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Outline

• We are interested in performing likelihood-based inference

in nonlinear and/or non-normal DSGE models.

• We apply particle filtering to evaluate the likelihood of the

model.

• We estimate a neoclassical business cycle model with

investment-specific technological change and stochastic

volatility.
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What is the Particle Filter?

• The particle filter is a monte carlo algorithm that tracks

the distribution of states conditional on a sequence

of observables.

• Original idea seems to be by Handschin and Mayne (1969).

• Applied in financial econometrics by Shephard and

coauthors.

• Reviewed on Doucet, De Freitas, and Gordon (2001).

• We modify the filter to be more flexible with shocks.
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Why Are Nonlinearities Important?

• Most DSGE models are nonlinear.

• Common practice: estimate a linearized version.

• Linearization eliminates asymmetries, threshold effects,

precautionary behavior, big shocks,....

• Moreover, linearization induces an approximation error.

• This is worse than you may think:

1. Theoretical arguments.

2. Computational evidence.
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Theoretical Arguments

We develop these arguments in "Convergence Properties of the
Likelihood of Computed Dynamic Models" (2006) and in some
work-in-progress.

1. Second-order errors in the approximated policy function
induce first-order errors in the likelihood function.

2. As the sample size grows, the error in the likelihood function

also grows and we may have inconsistent point estimates.

3. Linearization complicates the identification of parameters.
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Computational Evidence

We build the computational evidence in several papers.

Several researchers (Ann, King, Schorfheide, Winschel) have

gathered similar evidence after our paper first circulated.

1. Big differences in the level of the likelihood.

2. Often, important differences in point estimates.

3. Big differences in smoothed shocks and states.

4. Better identification of parameters.

Estimating Dynamic Macroeconomic Models – p. 6/45



Why Are Non-normalities Important?

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

• However, macro has lagged despite Engle (1982).

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

• However, macro has lagged despite Engle (1982).

• Evidence by Geweke (1993 and 1994).

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

• However, macro has lagged despite Engle (1982).

• Evidence by Geweke (1993 and 1994).

• Recent discussion about the Great Moderation:

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

• However, macro has lagged despite Engle (1982).

• Evidence by Geweke (1993 and 1994).

• Recent discussion about the Great Moderation:

1. Kim and Nelson (1999), McConell and Pérez-Quirós
(2000), and Stock and Watson (2002).

Estimating Dynamic Macroeconomic Models – p. 7/45



Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

• However, macro has lagged despite Engle (1982).
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Why Are Non-normalities Important?

• Evidence of time-varying volatility in time series.

• Fundamental issue in financial econometrics.

• However, macro has lagged despite Engle (1982).

• Evidence by Geweke (1993 and 1994).

• Recent discussion about the Great Moderation:

1. Kim and Nelson (1999), McConell and Pérez-Quirós
(2000), and Stock and Watson (2002).

2. Good luck? Sims and Zha (2005).

3. Or good policy? Clarida, Galí, and Gertler (2000).

Estimating Dynamic Macroeconomic Models – p. 7/45



State Space Representation of the Model

• How do we evaluate the likelihood p
(
yT ; γ

)
of a DSGE

model?
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State Space Representation of the Model

• How do we evaluate the likelihood p
(
yT ; γ

)
of a DSGE

model?

• Transition equation:

St = f (St−1,Wt; γ) ⇒ p (St|St−1; γ)

• Measurement equation:

Yt = g (St, Vt; γ) ⇒ p (Yt|St; γ)

• We want to track conditional density p
(
St|y

t−1; γ
)
.
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Factorization of the Likelihood

• Why?

p
(
yT ; γ

)
=

T∏

t=1

p
(
yt|y

t−1; γ
)

=

T∏

t=1

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt
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Factorization of the Likelihood

• Why?

p
(
yT ; γ

)
=

T∏

t=1

p
(
yt|y

t−1; γ
)

=

T∏

t=1

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt

• Knowledge of
{
p

(
St|y

t−1; γ
)}T

t=1
allows the evaluation

of the likelihood of the model.
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Filtering problem: forecast and update.
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Tracking the Conditional Distribution of States St

Filtering problem: forecast and update.

