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Abstract 
We develop a Bayesian semi-parametric approach to the instrumental variable problem. We 
assume linear structural and reduced form equations, but model the error distributions non-
parametrically.   A Dirichlet process prior is used for the joint distribution of structural and 
instrumental variable equations errors. Our implementation of the Dirichlet process prior 
uses a normal distribution as a base model.  It can therefore be interpreted as modeling the 
unknown joint distribution with a mixture of normal distributions with a variable number of 
mixture components.  We demonstrate that this procedure is both feasible and sensible 
using actual and simulated data.  Sampling experiments compare inferences from the non-
parametric Bayesian procedure with those based on procedures from the recent literature on 
weak instrument asymptotics.   When errors are non-normal, our procedure is more efficient 
than standard Bayesian or classical methods. 
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1.  Introduction 

Instrumental variables (IV) methods are fundamental in applied economic research.  

However, because IV methods exploit only that portion of the variation in the endogenous 

variable induced by shifting the instrumental variable, inference tends to be imprecise.  This 

problem is exacerbated when the instruments are only weakly related to the endogenous 

variables and induce only small amounts of variation. The recent econometrics literature has 

included numerous papers which present potential improvements to the usual asymptotic 

approaches to obtaining estimates and performing inference in IV models.1   

 We present a Bayesian instrumental variables approach that allows nonparametric 

estimation of the distribution of error terms in a set of simultaneous equations. Linear 

structural and reduced form equations are assumed.  Thus, our Bayesian IV procedures is 

properly termed, semi-parametric.  Bayesian methods are directly motivated by the fact that 

researchers are quite likely to have informative prior views about potential values of 

treatment parameters, placing a premium upon methods allowing the use of such 

information in estimation. Weak instrument problems are inherently small sample problems 

in that there is little information available in the data to identify the parameter of interest. As 

Bayesian methods are inherently small sample, they are a coherent choice.  Even in the 

absence of a direct motivation for using Bayesian methods, we provide evidence that 

Bayesian interval estimators perform well compared to available frequentist estimators, 

under frequentist performance criteria.  

 The Bayesian semi-parametric approach attempts to uncover and exploit structure in 

the data.  For example, if the errors are truly non-normal, the version of our model with 

varying error distribution parameters would fit this distribution and may provide efficiency 
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gains from this information.  In contrast, traditional instrumental variable methods are 

designed to be robust to the error distribution and, therefore, may be less efficient.  In the 

case of normal or nearly normal errors, our procedure should have a small efficiency loss.   

 Our nonparametric method for estimating error term distributions can be interpreted 

as a type of mixture model. Rather than choosing a fixed number of base distributions to be 

mixed, we specify a Dirichlet Process (DP) prior that allows the number of mixture 

components to be determined by both the prior and the data.   The alternative of using a 

pre-specified number of mixture components requires some sort of auxiliary computations 

such as Bayes Factors to select the number of components.  In our approach, this is 

unnecessary as the Bayes Factor computations are undertaken as part of the MCMC method.  

There is also a sense that the DP prior is a very general approach which allows model 

parameters to vary from observation to observation.  A posteriori observations which could 

reasonably correspond to the same error distribution parameter are grouped together.  This 

means that the DP approach handles very general forms of heterogeneity in the error 

distributions. 

 Our implementation of the normal base model and conjugate prior is entirely 

vectorized except for one loop in a sub Gibbs Sampler for drawing the parameters governed 

by the DP prior which is currently implemented in C.  This makes DP calculations feasible 

even in a sampling experiment and for the sample sizes often encountered in applied cross-

sectional work.  Computational issues are discussed in appendix A. 

 We conduct an extensive Monte Carlo evaluation of our proposed method and 

compare it to a variety of classical approaches to estimation and inference in IV models. We 

examine estimators’ finite sample performance over a range of instrument strength and 

                                                                                                                                                 
 1 See for example, Stock, Wright, and Yogo (2002) or Andrews, Stock, and Moreira (2006) for excellent 
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under departures from normality.  The semi-parametric Bayes estimators have smaller 

RMSE than standard classical estimators.  In comparison to Bayesian methods that assume 

normal errors, the non-parametric Bayes method has identical RMSE for normal errors and 

much smaller RMSE for log-normal errors.  For both weak and strong instruments, our 

procedure produces credibility regions that are much smaller than competing classical 

procedures, particularly in the case of non-normal errors.  For the weak instrument cases, 

our coverage rates are four to twelve percent below the nominal coverage rate of 95 per 

cent.  Recent methods from the weak instrument classical literature produce intervals with 

coverage rates that are close to nominal levels but at the cost of producing extremely large 

intervals.  For log-normal errors, we find these methods produce infinite intervals more than 

40 per cent of the time.   

