
4

β2
β3

W = 3

√(
108β1β2β3 − 216β2

3p + 216β2
3 − 27β3

2 + 12
√

3β3Z
)

Z =
√

Z1 + Z2

Z1 = 32β3
1β3 − 9β2

1β2
2 − 108β1β2β3p + 108β1β2β3

Z2 = 108β2
3p2 − 216β2

3p + 27pβ3
2 + 108β2

3 − 27β3
2

• Demand function is far costlier to compute than the first-order
conditions

• The (bad) habit of restricting models to cases with closed-form
solutions is completely unnecessary.
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Summary

• Constrained optimization formulation for the consumption demand
model is

min
ci,εi,β

∑
i=1

ε2
i

subject to uc (ci;β) = pi, ∀i [F.O.C.]
qi = ci + εi

• The problem is big; need one variable and one constraint per
price-quantity observation

• NLP solvers work fine despite large number of variables and
constraints. It is because the constraint Jacobian matrix is sparse
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Demand Estimation

Part II

Random-Coefficients Demand Estimation
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Demand Estimation

Random-Coefficients Logit Models of Demand

• Setup:
• Market t = 1, . . . , T
• Product j = 1, . . . , J in each market
• Consumer i = 1, . . . , It in market t

• For each market, we observe aggregate quantities, average prices,
and product characteristics

• utility of consumer i for product j in market t

uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

• yi: income of consumer i
• pjt: price of product j in market t
• xjt: a vector of observable characteristics of product j
• ξjt: unobserved (by the econometrician) product characteristics
• εijt: mean-zero stochastic term
• αi, βi: individual-specific taste coefficients to be estimated
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Demand Estimation

Random-Coefficients Logit Models of Demand

• A little bit more details on αi and βi:(
αi

βi

)
=

(
α
β

)
+ ΠDi + Σνi, νi ∼ P ∗ν (ν), Di ∼ P̂ ∗D(D)

• Di: unobserved demographic variables for consumer i
• νi: additional unobserved individual variables
• α, β: mean of taste coefficients
• Π, Σ: measure of how taste characteristics vary with Di and νi

• Structural parameters to be estimated θ = (θ1, θ2):

θ1 = (α, β)

θ2 = (Π,Σ)
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Demand Estimation

Random-Coefficients Logit Models of Demand

• Back to the utility uijt

uijt = αiyi + δjt(xjt, pjt, ξjt; θ1) + µijt(xjt, pjt, µi, Di; θ2) + εijt

δjt = xjtβ − αpjt + ξjt

µijt = [−pjt, xjt](ΠDi + Σνi)

• δjt: mean utility for all consumers for product j in market i
• µijt + εijt: deviation from the mean utility δjt

• Consumer i purchases product j∗ in market t if

uij∗t ≥ uijt, ∀j = 1, . . . , J

• Market shares equations: sjt(δ, θ2) = Sjt, ∀j, t
• Sjt: observed market share of product j in market t
• sjt(δ, θ2): estimated market share
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Demand Estimation

BLP Estimation Algorithm

• Outer loop: min
θ

ω(θ)T ZΦ−1ZT ω(θ)

• Guess θ = (θ1, θ2) parameters to compute ω(θ):

ωjt(θ) = δjt(S·t; θ2)− (xjtβ + αpjt) ≡ ξjt

• θ1 = (α, β); θ2 = (Π,Σ)
• ξjt: unobserved product characteristic

• Inner loop: compute mean utility δ for a given θ2

• Solve s·t(δ; θ2) = S·t by contraction mapping to get δ:

δh+1
·t = δh

·t + ln S·t − ln s(δh
·t; θ2)

• sjt(δ; θ2) =
1
ns

ns∑
i=1

exp[δjt + µijt]

1 +
∑J

m=1 exp[δmt + µimt]

• Stopping rules: need very high accuracy (in relative error) from the
inner loop in order for the outer loop to converge
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Demand Estimation
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Demand Estimation
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Demand Estimation

Weaknesses of BLP

• Contraction mapping is linear convergent at best
• Numerical performance will be sensitive to the stopping rules

• Stopping rules
• needs very high accuracy (in relative error) from the inner loop in

order for the outer loop to converge
• needs to be careful at setting tolerance levels for both inner and outer

loop
• Theory: outer loop accuracy =

√
inner loop accuracy

• If the inner loop has 8 digits accuracy (10−8), then the outer loop has

4 digits accuracy (
√

10−8 = 10−4)
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Demand Estimation

MPEC Applied to BLP

• Fox and Su (2007): Improving the Numerical Performance of BLP
Structural Demand Estimators

• Constrained optimization formulation

min
(θ,δ,ω)

ωT ZΦ−1ZT ω

s.t. ω = δ − (xβ + αp)
s(δ; θ2) = S

• Advantages:
• Faster
• Fewer iterations/function evaluations
• Easy to code in AMPL and to access good NLP solvers
• No need to worry about setting up tolerance levels