1. Forecast: Chapman-Kolmogorov equation

p
(
St|y

t−1; γ
)

=

∫
p (St|St−1; γ) p

(
St−1|y

t−1; γ
)
dSt−1

2. Update: Bayes’ theorem

p
(
St|y

t; γ
)

=
p (yt|St; γ) p

(
St|y

t−1; γ
)

p (yt|yt−1; γ)

where:

p
(
yt|y

t−1; γ
)

=

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt
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Intuition

• Previous equations involve complicated integrals.

• In a linear and normal world: mean and variance are
sufficient statistics ⇒ translation and spread.

• This can be done by the Kalman filter.

• In a nonlinear and/or non-normal world, we need to carry
the distribution ⇒ deformation.

• This can be done by the Particle filter.

• Alternatives? Unscented Kalman filter, Grid Filter,...
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A Law of Large Numbers

T∏

t=1

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt
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A Law of Large Numbers

T∏

t=1

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt

Suppose we have
{{

si
t|t−1

}N

i=1

}T

t=1

∼
{
p

(
St|y

t−1; γ
)}T

t=1
.
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A Law of Large Numbers

T∏

t=1

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt

Suppose we have
{{

si
t|t−1

}N

i=1

}T

t=1

∼
{
p

(
St|y

t−1; γ
)}T

t=1
.

Then:

p
(
yT ; γ

)
≃

T∏

t=1

1

N

N∑

i=1

p
(
yt|s

i
t|t−1; γ

)
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A Law of Large Numbers

T∏

t=1

∫
p (yt|St; γ) p

(
St|y

t−1; γ
)
dSt

Suppose we have
{{

si
t|t−1

}N

i=1

}T

t=1

∼
{
p

(
St|y

t−1; γ
)}T

t=1
.

Then:

p
(
yT ; γ

)
≃

T∏

t=1

1

N

N∑

i=1

p
(
yt|s

i
t|t−1; γ

)

Evaluating the likelihood function ⇔ Drawing from density:

{
p

(
St|y

t−1; γ
)}T

t=1
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Introducing Particles

•
{
si
t−1|t−1

}N

i=1
N i.i.d. draws from p

(
St−1|y

t−1; γ
)
.
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Introducing Particles

•
{
si
t−1|t−1

}N

i=1
N i.i.d. draws from p

(
St−1|y

t−1; γ
)
.

• Each si
t−1|t−1 is a particle and

{
si
t−1|t−1

}N

i=1
a swarm of

particles.

•
{
si
t|t−1

}N

i=1
N i.i.d. draws from p

(
St|y

t−1; γ
)
.

• Each si
t|t−1 is a proposed particle and

{
si
t|t−1

}N

i=1
a swarm

of proposed particles.

• Weight of each proposed particle:

qi
t =

p
(
yt|s

i
t|t−1; γ

)

∑N
i=1 p

(
yt|si

t|t−1; γ
)
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A Proposition

• Let
{
si
t|t−1

}N

i=1
be a draw from p

(
St|y

t−1; γ
)
.
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A Proposition

• Let
{
si
t|t−1

}N

i=1
be a draw from p

(
St|y

t−1; γ
)
.

• Let
{
s̃i
t

}N

i=1
be a draw with replacement from

{
si
t|t−1

}N

i=1

and probabilities qi
t.
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A Proposition

• Let
{
si
t|t−1

}N

i=1
be a draw from p

(
St|y

t−1; γ
)
.

• Let
{
s̃i
t

}N

i=1
be a draw with replacement from

{
si
t|t−1

}N

i=1

and probabilities qi
t.

• Then,
{
s̃i
t

}N

i=1
is a draw from p

(
St|y

t; γ
)
:

{
si
t|t

}N

i=1
=

{
s̃i
t

}N

i=1
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A Proposition

• Let
{
si
t|t−1

}N

i=1
be a draw from p

(
St|y

t−1; γ
)
.

• Let
{
s̃i
t

}N

i=1
be a draw with replacement from

{
si
t|t−1

}N

i=1

and probabilities qi
t.

• Then,
{
s̃i
t

}N

i=1
is a draw from p

(
St|y

t; γ
)
:

{
si
t|t

}N

i=1
=

{
s̃i
t

}N

i=1

• Proof: Importance sampling and Bayes’ theorem.
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Importance of the Proposition

1. Update: We can use a draw
{
si
t|t−1

}N

i=1
from p

(
St|y

t−1; γ
)

to get a draw
{
si
t|t

}N

i=1
from p

(
St|y

t; γ
)
.
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Importance of the Proposition

1. Update: We can use a draw
{
si
t|t−1

}N

i=1
from p

(
St|y

t−1; γ
)

to get a draw
{
si
t|t

}N

i=1
from p

(
St|y

t; γ
)
.