 The remainder of this paper is organized as follows. Section 2 presents the main 

model and the essence of our computation algorithm.  Section 3 discusses choices of priors. 

In Section 4, we present two illustrative empirical example applications of our method.  

Section 5 presents results from sampling experiments which compare the inference and 

estimation properties of our proposed method to alternatives in the econometrics literature.  

Section 6 provide timing and autocorrelation information on the Gibbs sampler as well as 

the results of the Geweke (2004) tests for the validity of the sampler and code.  Appendices 

detail the computational strategy and provide specifics of the alternative classical inference 

procedures considered in the paper. 

 

                                                                                                                                                 
overviews of this literature. 
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2.  Model and MCMC 

In this section, we present a version of the instrumental variable problem and explain how to 

conduct Bayesian inference for it.   Our focus will be on models in which the distribution of 

error terms is not restricted to any specific parametric family.  We also indicate how this 

same approach can be used in models with unknown regression or mean functions. 

 
2.1  The Linear Model 

 Consider the case with one linear structural equation and one “first-stage” or 

reduced form equation.   

(2.1) 
'

1,
'

2,

i i i

i i i i

x z

y x w

δ ε

β γ ε

= +

= + +
 

y is the outcome of interest, x is a right hand side endogenous variable, w is a set of 

exogenous covariates, and z is a set of instrumental variables that includes w. The 

generalization of (2.1) to more than one right hand side endogenous variables is obvious.  If 

ε1  and ε2  are dependent, then the treatment parameter, β,  is identified by the variation 

from the variables in z, which are excluded from the structural equation and are commonly 

termed “instrumental variables.”  Classical instrumental variables estimators such as two 

stage least squares do not make any specific assumptions regarding the distribution of the 

error terms in (2.1).   In contrast, the Bayesian treatment of this model has relied on the 

assumption that the error terms are bivariate normal (c.f. Chao and Phillips (1998), Geweke 

(1996), Kleibergen and Van Dijk (1998), Kleibergen and Zivot (2003), Rossi, Allenby and 

McCulloch(2005), and Hoogerheide, Kleibergen, and Van Dijk (2007)).2   

                                                 
2 An exception is Zellner (1998) whose BMOM procedure does not use a normal or any other specific 
parametric family of distributions of the errors.  
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(2.2) ( )1,

2,
~ ,i

i
i

N
ε

ε μ
ε

⎛ ⎞
= Σ⎜ ⎟

⎝ ⎠
 

For reasons that will become apparent later, we will include the intercepts in the error terms 

by allowing them to have non-zero mean, μ .   

 Most researchers regard the assumption of normality as only an approximation to the 

true error distribution.  Some methods of inference such as those based on TSLS and the 

more recent weak and many instruments literature do not make any explicit distributional 

assumptions.  In addition to outliers, some forms of conditional heterogeneity and mis-

specification of the functional forms of the regression functions can produce non-normal 

error terms.   For these reasons, we develop a Bayesian procedure that uses a flexible error 

distribution that can be given a non-parametric interpretation.  

 Our approach builds on the normal based model but allows for separate error 

distribution parameters, ( ),i i iθ μ= Σ  for every observation3. As discussed below, this 

affords a great deal of flexibility in the error distribution.  However, as a practical matter 

some sort of structure must be imposed on these set of parameters, otherwise we will face a 

problem of parameter proliferation.  One solution to this problem is to use a prior over the 

collection, { }iθ , which creates dependencies.  In our approach, we use a prior that clusters 

together “similar” observations into groups and use *I  to denote the number of these 

groups. Each of the *I  groups has its own unique value of θ.  The value of *I  will be 

random as well, allowing for a truly non-parametric method in which the number of clusters 

can increase with the sample size.  In any fixed size sample, our full Bayesian implementation 

will introduce additional parameters only if necessary, avoiding the problem of over-fitting.   
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 With a normal base distribution, the resulting predictive distribution of the error 

terms (see section 2.4 for details) will involve a mixture of normal distributions where the 

number and shape of the normal components is influenced by both the prior and the data.  