• Notes: Jacobian is dense; size is 2300 by 2300, but AD saves us
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Demand Estimation

AMPL Model: MPEC BLP.mod

param ns ; # := 20 ; # number of simulated "individuals" per market

param nmkt ; # := 94 ; # number of markets

param nbrn ; # := 24 ; # number of brands per market

param nbrnPLUS1 := nbrn+1; # number of products plus outside good

param nk1 ; # := 25; # of observable characteristics

param nk2 ; # := 4 ; # of observable characteristics

param niv ; # := 21 ; # of instrument variables

param nz := niv-1 + nk1 -1; # of instruments including iv and X1

param nd ; # := 4 ; # of demographic characteristics

set S := 1..ns ; # index set of individuals

set M := 1..nmkt ; # index set of market

set J := 1..nbrn ; # index set of brand (products), including outside good

set MJ := 1..nmkt*nbrn; # index of market and brand

set K1 := 1..nk1 ; # index set of product observable characteristics

set K2 := 1..nk2 ; # index set of product observable characteristics

set Demogr := 1..nd;

set DS := 1..nd*ns;

set K2S := 1..nk2*ns;

set H := 1..nz ; # index set of instrument including iv and X1
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Demand Estimation

AMPL Model: MPEC BLP.mod

## Define input data format:

param X1 {mj in MJ, k in K1} ;

param X2 {mj in MJ, k in K2} ;

param ActuShare {m in MJ} ;

param Z {mj in MJ, h in H} ;

param D {m in M, di in DS} ;

param v {m in M, k2i in K2S} ;

param invA {i in H, j in H} ; # optimal weighting matrix = inv(Z’Z);

param OutShare {m in M} := 1 - sum {mj in (nbrn*(m-1)+1)..(nbrn*m)} ActuShare[mj];
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Demand Estimation

AMPL Model: MPEC BLP.mod

## Define variables

var theta1 {k in K1};

var SIGMA {k in K2};

var PI {k in K2, d in Demogr};

var delta {mj in MJ} ;

var EstShareIndivTop {mj in MJ, i in S} = exp( delta[mj]

+ sum {k in K2} (X2[mj,k]*SIGMA[k]*v[ceil(mj/nbrn), i+(k-1)*ns])

+ sum{k in K2, d in Demogr} (X2[mj,k]*PI[k,d]*D[ceil(mj/nbrn),i+(d-1)*ns]) );

var EstShareIndiv{mj in MJ, i in S} = EstShareIndivTop[mj,i] / (1+ sum{

l in ((ceil(mj/nbrn)-1)*nbrn+1)..(ceil(mj/nbrn)*nbrn)} EstShareIndivTop[l, i]);

var EstShare {mj in MJ} = 1/ns * (sum{i in S} EstShareIndiv[mj,i]) ;

var w {mj in MJ} = delta[mj] - sum {k in K1} (X1[mj,k]*theta1[k]) ;

var Zw {h in H} ; ## Zw{h in H} = sum {mj in MJ} Z[mj,h]*w[mj];
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Demand Estimation

AMPL Model: MPEC BLP.mod

minimize GMM : sum{h1 in H, h2 in H} Zw[h1]*invA[h1, h2]*Zw[h2];

subject to

conZw {h in H}: Zw[h] = sum {mj in MJ} Z[mj,h]*w[mj] ;

Shares {mj in MJ}: log(EstShare[mj]) = log(ActuShare[mj]) ;
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Demand Estimation

Numerical Performance

We consider the example in Nevo (2000)

MPEC BLP
Implementation AMPL/Knitro(Interior Point) Matlab
Timing ∼13 sec. ∼66 sec.
# of θ visited 7 122
Function Evaluations 8 > 2000
Objective Value 4.65 4.65
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Demand Estimation

Summary

• Constrained optimization formulation for the random-coefficients
demand estimation model is

min
(θ,δ,ω)

ωT ZΦ−1ZT ω

s.t. ω = δ − (xβ + αp)
s(δ; θ2) = S

• MPEC approach with AMPL/KNITRO works very well

• The constraint Jacobian is dense and the computer memory
requirement is high

• The memory problems are cheaply solved (RAM is cheap) !!!
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Demand Estimation

Standard Problem and Current Approach

• Individual solves an optimization problem

• Econometrician observes state and decisions

• Current standard approach (BLP, NFXP, etc)

• Want to estimate structural parameters and equilibrium solutions
that are consistent with structural parameters

• Structural parameters: θ
• Behavior (decision rule, strategy, price mapping): σ
• Equilibrium (optimality or competitive or Nash) imposes relationship

between
0 = G (θ, σ)

• Likelihood function for data X and parameters θ

max
θ

L (θ,Σ(θ);X)

where equilibrium can be represented by a function σ = Σ(θ)
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Demand Estimation

MPEC Ideas Applied to Estimation

• Suppose that an economic model has parameters θ

• Suppose that equilibrium and optimality imply that the observable
economic variables, x, follow a stochastic process parameterized by a
finite vector σ

• The value of σ will depend on θ through a set of equilibrium
conditions

0 = G (θ, σ)

• Denote the augmented likelihood of a data set, X, by L (θ, σ;X)

• Therefore, maximum likelihood is the constrained optimization
problem

max
(θ,σ)

L (θ, σ;X)

subject to 0 = G (θ, σ)
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Demand Estimation

Our Advantanges

• We do not require that equilibrium be defined as a solution to a
fixed-point equation.