2. Forecast: We can use a draw
{
si
t|t

}N

i=1
from p

(
St|y

t; γ
)
, a

draw from p (Wt+1; γ), and St+1 = f (St,Wt+1; γ) to get a

draw
{
si
t+1|t

}N

i=1
.
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Particle Filtering I

Step 0, Initialization: Sample N values
{
si
1|0

}N

i=1
from

p (S1; γ) . Go to step 2.
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Particle Filtering I

Step 0, Initialization: Sample N values
{
si
1|0

}N

i=1
from

p (S1; γ) . Go to step 2.

Step 1, Forecast: Sample N values
{
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t|t−1

}N

i=1
with

p (Wt; γ) and St = f (St−1,Wt; γ) .
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Particle Filtering I
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1|0

}N

i=1
from

p (S1; γ) . Go to step 2.

Step 1, Forecast: Sample N values
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si
t|t−1

}N

i=1
with

p (Wt; γ) and St = f (St−1,Wt; γ) .

Step 2, Weighting: Assign to each draw si
t|t−1 the

weight qi
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Particle Filtering I

Step 0, Initialization: Sample N values
{
si
1|0

}N

i=1
from

p (S1; γ) . Go to step 2.

Step 1, Forecast: Sample N values
{
si
t|t−1

}N

i=1
with

p (Wt; γ) and St = f (St−1,Wt; γ) .

Step 2, Weighting: Assign to each draw si
t|t−1 the

weight qi
t.

Step 3, Update: Draw
{
si
t|t

}N

i=1
with replacement from

{
si
t|t−1

}N

i=1
with probabilities

{
qi
t

}N

i=1
. If t < T set

t t+ 1 and go to step 1. Otherwise stop.
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Particle Filtering II

Use

{{
si
t|t−1

}N

i=1

}T

t=1

to compute:

p
(
yT ; γ

)
≃

T∏

t=1

1

N

N∑

i=1

p
(
yt|s

i
t|t−1; γ

)

We can filter, forecast, and smooth
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An Application: a Business Cycle Model

• I want to show the power of the particle filter.

• And learn something about the evolution of the U.S.

aggregate fluctuations over the last decades.

• A business cycle model with:

1. Investment-specific technological change. Greenwood,
Herkowitz, and Krusell (1997 and 2000)
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A Look at the Data
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An Application: a Business Cycle Model

• I want to show the power of the particle filter.

• And learn something about the evolution of the U.S.

aggregate fluctuations over the last decades.

• A business cycle model with:

1. Investment-specific technological change. Greenwood,
Herkowitz, and Krusell (1997 and 2000)

2. Stochastic volatility.
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Another look at the Data: The Variance
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Households

• Representative household with utility function:

E0

∞∑

t=0

βt
(
edt logCt + ψ log (1 − Lt)

)

• Law of motion of dt, the preference shock:

dt = ρdt−1 + σdtεdt, εdt ∼ N (0, 1)

• We will explain later the law of motion of σdt.
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Technology

• Final Good:
Ct +Xt = AtK

α
t L

1−α
t

• Law of motion of capital:

Kt+1 = (1 − δ)Kt + VtXt

• Shocks:

logAt = ζ + logAt−1 + σatεat, ζ ≥ 0 and εat ∼ N (0, 1)

log Vt = υ + log Vt−1 + σvtευt, υ ≥ 0 and ευt ∼ N (0, 1)
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Stochastic Volatility

We follow a standard specification:

log σdt = (1 − λd) log σd + λd log σdt−1 + τdηdt and ηdt ∼ N (0, 1)

log σat = (1 − λa) log σa + λa log σat−1 + τaηat and ηat ∼ N (0, 1)

log συt = (1 − λυ) log συ + λυ log συt−1 + τυηυt and ηυt ∼ N (0, 1)
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Analysis of the Model

• It can be shown that along a balanced growth path the
following variables are stationary:

Yt/Zt, Ct/Zt, Xt/Zt, Kt+1/(ZtVt), (Yt/Lt)/Zt, and Lt

where Zt = A
1/(1−α)
t V

α/(1−α)
t .
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Analysis of the Model

• It can be shown that along a balanced growth path the
following variables are stationary:

Yt/Zt, Ct/Zt, Xt/Zt, Kt+1/(ZtVt), (Yt/Lt)/Zt, and Lt

where Zt = A
1/(1−α)
t V

α/(1−α)
t .