A mixture of normals can provide a very flexible approximation device.  Thus, our 

procedure enjoys much of the flexibility of a finite mixture of normals without requiring 

additional computations/procedures to determine the number of components and impose 

penalties for over-fitting.   It should be noted that a sensible prior is required for any 

procedure that relies explicitly or implicitly (as ours does) on Bayes Factor computations.   

 In our procedure, observations with large errors can be grouped separately from 

observations with small errors.  The coarseness of this clustering is dependent on the 

information content of the data and the prior settings.  In principle, this allows for a general 

form of heteroskedasticity with different variances for each observation.    
 
2.2 Flexible Specifications through a Hierarchical Model with a Dirichlet Process Prior 

Our approach to building a flexible model is to allow for a subset of the parameters to vary 

from observation to observation.  We can partition the full set of parameters into a part that 

is fixed, η ,  and one that varies from observation to observation, θ .  For example, we could 

assign ( )η β δ γ= , ,  and ( )θ μ= Σ,  as suggested above.  The problem becomes how to put 

a flexible prior on the collection, { }θ =1
N
ii .  The standard hierarchical approach is to assume 

that each θi  is iid ( )λ0G  where 0G  is some parametric family of distributions with 

hyperparameters, λ .  Frequently, a prior is put on λ and this has the effect of inducing 

dependencies between the iθ .  

                                                                                                                                                 
3 Our approach is closest to that of Escobar and West (1995) who consider the problem of Bayesian density 
estimation for direct observation of univariate data using mixtures of univariate normals.   
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 A more flexible approach is to specify a DP prior for G instead. 

(2.3) 
( )0

~
~ ,

i iid G
G DP G
θ

α
 

( )0,DP Gα  denotes the DP with concentration parameter α  and base distribution 0G .  G  

is a random distribution such that with probability one G is discrete.  This means that 

different iθ  may correspond to the same atom of G and hence be the same.  This is a form 

of dependency in the prior achieved by clustering together some of the iθ .   It should be 

noted that while each draw of G is discrete this does not mean that the joint prior 

distribution on { }θ =1
N
ii  is discrete once G has been margined out.  This distribution is called 

a mixture of Dirichlet Processes and is shown in Antoniak (1974) to have continuous 

support.  It is worth noting that the marginal distribution of any iθ  is oG .  The sole purpose 

of the DP prior is to introduce dependencies in the collection, { }θ =1
N
ii .  

 A useful way to gain some intuition as to the DP prior is to consider the “stick-

breaking” representation of this prior (Sethuraman (1994)).  Each draw from G is a discrete 

distribution. The support or “atoms” of this distribution are iid draws from oG .  The 

probability weights are obtained as ( )1
1 1k

k k jjπ ω ω−
== −∏ , with 0 0ω =  and 

( )~ 1,k Betaω α .  Thus, a draw G can be represented as 1 kkkG Iθπ∞
== ∑ , where Iθ  is a 

point mass at atom θ , the kθ  are  i.i.d. draws from oG .   

 The distribution of the atom weights depends only on α.  We obtain the π  weights 

by starting with the full mass one and repeatedly taking bites of size kω  out of the remaining 

weight.  If α is big we will take small bites so that the mass will be spread out over a large 

number of atoms.  In this case, G will be a discrete approximation of oG  so that the draws 

of G will be close to oG  and the { }iθ  will essentially be i.i.d draws from oG .  If α is small, 

we will take big bites and a draw of G  will put large weight on a few random draws from 
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oG .  In this case, the { }iθ  contain only a few unique values.  The number of unique values is 

random with values between one and N being possible. 

 Suppressing the fixed parameters η , we can write our basic model in hierarchical 

form as the set of the following conditional distributions: 

 

(2.4) 
( )

{ }
( )

0~ ,

, ,
i

i i i i

G DP G

G

x y z

α

θ

θ

 

In the posterior distribution for this model, the prior and the information in the data 

combine to identify groups of observations which could reasonably share the same θ.    In 

section 3, we consider priors on the DP concentration parameter α and the selection of the 

base prior distribution, oG .  Roughly these two priors delineate the number and type of 

atoms generated by the DP prior. 