• We do not need to specify an algorithm for computing σ given θ;
good solvers will probably do better.

• Gauss-Jacobi or Gauss-Seidel methods are often used in economics
even though they are at best linearly convergent, whereas good
solvers are at least superlinearly convergent locally (if not much
better) and have better global properties than GJ and GS typically
do.

• Using a direct optimization approach allows one to take advantage
of the best available methods and software (AMPL, KNITRO,
SNOPT, filterSQP, PATH, etc) from the numerical analysis
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Demand Estimation

Constrained Estimation

• The MPEC approach is an example of constrained estimation, be it
maximum likelihood or method of moments.

• Sampling of previous literature
• Aitchison, J. & S.D. Silvey. Maximum Likelihood Estimation of Parameters

Subject to Restraints. Annals of Mathematica1 Statistics 29 (1958): 813-828.
• Gallant, A. Ronald, and Alberto Holly. Statistical Inference in an Implicit,

Nonlinear, Simultaneous Equation Model in the Context of Maximum Likelihood
Estimation. Econometrica, Vol. 48, No. 3 (April, 1980)

• Gallant, A. Ronald, and George Tauchen. Seminonparametric Estimation of
Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications.
Econometrica, Vol. 57, No. 5 (Sep., 1989), pp. 1091-1120.

• Silvey, S. D. Statistical Inference. London: Chapman & Hall, 1970.
• Wolak, F. A. An Exact Test for Multiple Inequality and Equality Constraints in

the Linear Regression Model. J. Am. Statist. Assoc. 82 (1987): 782-93.

• Wolak, F.A. Testing inequality constraints in linear econometric models. Journal

of Econometrics, 1989.
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Estimation of DP Models

Part III

Estimation of Dynamic Programming Models
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

Canonical Example - Dynamic Programming

• Individual solves a dynamic programming problem

• Econometrician observes state and decisions

• Augmented likelihood function for data X

L (θ, σ;X)

where θ is set of parameters and σ is decision rule

• Rationality imposes a relationship between θ and σ

0 = G (θ, σ)

• We want to find maximum likelihood θ but impose rationality
condition
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

Zurcher’s Bus Engine Replacement Problem

• Each bus comes in for repair once a month
• Bus repairman sees mileage xt at time t since last engine overhaul
• Repairman chooses between overhaul and ordinary maintenance

u(xt, it, θ
c, RC) =

{
−c(xt, θ

c) if it = 0
−(RC + c(0, θc) if it = 1

• Repairman has temporary shock to ordinary maintenance cost
• Repairman solves DP:

Vθ(xt) = sup
{ft,ft+1,...}

E


∞∑

j=t

βj−tu(xj , fj , θ)|xt


• Econometrician

• Observes mileage and decision, but not cost
• Assumes extreme value distribution

• Structural parameters to be estimated
• Coefficients of maintenance cost function; e.g., c(x, θc) = θc

1x + θc
2x

2

• Overhaul cost RC
• Transition probabilities in mileages θp(xt+1 − xt)
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

Zurcher Model – Data

Bus #: 5297

events year month odometer at replacement
1st engine replacement 1979 June 242400
2nd engine replacement 1984 August 384900

year month odometer reading
1974 Dec 112031
1975 Jan 115223
1975 Feb 118322
1975 Mar 120630
1975 Apr 123918
1975 May 127329
1975 Jun 130100
1975 Jul 133184
1975 Aug 136480
1975 Sep 139429
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

Nested Fixed Point Algo: Rust (Econometrica, 1987)

• Outer loop: Solve likelihood

max
θ≥0

L (θ,EVθ;X)

• Inner loop: Compute value function EVθ for a given θ
• EVθ is the implicit value function defined the Bellman equation or

the fixed point function

EVθ = Tθ(EVθ)

• In practice, this means writing a program for EVθ

• Rust started with contraction iterations and then switched to Newton
iterations

• Problem with NFXP: Must compute EVθ to high accuracy for each
θ examined
(i) for outer loop to converge; see the BLP slide
(ii) to obtain accurate numerical derivatives for the outer loop
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

MPEC Approach for Solving Zucher Model

• MPEC
• Form augmented likelihood function for data X

L (θ,EV ;X)

where θ is set of parameters and EV is the value function
• Rationality and Bellman equation imposes a relationship between θ

and EV
EV = T (EV , θ)

• Solve constrained optimization problem

max
(θ,EV )

L (θ,EV ;X)

s.t. EV = T (EV , θ)