• The growth rates for the exogenous shocks are:

logAt − logAt−1 = ζ + σatεat

log Vt − log Vt−1 = υ + σvtευt
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Analysis of the Model

• It can be shown that along a balanced growth path the
following variables are stationary:

Yt/Zt, Ct/Zt, Xt/Zt, Kt+1/(ZtVt), (Yt/Lt)/Zt, and Lt

where Zt = A
1/(1−α)
t V

α/(1−α)
t .

• The growth rates for the exogenous shocks are:

logAt − logAt−1 = ζ + σatεat

log Vt − log Vt−1 = υ + σvtευt

• Therefore, Yt, Ct, Xt, and Yt/Lt grow at rate
(ζ + αυ)/(1 − α), Kt grows at rate (ζ + υ)/(1 − α), and Lt is
stationary.
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Transforming the Model

• The model is nonstationary because of the presence of two
unit roots, one in each technological process.

• We need to transform the model into a stationary problem.

• We scale variables as C̃t = Ct

Zt
, X̃t = Xt

Zt
, and K̃t = Kt

ZtVt−1
.

• Then:

E0

∞∑

t=0

βt
(
edt log C̃t + ψ log(1 − Lt)

)

C̃t + e
γ+αυ+σatεat+ασυtευt

1−α K̃t+1 =

eγ+σatεatK̃α
t L

1−α
t + (1 − δ) e−υ−συtευtK̃t
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Equilibrium Conditions

1. Euler equation:

edte
γ+αυ+εat+ασυtευt

1−α

C̃t

=

βEt
edt+1

C̃t+1

(
αeγ+σat+1εat+1K̃α

t+1L
1−α
t+1 + (1 − δ) e−υ−συt+1ευt+1

)

2. A labor supply condition:

ψ
edtC̃t

1 − Lt
= (1 − α) eγ+σatεatK̃α

t L
−α
t

3. The resource constraint:

C̃t+e
γ+αυ+σatεat+ασυtευt

1−α K̃t+1 = eγ+σatεatK̃α
t L

1−α
t +(1 − δ) e−υ−συtευtK̃t
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The Steady State

• We can find the steady state of the transformed model.

• We have a cointegration relation between output and
investment in nominal terms:

X̃ss

Ỹss

= α

(
e

ζ+αυ

1−α − (1 − δ) e−υ
)

exp( ζ+αυ

1−α
)

β − (1 − δ) exp (−υ)

• Let

log K̂t+1 = log
K̃t+1

K̃ss

and log X̂t = log
X̃t

X̃ss
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Solution

• We solve the model using 2nd order perturbation.
• Other non-linear solution methods are possible. Aruoba,

Fernández-Villaverde, and Rubio-Ramírez (2005).
• Structure of a 2nd order approximation:

log K̂t+1 = Ψk1st +
1

2
s′tΨk2st

log X̂t = Ψx1st +
1

2
s′tΨx2st

logLt = Ψl1st +
1

2
s′tΨl2st

where:

st =
(
1, log K̂t, dt, σatεat, συtευt, log σdt, log σat, log συt

)′
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State Space Representation I: Transition Equation

f1 (St,Wt) = 1

f2 (St,Wt) = Ψk1st +
1

2
s′tΨk2st

f3 (St,Wt) = ((1 − λa) log σa + λa log σat + τaηat+1) εat+1

f4 (St,Wt) = ((1 − λυ) log συ + λυ log συt + τυηυt+1) ευt+1

f5 (St,Wt) = ρdt + e(1−λd) log σd+λd log σdt+τdηdt+1εdt+1

f6 (St,Wt) = (1 − λa) log σa + λa log σat + τaηat+1

f7 (St,Wt) = (1 − λυ) log συ + λυ log συt + τυηυt+1

f8 (St,Wt) = (1 − λd) log σd + λd log σdt + τdηdt+1

f9−16 (St,Wt) = st

where St = (st, st−1) .
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State Space Representation II: Measurement Equation