 
2.3  MCMC Algorithms 

The fixed parameter, linear model in (2.1) and (2.2) has a Gibbs Sampler as defined in Rossi 

Allenby, and McCulloch (2005) (see also Geweke (1996)) consisting of the following 

conditional posterior distributions: 

(2.5) , , , , , , ,y x Z Wβ γ δ μ Σ   

(2.6)         , , , , , , ,y x Z Wδ β γ μ Σ  

(2.7) , , , , , , ,y x Z Wμ β γ δΣ  

where , , ,y x Z W  denote vectors and arrays formed by stacking the observations.  The key 

insight needed to draw from (2.5) is that, given δ,  we “observe”  1ε  and we can compute 

the conditional distribution of y given x, Z, W and 1ε . The parameters of this conditional 
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distribution are “known” and we simply standardize to obtain a draw from a Bayes 

regression with N(0,1) errors.   The draw in (2.6) is effected by transforming to the reduced 

form which is still linear in δ (given β).  This exploits the linearity (in x) of the structural 

equation.  Again, we standardize the reduced form equations and stack them to obtain a 

draw from a Bayes regression with N(0,1) errors.  The last draw (2.7)  simply uses standard 

Bayesian multivariate normal theory using the errors as “data.”   

 If some subset of the parameters is allowed to vary from observation to observation 

with a DP prior, we then must add a draw of these varying parameters to this basic set-up.  

For example, if we define ( ),i i iθ μ= Σ , then the Gibbs Sampler becomes 

(2.8) β γ α δ Θ, , , , , , ,y x Z W  

(2.9)        δ α β γ Θ, , , , , , ,y x Z W  

(2.10)      α β γ δΘ , , , , , , ,y x Z W  

(2.11)          , , , , , , ,y x Z Wα β γ δΘ  

{ }iθΘ = .  The draws in (2.8) and (2.9) are the same as for the fixed parameter case except 

that the regression equations must be standardized to have zero mean errors and unit 

variance.  Since Θ contains only *I  unique elements, we can group observations by unique 

iθ value and standardize each with different error means and covariance matrices.  This 

presents some computing challenges for full vectorization but it is conceptually 

straightforward.   The draw of Θ in (2.10) is done by a Gibbs sampler which cycles thru each 

of the N iθ s (Escobar and West (1998); see appendix A for full details).   The input to this 

Gibbs Sampler as “data” is the matrix (N x 2) of error terms computed using the last draws 

of ( ), ,β δ γ .   Each draw of Θ will contain a different number ( )N≤  of unique values.  
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The draw of α is a straightforward univariate draw (see appendix A for details).  Thus, this 

model can be interpreted as a linear structural equations model with errors following a 

mixture of normals with a random number of components which are determined by the data 

and prior information. 

 
2.4 Bayesian Density Estimation 

One useful by-product of our DP MCMC algorithm is a very simple way of obtaining an 

error density estimate directly from the MCMC draws without significant additional 

computations.  In the empirical examples in section 4, we will display some of these density 

estimates in an effort to document departures from normality.  The Bayesian analogue of a 

density estimate is the predictive distribution of the random variables for which a density 

estimate is required.  In our case, we are interested in the predictive distribution of the error 

terms.  This can be written as follows: 

(2.12) ( ) ( ) ( )1 1 1 1N N N Np Data p p Data dε ε θ θ+ + + += Θ∫  

We can obtain draws from 1N Dataθ +  using 
 
(2.13) ( ) ( ) ( )1 1N Np Data p p Data dθ θ+ += Θ Θ Θ∫  

Since each draw of Θ has *I N<  unique values, and the base model, ( )p ε θ , is a normal 

distribution, we can interpret the predictive distribution or density estimation problem as 

involving a mixture of normals.  This mixture involves a random number of components.  

To implement this, we simply draw from 1Nθ + Θ  for each draw of Θ returned by our 

MCMC procedure (see appendix A for the details of this draw).  Denote these draws by 

1
r
Nθ + ,  1, ,r R= … .  The Bayesian density “estimate” is simply the MCMC estimate of the 

posterior mean of the density ordinate. 
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(2.14) ( ) ( )1
1

1ˆ
R

r
N

r
p

R
ε ϕ ε θ +

=
= ∑  

where ( )ϕ  is the bivariate normal density function. 