Che-Lin Su Structural Estimation



Estimation of DP Models Zucher’s Bus Engine Replacement Problem

AMPL Model: MPEC RustBus.mod
##### HAROLD ZURCHER BUS REPAIR EXAMPLE #####

#

# An MPEC Approach to compute maximum likelihood estimates of the

# Harold Zurcher bus problem in Rust, Econometrica, 1987.

# Ken Judd and Che-Lin Su,

# February 21, 2006. Current version: October 26, 2006

#

##### SET UP THE PROBLEM #####

#

# Define the state space used in the dynamic programming part

param N; # number of states used in dynamic programming approximation

set X := 1..N; # X is the index set of states

# x[i] denotes state i; the set of states is a uniform grid on the interval [xmin, xmax]

param xmin := 0;

param xmax := 100;

param x {i in X} := xmin + (xmax-xmin)/(N-1)*(i-1);

#

# Define and process the data

param nT; # number of periods in data

set T := 1..nT; # T is the vector of time indices

param Xt {T}; # Xt[t] is the true mileage at time t

param dt {T}; # decision at time t

# The dynamic programming model in the estimation lives on a discrete state

# Binning process: assign true mileage Xt[t] to the closest state in X

param xt {t in T} := ceil(Xt[t]/(xmax-xmin)*(N-1)+0.5);

#

# Define "known" structural parameters

# We fix beta since data cannot identify it

param beta; # discount factor
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

AMPL Model: MPEC RustBus.mod
##### DECLARE STRUCTURAL PARAMETERS TO BE ESTIMATED #####

##### Parameters for cost function #####

# c(x, thetaCost) = thetaCost[1]*x + thetaCost[2]*x^2

var thetaCost {1..2} >= 0;

##### Parameters and definition of transition process #####

# thetaProbs defines Markov chain transition probabilities

var thetaProbs {1..3} >= 0.00001;

# Define the Markov chain representing the changes in mileage on the x[i] grid.

# The state increases by some amount in [0,JumpMax] where

# JumpMax is the maximum increase in mileage in one period

# and equals a fraction JumpRatio of the range of mileage in the state space

param JumpRatio;

param JumpMax := (xmax-xmin) * JumpRatio;

# We assume that the jumps are independent of the current state

# and its transition process has three pieces, each a uniform distribution

# Define 1st break point for stepwise uniform distribution in mileage increase

param M1 := ceil(1/4*JumpMax/(xmax-xmin)*(N-1)+0.5);

# Define 2nd break point for stepwise uniform distribution in mileage increase

param M2 := ceil(3/4*JumpMax/(xmax-xmin)*(N-1)+0.5);

# Define end point for stepwise uniform distribution in mileage increase

param M := ceil(JumpMax/(xmax-xmin)*(N-1)+0.5);

# Y is the vector of elements in transition rule

set Y := 1..M;

var TransProb {i in Y} =

if i <= M1 then thetaProbs[1]/M1

else if i > M1 and i <= M2 then thetaProbs[2]/(M2-M1)

else thetaProbs[3]/(M-M2);

##### Scrap value parameter #####

var RC >= 0;

##### END OF STRUCTURAL VARIABLES #####
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Estimation of DP Models Zucher’s Bus Engine Replacement Problem

AMPL Model: MPEC RustBus.mod
##### DECLARE EQUILIBRIUM CONSTRAINT VARIABLES #####

# The NLP approach requires us to solve equilibrium constraint variables

var EV {X}; # Value Function of each state

##### END OF EQUILIBRIUM CONSTRAINT VARIABLES #####

##### DECLARE AUXILIARY VARIABLES ######

# Define auxiliary variables to economize on expressions

# Create Cost variable to represent the cost function;

# Cost[i] is the cost of regular maintenance at x[i].

var Cost {i in X} = sum {j in 1..2} thetaCost[j]*x[i]^(j);

# Let CbEV[i] represent - Cost[i] + beta*EV[i];

# this is the expected payoff at x[i] if regular maintenance is chosen

var CbEV {i in X} = - Cost[i] + beta*EV[i];

# Let PayoffDiff[i] represent -CbEV[i] - RC + CbEV[1];

# this is the difference in expected payoff at x[i] between engine replacement and regular maintenance

var PayoffDiff {i in X} = -CbEV[i] - RC + CbEV[1];

# Let ProbRegMaint[i] represent 1/(1+exp(PayoffDiff[i]));

# this is the probability of performing regular maintenance at state x[i];

var ProbRegMaint {i in X} = 1/(1+exp(PayoffDiff[i]));

var BellmanViola {i in 1..(N-M+1)} = sum {j in 0..(M-1)} log(exp(CbEV[i+j])

+exp(-RC + CbEV[1]))* TransProb[j+1] - EV[i];

##### END OF AUXILIARY VARIABLES #####
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AMPL Model: MPEC RustBus.mod
##### OBJECTIVE AND CONSTRAINT DEFINITIONS #####

## Define objective function: Likelihood function

maximize Likelihood:

## The likelihood function contains two pieces

## First is the likelihood that the engine is replaced given time t state in the data.

sum {t in 2..nT} log(dt[t]*(1-ProbRegMaint[xt[t]]) + (1-dt[t])*ProbRegMaint[xt[t]])

## Second is the likelihood that the observed transition between t-1 and t would have occurred.

+ sum {t in 2..nT} log(dt[t-1]*(TransProb[xt[t]-1+1]) + (1-dt[t-1])*(TransProb[xt[t]-xt[t-1]+1]));

# List the constraints

subject to

Bellman_1toNminusM {i in X: i <= N-(M-1)}: # Bellman equation for states below N-M

EV[i] = sum {j in 0..(M-1)}

log(exp(CbEV[i+j])+ exp(-RC + CbEV[1]))* TransProb[j+1];

# Bellman equation for states above N-M (we adjust transition probabilities to keep state in [xmin, xmax])

Bellman_LastM {i in X: i > N-(M-1) and i <= N-1}: EV[i] = (sum {j in 0..(N-i-1)}

log(exp(CbEV[i+j])+ exp(-RC + CbEV[1]))* TransProb[j+1])

+ (1- sum {k in 0..(N-i-1)} TransProb[k+1]) * log(exp(CbEV[N])+ exp(-RC + CbEV[1]));

Bellman_N: EV[N] = log(exp(CbEV[N])+ exp(-RC + CbEV[1])); # Bellman equation for state N

Probability: sum {i in 1..3} thetaProbs[i] = 1; # The probability in transition process add to one

# Put bound on EV; this should not bind, but is a cautionary step to help keep algorithm within bounds

EVBound {i in X}: EV[i] <= 50;
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AMPL Model: MPEC RustBus.mod

#### DEFINE THE PROBLEM #####

# Name the problem

problem MPECZurcher:

# Choose the objective function

Likelihood,

# List the variables

EV, RC, thetaCost, thetaProbs, TransProb, Cost, CbEV, PayoffDiff, ProbRegMaint, BellmanViola,

# List the constraints

Bellman_1toNminusM,

Bellman_LastM,

Bellman_N,

Probability,

EVBound;

#################################
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AMPL Command: MPEC RustBus.cmd

# Call solver SNOPT and give it options

option snopt_options $snopt_options ’outlev=2 timing=1 ’; # output level

# Initial guesses set at trivial values; probably not good initial guess

let {i in X} EV[i] := 0;

let {i in 1..3} thetaProbs[i] := 1/3;

# Solve command

solve MPECZurcher;

display _solve_time;

# Output commands

option display_round 6, display_width 120;

# write the value function

display EV;

# write the structural parameters (remember beta was fixed)

display beta, RC, thetaCost, thetaProbs, TransProb;

# write errors in Bellman equations

display Bellman_1toNminusM.body;

display Bellman_LastM.body;

display Bellman_N.body;

display BellmanViola;

Che-Lin Su Structural Estimation



Estimation of DP Models Zucher’s Bus Engine Replacement Problem

MPEC Applied to Zucher: Three-Parameter Estimates

• Synthetic data is better: avoids misspecification

• Use Rust’s estimates to generate 2 synthetic data sets of 103 and
104 data points respectively.

• Timing for estimating three parameters (as in the Rust)

• AMPL program solved on NEOS server using SNOPT

Estimates CPU Major Evals∗ Bell. EQ.
T N RC θc

1 θc
2 (sec) Iterations Error

103 101 1.112 0.043 0.0029 0.14 66 72 3.0E−13
103 201 1.140 0.055 0.0015 0.31 44 59 2.9E−13
103 501 1.130 0.050 0.0019 1.65 58 68 1.4E−12
103 1001 1.144 0.056 0.0013 5.54 58 94 2.5E−13
104 101 1.236 0.056 0.0015 0.24 59 67 2.9E−13
104 201 1.257 0.060 0.0010 0.44 59 67 1.8E−12
104 501 1.252 0.058 0.0012 0.88 35 45 2.9E−13
104 1001 1.256 0.060 0.0010 1.26 39 52 3.0E−13
∗Number of function and constraint evaluations
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MPEC Applied to Zucher: Five-Parameter Estimates

• Rust did a two-stage procedure, estimating transition parameters in
first stage. We do full ML

Estimates CPU Maj. Evals Bell.
T N RC θc

1 θc
2 θp

1 θp
2 (sec) Iter. Err.

103 101 1.11 0.039 0.0030 0.723 0.262 0.50 111 137 6E−12
103 201 1.14 0.055 0.0015 0.364 0.600 1.14 109 120 1E−09
103 501 1.13 0.050 0.0019 0.339 0.612 3.39 115 127 3E−11
103 1001 1.14 0.056 0.0014 0.360 0.608 7.56 84 116 5E−12
104 101 1.24 0.052 0.0016 0.694 0.284 0.50 76 91 5E−11
104 201 1.26 0.060 0.0010 0.367 0.053 0.86 85 97 4E−11
104 501 1.25 0.058 0.0012 0.349 0.596 2.73 83 98 3E−10
104 1001 1.26 0.060 0.0010 0.370 0.586 19.12 166 182 3E−10
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Observations

• Problem is solved very quickly.