∆ logPt

∆ log Yt

∆ logXt

logLt


 =




−υ
γ+αυ
1−α

γ+αυ
1−α

logLss + Ψl3


 +




−ευt

Ψy1 (st − st−1) + 1
2

(
s′tΨy2st − s′t−1Ψy2st−1

)
+ σat−1εat−1+ασυt−1ευt−1

1−α

Ψx1 (st − st−1) + 1
2

(
s′tΨx2st −

1
2s

′
t−1Ψx2st−1

)
+ σat−1εat−1+ασυt−1ευt−1

1−α

Ψl1st + 1
2s

′
tΨl2st




+




0

ǫ1t

ǫ2t

ǫ3t



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Performing Likelihood-Based Inference

• Time series:

1. Relative price of capital, output, investment, and hours.

2. Sample: 1955:Q1 to 2000:Q4.

• Vector of parameters γ is:

(ρ, β, ψ, α, δ, υ, ζ, τd, τa, τυ, σd, σa, συ, λa, λυ, λd, σ
ǫ
1, σ

ǫ
2, σ

ǫ
3)

• Use a Random-walk Metropolis-Hastings to explore the
likelihood: Classical and Bayesian.
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MLE

.

Table 5.1: Maximum Likelihood Estimates

Parameter Point Estimate Standard Error (x10 3)

a

d

a

d

a

d

1²

2²

3²

0.967

0.999

2.343

8.960E-003

3.594E-005

7.120E-002

7.772E-003

5.653E-002

4.008E-004

8.523E-003

5.016E-003

4.460E-002

0.998

0.998

1.031E-005

1.024E-004

1.110E-005

3.743

0.460

6.825

0.828

2.254

1.589

2.940

2.034

0.692

0.101

2.344

6.788

8.248

2.302

0.424

0.495

0.082
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Fit of the Data
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Figure 6.1: Model versus Data
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Shocks
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Figure 6.2: Smoothed Capital and Shocks
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Volatility I
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Figure 6.3: Smoothed Volatilities
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Volatility II
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Figure 6.4: Instantaneous Standard Deviation
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Counterfactuals I
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Figure 6.5: Counterfactual Exercise 1
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Counterfactuals II
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Figure 6.6: Counterfactual Exercise 2
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Counterfactuals III
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Figure 6.7: Counterfactual Exercise 3
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Are Nonlinearities and Non-normalities Important?
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Are Nonlinearities and Non-normalities Important?

• We estimate four version of the model:

Table 7.1: Versions of the Model

Solution No Stochastic Volatility Stochastic Volatility

Linear Version 1 Version 2

Quadratic Version 3 Benchmark
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Are Nonlinearities and Non-normalities Important?

• We estimate four version of the model:

Table 7.1: Versions of the Model

Solution No Stochastic Volatility Stochastic Volatility

Linear Version 1 Version 2

Quadratic Version 3 Benchmark

• We use Likelihood Ratio tests to compare models, Rivers
and Vuong (2002).
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Are Nonlinearities and Non-normalities Important?

• We estimate four version of the model:

Table 7.1: Versions of the Model

Solution No Stochastic Volatility Stochastic Volatility

Linear Version 1 Version 2

Quadratic Version 3 Benchmark

• We use Likelihood Ratio tests to compare models, Rivers
and Vuong (2002).

• Loglike benchmark: 2350.6, loglike version 2: 2230.4
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Comparison with Linear Model I
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Figure 7.1: Comparison of Smoothed Capital and Shocks
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Comparison with Linear Model II
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Figure 7.2: Comparison of Smoothed Volatilities
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What are We Doing Now?

• We are estimating a richer DSGE model with:

1. Nominal and real rigidities.

2. Monetary and fiscal policy.

3. Stochastic volatility.

4. Parameter drifting.
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What are We Doing Now?

• We are estimating a richer DSGE model with:

1. Nominal and real rigidities.

2. Monetary and fiscal policy.

3. Stochastic volatility.

4. Parameter drifting.

• We are working on a model with micro heterogeneity.
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What are We Doing Now?

• We are estimating a richer DSGE model with:

1. Nominal and real rigidities.

2. Monetary and fiscal policy.

3. Stochastic volatility.

4. Parameter drifting.

• We are working on a model with micro heterogeneity.

• We are exploring the semi-nonparametric estimation of
DSGE models.
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Conclusions

1. Particle filtering is a general purpose and efficient method to
estimate DSGE models.

2. We learned about the importance of stochastic volatility to
account for U.S. Business Cycle.

3. Much exciting work to do in the next few years!
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