2.5 Generalizations of the Linear Model 

The model and MCMC algorithm considered here can easily be extended.  We have 

emphasized the use of the DP prior for the parameters of the error terms but we could easily 

put the same prior on the regression coefficients and allow these to vary from observation to 

observation as in 

(2.15) '
i i i i i iy x wβ γ ε= + +  

This is a general method for approximating an unknown mean function.  The regression 

coefficients will be grouped together and can assume different values in different regions of 

the regressor space (Geweke and Keane (2007) consider a mixture of normals approach with 

a fixed number of components for regression coefficients).   In addition, a model of the 

form in (2.15) would allow for conditional heteroskedasticity.  Implementation of this 

approach would require separate a DP prior for the coefficients.  Some of the computations 

in the Gibbs sampler for the DP parameters would have to change but our modular 

computing method would easily allow one to plug in just a few sub-routines.  Moreover, the 

conjugate prior computations required would be less elaborate than for the DP model for 

multivariate normal error terms.  An interesting special case of (2.15) would be the model 

with heterogenous treatment effects. 

(2.16) '
i i i i iy x wβ γ ε= + +  

Here interest would focus on identifying subsets of the observations with different effects of 

x on y.    The computational algorithms for (2.15) or (2.16) are straightforward extensions of 
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what we have already implemented.  The real work would be in the assessment of reasonable 

priors and in methods for interpreting the results. 
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3.  Hyperparameters and Prior 

In the Bayesian literature on structural equations models, there has been an emphasis on 

developing various reference priors.  For example, Chao and Philips and Kleibergern and 

Zivot consider a Jeffrey’s prior which they show provides a posterior with similarities to the 

sampling distribution of the LIML estimator.  Hoogerheide, Kleibergen, and Van Dijk  

extend these results to allow for the incorporation of additional sources of prior information.  

It should be noted that these reference priors depend on the information matrix of the 

normal error likelihood.  In this sense, this Bayesian literature is highly dependent on the 

normality assumption both for the form of the likelihood and the prior.  Since we do not 

employ a normal likelihood, these reference priors are not applicable.  In general, the 

Dirichlet Process prior is a proper prior and there are no improper reference priors that can 

be used with this approach.  

 We develop a prior for the model (2.1)- (2.2) and associated Gibbs sampler (2.8)-(2.11).  

Priors are chosen to enable us to capture reasonable prior information and for convenience 

in making the draws.  The choices include the family 0G  and associated parameters λ ,  the 

prior on ( ), ,β δ γ , and the prior on the DP parameter α.   We will let ( ),β γ , δ  and α be a 

priori independent.  In some of the previous Bayesian literature, priors have been used that 

make β and δ a priori dependent.  Again, this comes from an appeal to the form of the 

likelihood.  As δ gets small, the likelihood over β spreads out, approaching the limiting case 

in which β is not identified.   There is no necessary reason why the prior should take the 

form of the likelihood.   More importantly, it is the prior on the covariance structure of the 

error terms that really governs the behavior of the posterior of β in the weak instruments 

case (see Rossi et al (2007), chapter 7).    
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 Our approach will be to put a prior on α which will admit a reasonable a priori 

distribution of the number of unique iθ  values.  We will choose λ rather than put a prior on 

this quantity.  By inspecting properties of the 0G  prior, direct assessment of λ is possible if 

we standardize our data.  Although the use of standardization does make our prior data 

dependent, we feel that our choices result in a prior which is relatively uninformative without 

being unreasonable in the sense of putting prior probabilities on absurd values of iθ .  We 

note that our approach is very different from an empirical Bayes approach in which λ  is 

chosen to maximize the probability of the observed data.   We also note that our focus is on 

inference about the structural parameters and not the density of the error terms in (2.1).  

Density estimation involves inference about the process by which iθ  values are obtained.  In 

that case, a prior on λ  would allow for inference about this process in the sense that we 

would make posterior inferences about λ  and this would, in turn, affect the predictive 

distribution of the error terms which is the Bayesian analogue of density estimation.  

 In our model, β  is a single parameter of key interest.  β  summarizes the effect on y 

caused by an intervention through x.  It is plausible that prior information may exist for this 

parameter. The other prior choices are both more complex and less interesting to the 

investigator. Our hope is to make simple, reasonable choices that are not overly influential. 

Of course, some researchers view the need to make these prior choices as an additional cost 

of using the Bayesian approach. The Bayesian views this as an important opportunity to 

inject information which may be especially helpful in cases with weak instruments, for 

example.  We note that some of the Bayesian procedures in the literature put priors on the 

reduced form parameters rather than directly on the structural parameters.  Subjective prior 

information is available for the structural parameter but rarely for the reduced form 
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regression coefficients.  Thus, those procedures are best viewed as in the spirit of reference 

priors designed for the situation where the investigator has little or no information about the 

structural parameters or is reluctant to use this information. 