• Timing is nearly linear in the number of states for modest grid size.

• The likelihood function, the constraints, and their derivatives are
evaluated only 45-200 times in this example.

• In contrast, the Bellman operator in NFXP (the constraints here) is
evaluated hundreds of times in NFXP
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Parametric Bootstrap Experiment

• For calculating statistical inference, bootstrapping is better and
more reliable than asymptotic analysis. However, bootstrap is often
viewed as computationally infeasible

• Examine several data sets to determine patterns

• Use Rust’s estimates to generate 1 synthetic data set

• Use the estimated values on the synthetic data set to reproduce 20
independent data sets:

• Five parameter estimation
• 1000 data points
• 201 grid points in DP
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Maximum Likelihood Parametric Bootstrap Estimates

Table 3: Maximum Likelihood Parametric Bootstrap Results

Estimates CPU Maj. Evals Bell.
RC θc

1 θc
2 θp

1 θp
2 θp

3 (sec) Ite Err.
mean 1.14 0.037 0.004 0.384 0.587 0.029 0.54 90 109 8E−09
S.E. 0.15 0.035 0.004 0.013 0.012 0.005 0.16 24 37 2E−08
Min 0.95 0.000 0.000 0.355 0.571 0.021 0.24 45 59 1E−13
Max 1.46 0.108 0.012 0.403 0.606 0.039 0.88 152 230 6E−08
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MPEC Approach to Method of Moments

• Suppose you want to fit moments. E.g., likelihood may not exist

• Method then is

min
(θ,σ)

‖m (θ, σ)−M (X)‖2

s.t. G (θ, σ) = 0

• Compute moments m (θ, σ) numerically via linear equations in
constraints - no simulation

• Objective function for the Rust’s bus example:

M (m, M) = (mx −Mx)2 + (md −Md)2 + (mxx −Mxx)2 + (mxd −Mxd)2

+(mdd −Mdd)2 + (mxxx −Mxxx)2 + (mxxd −Mxxd)2

+(mxdd −Mxdd)2 + (mddd −Mddd)2
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Formulation for Method of Moments

• Constraints imposing equilibrium conditions and moment definitions,
and computes stationary distribution p

max
(θ,σ,Π,p,m)

M (m, M)

s.t. G (θ, σ) = 0, Π = H(θ, σ)

p>Π = p>,
X

x∈Z,d∈{0,1}
px,d = 1

mx =
X
x,d

px,d x, md =
X
x,d

px,d d

mxx =
X
x,d

px,d (x−mx)2, mxd =
X
x,d

px,d (x−mx)(d−md)

mdd =
X
x,d

px,d (d−md)2

mxxx =
X
x,d

px,d (x−mx)3, mxxd =
X
x,d

px,d (x−mx)2(d−md)

mxdd =
X
x,d

px,d (x−mx)(d−md)2, mddd =
X
x,d

px,d (d−md)3
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Method of Moments Parametric Bootstrap Estimates

Table 4: Method of Moments Parametric Bootstrap Results

Estimates CPU Major Evals Bell
RC θc

1 θc
2 θp

1 θp
2 θp

3 (sec) Iter Err.
mean 1.0 0.05 0.001 0.397 0.603 0.000 22.6 525 1753 7E−06
S.E. 0.3 0.03 0.002 0.040 0.040 0.001 16.9 389 1513 1E−05
Min 0.1 0.00 0.000 0.340 0.511 0.000 5.4 168 389 2E−10
Max 1.5 0.10 0.009 0.489 0.660 0.004 70.1 1823 6851 4E−05

• Solving GMM is not as fast as solving MLE
• the larger size of the moments problem
• the nonlinearity introduced by the constraints related to moments,

particularly the skewness equations.
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Comparisons with NFXP

• We reduce time spent on solving DP
• Important when DP is hard to solve
• Less important as the cost of computing likelihood rises

• Closed-form solutions may hurt
• Substituting out m variables from n squeezes all nonlinearities into

the remaining n−m variables that still appear in the objective and
constraints.

• Nonlinear elimination of variables reduces number of unknowns but
may increase nonlinearity

• Actually, it is often easier to solve large optimization problems!
• In optimization, it is nonlinearity, not dimensionality, that makes a

problem difficult.
• MPEC is far more flexible and easy to implementation.

• Derivatives of both DP solution and likelihood are easier to compute
• NFXP has a hard time doing analytic derivatives of DP step; uses

finite differences
• This approach encourages one to experiment with many solvers to

find the best one
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Comparisons with NFXP

• Ease of use
• Rust used Gauss “because: 1. the GAUSS langauge is a high-level

symbolic language which enables a nearly 1:1 translation of
mathematical formulae into computer code. Matrix operations of
GAUSS replace cumbersome do-loops of FORTRAN. 2. GAUSS has
built-in linear algebra routines, no links to Lapack needed”

• MPEC: AMPL is also easy to use. All solvers have access to linear
algebra routines, many of which are better than Lapack. AMPL does
not have matrix notation, but its approach to matrices, tensors, and
indexed sets is very flexible.