 It is convenient to specify normal priors, ( )~ ,N Vδ δδ μ  and ( ) ( ), ~ ,N Vβγ βγβ γ μ  

as the MCMC draws are normal.  In many applications, this could be simplified further by 

assuming that β  and γ  are a priori independent.  Specifying a univariate normal prior for β  

is appealing as we would only have to think about reasonable values of y xΔ Δ . 

 The choice of priors for the DP is more complicated.   α  governs the number of 

clusters of observation-specific parameters and 0G  influences the values of the unique 

values of parameters corresponding to each cluster. 

3.1  Choice of 0G  and λ 

Recall that in making the draw (2.10),   we may act as if we observe the errors iε , where 

( )~ ,i i iNε μ Σ  and we let ( ),i i iθ μ= Σ . 

 In order to make this draw using the method in Escobar and West (1998), we need to 

be able to compute ( ) ( )ε θ θ λ∫ 0p dG  for a single ε and draw from the posterior of a 

single θ given prior ( )0G λ  and an observed set of i.i.d ε assumed to correspond to that 

single θ. These requirements make the choice of a (conditionally) conjugate prior extremely 

convenient as in this case both of these operations are relatively straightforward. The form 

of the conjugate prior is, 

(3.1) ( ) ( )1~ , , ~ ,IW V N aυ μ μ −Σ Σ Σ  

where IW denotes the inverted-Wishart distribution parameterized so that [ ]1 1E Vυ− −Σ = .  

Given this choice, ( ), , ,V aλ υ μ= .   For the Bayesian procedure based on normal errors, 

we use the same natural conjugate prior for θ and the same values of λ. 
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 Now our problem is to choose λ such that draws from ( )0G λ  are reasonable values 

for iθ .  We start by assuming that we have translated and rescaled x and y so that both are in 

the range [ ],c c−  with high probability.  In practice, a convenient way to do this is to apply 

the transformation which standardizes the observed iy  and ix  to have mean zero and 

sample standard deviation one and use 2c = . We shall follow this procedure in our 

examples, but note that the transformation and c could reasonably be chosen from prior 

information. 

 Given our standardization, 0μ =  is an obvious choice and V vI=  where I is the 2 2×  

identity matrix is a reasonable choice.  The prior on μ governs the location of the atoms and 

the prior on Σ influences both the spread of the μ values as well as the shape of each normal 

atom.  If a large number of atoms are used, it is unlikely to matter much what shapes are a 

priori most probable (i.e. whether the atoms are correlated or uncorrelated normals).  

However, with small numbers of atoms this may matter.  Our assessment procedure allows 

for a relatively large (potential) number of atoms.  This means that the prior on μ  

determines the implied prior of the error distribution.  Since we spread our atoms over the 

error space evenly in all quadrants, our prior specification weakly favors independence of the 

errors.  Thus, in the case of data sets with little information, our Bayes estimators will 

“shrink” toward the case of no endogeneity.   

 To see this, consider the predictive distribution of the error terms under the Dirichlet 

Process prior.  Recall that the marginal distribution of iθ  is ( )0G λ .  Therefore, the 

predictive distribution, ( ) ( ) ( )0p p dGε ε θ θ λ= ∫ , is a multivariate student t with a 

diagonal location matrix, V.  This distribution has zero correlation between the two errors 

(there is dependence but only in the scale).  If we put in a non-diagonal value for V, this 
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could be changed.  The problem, however, is that we rarely have a priori information about 

the sign and magnitude of the error dependence.   Thus, we think the choice of diagonal V is 

a reasonable default choice.  

 We now have three scalar quantities ( ), ,v aυ  to choose.  To make these choices we 

must think about what kinds of normal distributions are possible for the iε .  The largest 

errors would occur when  δ,  β, and γ are zero so that the iε  are like the ( ),i ix y .  Thus we 

need the priors to be spread out enough for μ to cover possible ( ),i ix y  and Σ  to explain 

the variation of ( ),i ix y  in the case where all observations share the same θ. 

 To make the choice of ( ), ,v aυ  more intuitive, consider the implied marginals for 

1 11σ σ=  and 1μ .  We assess intervals for these marginals and then compute the 

corresponding values for ( ), ,v aυ .  Define the intervals as 

(3.2) [ ] [ ] [ ]σ σ κ μ κ< = < = − < < = −1 1 1 2 3 1 3/ 2, 1Pr c Pr c Pr c c  

Given κ , choosing ( ), ,v aυ  is equivalent to choosing 1c , 2c , and 3c .  For example, if we 

use .2κ = , 1 .25c = , 2 3.25c = , and 3 10c = , this gives 2.004υ = , .17v = , and .016a = . 

These values we term our “default” prior and are used in our sampling experiments and our 

empirical examples (see sections 4 and 5).   While these choices may seem to be “too” spread 

out given our choice of standardization, the goal is to be as diffuse as possible without 

allowing absurd choices.  If the resulting posteriors are very sensitive to these prior choices, 

then we would have a problem.  However, we will see in our examples that this does not 

seem to be the case.  The marginal distributions required to evaluate (3.2) are 

(3.3) ( )2
11 1 1~ , ~ 1v v a tυ υσ χ μ υ− −−  

 
3.2 Prior on α 
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What is a reasonable value for α ?  In section 2, we saw that α contributes to G  through the 

weights, kπ .  However, since the corresponding atoms are i.i.d ( )0G λ ,  the weights are not 

interpretable  in a simple manner.  As with our choice of λ, we will use a prior marginal to 

guide our choice of α.  Our goal in using the DP model is to group observations so that 

observations within the same group share the same θ. Given N, the number of observations, 

we will consider the prior marginal on the number of groups, or equivalently, the number of 

unique θ  values obtained by first drawing ( )~ ,G DP α λ  and then N  iid  ~ Gθ . Let *I  

denote the number of unique θ (given N).  Recall that when α is large, the π   weights will 

be spread out so that *I  will tend to be large.  When α  is small, only a few π   will be large 

so *I  will tend to be small. 

 Antoniak (1974) has derived a computable expression for the marginal probability, 

( )*p I α .  In figure 1, the points labeled “× ” plot ( )*p I α  for .10834α =  and 100N = . 

This value of α  was chosen to make the mode of the distribution equal to one.  The points 

labeled “+”, plot the distribution with 1.834α = . This value of α  was chosen to make the 

mode of the distribution equal to eight.  As expected, larger α tend to produce larger *I .  

Either of these priors seem to be too informative in the sense that they exclude a range of 

plausible values of *I .   For this reason, we put a prior on α , instead of assigning it a fixed 

value (as we did for λ). 

 We develop a new prior for α by first choosing a small value α  so that the 

corresponding mode of ( )*p I α  is small, and a large value α , so that the corresponding 

mode of ( )*p I α   is large.  We then distribute our prior probability for α on a grid of 

points between α  and α  according to, 

(3.4) ( ) 1p
ωα αα

α α
−⎛ ⎞∝ −⎜ ⎟−⎝ ⎠

. 
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The points labelled “ i ” in figure 1 show the marginal prior distribution of *I  given 

100N =  and the choices .10834α =  and  1.834α = , and .8ω = .  That is, for each value 

of i , we compute ( ) ( )*p p I iα α=∑ .  This marginal is nicely spread out between the 

other two distributions in the figure corresponding to the extreme choices α and α  which 

have *I  modes of 1 and 8, respectively.   These prior settings are used in the sampling 

experiments reported in section 5 and our first empirical example in section 4.1. For our 

second empirical example in section 4.2, we modify these prior settings to allow an increased 

[ ,α α ] range corresponding to *I  modes of 1 to 30. 

 This prior formulation gives us a simple way to think about α in terms of our 

motivation for using the DP prior: groups of observations.  A drawback is that it depends on 

N, but given the meaning of the parameter this seems reasonable. Putting a prior on α rather 

than just fixing it, makes it easier for the data to guide us in determining the number of 

groups.  Appendix  A gives details on the posterior draw of α  in (2.11). 
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4.  Empirical Examples 

In this section, we consider two empirical examples of the application of our methods.  We 

include examples with small and moderately large numbers of observations. 