• Optimization Method
• Rust: Outer iteration uses BHHH for a while then switches to BFGS,

where the user chooses the switch point.
• JS: Use solvers far superior to these methods.
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Comparisons with NFXP

• Derivatives
• Rust: “The NFXP software computes the value of and its derivatives

numerically in a subroutine. This implies that we can numerically
compute and its derivatives for each trial value encountered in the
course of the process of maximizing. In order to do this, we need a
very efficient and accurate algorithm for computing the fixed point.”

• JS: Use true analytic derivatives. This is done automatically by
AMPL, and is done efficiently using ideas from automatic
differentiation.

• Dynamic programming method
• Rust: “Inner Fixed Point Algorithm. Contraction mapping fixed point

(poly)algorithm. The algorithm combines contraction iterations with
Newton-Kantorovich iterations to efficiently compute the functional
fixed point.” In Rust, contraction iterations are linearly convergent;
quadratic convergence is achieved only at final stage.

• JS: We use Newton-style methods that are globally faster than
contraction mapping ideas. This is particularly important if β is close
to 1, representing short, but realistic, time periods.
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Further Improvements

• Use continous methods to approximate value function and decision
rules

• True problem has a continuous state and a smooth value function
• True solution can be computes accurately with far fewer free

parameters than any discretization

• Estimate shock process instead of assuming a particular extreme
value distribution

• Use numerical integration methods to compute expectations
• Estimate flexible functional form for distribution
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Part IV

Estimation of Games
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MPEC Approach to Games

• Suppose the game has parameters θ.

• Let σ denote the equilibrium strategy given θ; that is, σ is an
equilibrium if and only if for some function G

0 = G (θ, σ)

• Suppose that likelihood of a data set, X, if parameters are θ and
players follow strategy σ is L (θ, σ,X). Therefore, maximum
likelihood is the problem

max
(θ,σ)

L (θ, σ,X)

s.t. 0 = G (σ, θ)
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NFXP to Games

• NFXP requires finding all σ that solve G (θ, σ), compute the
likelihood at each such σ, and report the max

• Finding all equilibria for arbitrary games is an essentially intractable
problem - see Judd and Schmedders (2006) and mathematical
literature

• In contrast, MPEC sends problem to good solvers. Multiple
equilibria may produce multiple local solutions, but that is a
standard problem in MLE, and would also be a problem for NFXP
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Example: Pricing Game with Multiple Equilibria

• Bertrand game with 3 types of customers in 4 cities
• Type 1 customers only want good x

Dx1(px,i) = A− px,i; Dy1 = 0, for i = 1, . . . , 4.

• Type 3 customers only want good y, and have a linear demand curve:

Dx3 = 0; Dy3(py,i) = A− py,i, for i = 1, . . . , 4.

• Type 2 customers want some of both. Let ni be the number of type
2 customers in a type i city.

Dx2(pxi, pyi) = nip
−σ
xi

(
p1−σ

xi + p1−σ
yi

) γ−σ
−1+σ

Dy2(pxi, pyi) = nip
−σ
yi

(
p1−σ

xi + p1−σ
yi

) γ−σ
−1+σ
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Example: Pricing Game with Multiple Equilibria

• Total demand for good x (y) in a type i city is given by

Dx(pxi, pyi) = Dx1(pxi, pyi) + Dx2(pxi, pyi)
Dy(pxi, pyi) = Dy2(pxi, pyi) + Dy3(pxi, pyi)

• Let m be the unit cost of production for each firm. Revenue for
good x (y) in a type i city is given by

Rx(pxi, pyi) = (pxi −m)Dx(pxi, pyi)
Ry(pxi, pyi) = (pyi −m)Dy(pxi, pyi)
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Example: Pricing Game with Multiple Equilibria

• Let MRx be marginal profits for good x; similarly for MRy.

MRx(pxi, pyi) = A− pxi + ni

(
pσ

xi

(
p1−σ

xi + p1−σ
yi

) γ−σ
σ−1

)−1

+(pxi −m)

−1 +
ni(σ − γ)

p2σ
xi

(
p1−σ

xi + p1−σ
yi

)1+ σ−γ
σ−1

− niσ

p1+σ
xi

(
p1−σ

xi + p1−σ
yi

)σ−γ
σ−1


MRy(pxi, pyi) = A− pyi + ni

(
pσ

yi

(
p1−σ

xi + p1−σ
yi

) γ−σ
σ−1

)−1

+(pyi −m)

−1 +
ni(σ − γ)

p2σ
yi

(
p1−σ

xi + p1−σ
yi

)1+ σ−γ
σ−1

− niσ

p1+σ
yi

(
p1−σ

xi + p1−σ
yi

)σ−γ
σ−1


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Example: Pricing Game with Multiple Equilibria

• Assume that the four markets differ only in terms of type 2
customer population, ni; we assume they are
(n1, n2, n3, n4) = (1500, 2500, 3000, 4000)

• The other parameters are common across markets:

σ = 3; γ = 2; m = 1; A = 50

• For each city, we solve the FOC

MRx(pxi, pyi) = 0
MRx(pxi, pyi) = 0

}
for i = 1, . . . , 4

and check the second-order conditions global optimality for each
firm in each potential equilibria
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Example: Pricing Game with Multiple Equilibria

• Equilibrium possibilities for each firm
• Niche strategy: price high, get low elasticity buyers.
• Mass market strategy: price low to get type 2 people.
• Low population implies both do niche
• Medium population implies one does niche, other does mass market,

but both combinations are equilibria.
• High population implies both go for mass market
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Example: Pricing Game with Multiple Equilibria

• Unique equilibrium for type 1 and 4 cities:

city 1: (px1, py1) = (24.24, 24.24)
city 4: (px4, py4) = (1.71, 1.71)

• In type 1 cities is for both firms to choose a niche strategy
• In type 4 cities is for both to pursue a mass market strategy
• Intuition: the mass market is small in type 1 cities but large in type 4

cities.

Che-Lin Su Structural Estimation



Estimation of Games

Example: Pricing Game with Multiple Equilibria

• There are two equilibria in type 2 cities and type 3 cities:

City 2:
(
pI

x2, p
I
y2

)
= (25.18, 2.19)(

pII
x2, p

II
y2

)
= (2.19, 25.18)

City 3:
(
pI

x3, p
I
y3

)
= (2.15, 25.12)(

pII
x3, p

II
y3

)
= (25.12, 2.15)

• One firm chooses a niche strategy while the other chooses a mass
market strategy.

• Intuition: the mass markets in type 2 and type 3 cities are large
enough to attract one firm, but not large enough to attract the
other firm.
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Generating Synthetic Data

• Assume that the equilibria in the four city types are

(px1, py1) = (24.24, 24.24)
(px2, py2) = (25.18, 2.19)
(px3, py3) = (2.15, 25.12)
(px4, py4) = (1.71, 1.71)

• Econometrician observes price data with measurement errors for 4K
cities, with K cities of each type

• We used a normally distributed measurement error ε ∼ N(0, 50) to
simulate price data for 40,000 cities, with 10,000 cities of each type
(K = 10,000)

• We want to estimate the unknown structural parameters
(σ, γ, A,m) as well as equilibrium prices (pxi, pyi)4i=1 implied by the
data in all four cities.
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Example: Pricing Game with Multiple Equilibria

• MPEC formulation

min
(pxi,pyi,σ,γ,A,m)

K∑
k=1

4∑
i=1

(
(pk

xi − pxi)2 + (pk
yi − pyi)2

)
subject to: pxi, pyi ≥ 0, ∀i

[FOC:] 0 = MRy(pxi, pyi) = MRx(pxi, pyi), ∀ i

[global opt:] (pxi −m)Dx(pxi, pyi) ≥ (pj −m)Dx(pj , pyi), ∀ i, j

[global opt:] (pyi −m)Dy(pxi, pyi) ≥ (pj −m)Dy(pxi, pj), ∀ i, j

• We do not impose an equilibrium selection criterion
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Game Estimation Results

• Case 1: Estimate only σ and γ and fix Ax = Ay = 50 and
mx = my = 1

• Case 2: Estimate all six structural parameters but impose the
symmetry constraints on the two firms: Ax = Ay and mx = my

• Case 3: Estimated all six structural parameters without imposing the
symmetry constraints

Parameters Case 1 Case 2 Case 3

(σ, γ) ( 3.008, 2.016) ( 2.822, 1.987) ( 3.080, 2.093)
(Ax, Ay) (50.404, 50.404) (50.236, 49.544)
(mx,my) ( 0.975, 0.975) ( 1.084, 0.972)
(px1, py1) (24.292, 24.292) (24.443, 24.443) (24.694, 24.241)
(px2, py2) (25.192, 2.166) (25.248, 2.139) (25.434, 2.004)
(px3, py3) ( 2.127, 25.135) ( 2.100, 25.163) ( 2.243, 24.934)
(px4, py4) ( 1.718, 1.718) ( 1.730, 1.730) ( 1.814, 1.652)

Che-Lin Su Structural Estimation



Estimation of Games

Conclusion

• Structural estimation methods are far easier to construct if one uses
the structural equations

• The numerical algorithm advances of the past forty years (SQP,
Augmented Lagragian, Interior Point, AD, MPEC) with NLP solvers
such as KNITRO, SNOPT, filterSQP, PATH, makes this tractable

• Numerical analysis is more useful for empirical economists than new
econometric theory

• User-friendly interfaces (e.g., AMPL, GAMS) makes this as easy to
do as Stata, Gauss, and Matlab

• This approach makes structural estimation really accessible to a
larger set of researchers
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