 
4.1  Acemoglu 

The first example is due to Acemoglu, Johnson, and Robinson (2001) who consider the 

relationship between GDP per capita and a measure of the risk of expropriation.   To solve 

the endogeneity problem, European settler mortality is used as an instrument.  In former 

colonies with high settler mortality, Acemoglu and co-authors argue that Europeans could 

not settle and, therefore, set up more extractive institutions.  We consider a specification 

which is a structural equation with log GDP related to Average Protection Against Ex-

propriation Risk (APER), latitude and continent dummies4 along with a first stage regression 

of APER on log European Settler Mortality and the same covariates as in the structural 

equation.  The incremental R-squared from the addition of the instrument is .02 with a 

partial F statistic of 2.25 on 1 and 61 degrees of freedom.  The least squares coefficient on 

APER is .42 while the TSLS coefficient is 1.2 in this specification.  The results using 

conventional asymptotics are significant with a t statistic of 2.4 (N=64).   

  While we can reject the hypothesis that APER retards income growth using 

conventional TSLS methods, the confidence interval extends over a very wide range of 

values.  This motivates an interest in methods with greater efficiency.  It is also possible to 

argue that a non-parametric method would overfit this small dataset so this example will 

stress test our Bayesian method with a Dirichlet Prior.  Figure 2 shows the posterior 

distribution using normal errors (top panel) with Dirichlet Prior.  We use the “default” prior 

                                                 
4 The continent dummies used were Africa, Asia and “Neo.”  Neo includes the former British colonies of 
Australia, Canada, New Zealand and the United States.  
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settings for λ and values of ,α α  corresponding to *I  modes of 1 and 8 respectively.  The 

Bayes 95 per cent credibility interval5 is drawn on the horizontal axis with light brackets.  

The interval for the normal error model is (.13, 1.68) and the interval for the DP Prior model 

is (.05,1.2).  The inferences from a Bayesian procedure with normal errors are not too 

different from conventional TSLS estimates.  However, the interval derived from the Bayes-

DP model is considerably shorter and is located nearer the least squares estimates.   

  Figure 3 shows the fitted density of the errors constructed as the Posterior Mean of 

the error density.  This density displays some aspects of non-normality with diamond-shaped 

contours. 

 
4.2 Card Example 

Card (1995) considers the time honored question of the returns to education, exploiting 

geographic proximity to two and four year colleges as an instrument.  He argues that 

proximity to colleges is a source of exogeneous changes in the cost of obtaining an 

education which will cause some to pursue a college education when they might not 

otherwise do so.  The basic structural equation relates log of wage to education (years), 

experience, experience-squared, black dummy variable, and indicator for residing in a 

standard metropolitan statistical area, South indicator variable and various regional 

indicators.  The first stage is a regression of education on two indicators for proximity to 

two and four year colleges and the same covariates as in the structural equation.  The 

incremental R-squared from the addition of the instruments to the first state is .0052 with 

corresponding F of 7.89 on 2 and 2993 degrees of freedom.  OLS estimates of the return to 

education are around .07 while the TSLS estimates are much higher, around .157 with a 

                                                 
5 These credibility intervals are the intervals between .025 to .975 quantiles of the relevant posterior 
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standard error of .052, N=3010.  The LIML estimate is .164 with a standard error of .055.  

To our view, these returns of 14 per cent per year of education seem high.  However, even 

with more than three thousand observations, the confidence interval for the returns on 

education is very large. 

  Figure 4  shows the posterior distributions assuming normal errors and using the DP 

prior.   The 95 per cent posterior credibility regions are denoted by light brackets.  For the 

normal error case, the interval is (.058, .34) while it is (.031, .17) for the DP Prior model.  We 

use the “default” prior settings for λ and values of ,α α  corresponding to *I  modes of 1 

and 30 respectively.   As in the Acemoglu data, the normality assumption makes a difference.  

With the DP prior, the posterior distribution is much tighter and centered on a lower rate of 

return to education.  There is less “endogeneity” bias if one allows for a more flexible error 

distribution.  Figure 5 shows the fitted density from the DP prior procedure (bottom panel) 

as well as the predictive density of the errors from a Bayesian procedure that assumes the 

error terms are normal (top panel).  There are marked differences between these densities.  

The normal error model concludes that there is substantial negative correlation in the errors, 

while the Bayesian non-parametric model yields a distribution with pronounced skewness 

and non-elliptical contours, showing little dependence.  It is possible that outlying 

observations are driving this result.  In any event, the assumption of normality has 

substantial implications for the inference about the structural quantity.  

  These examples illustrate that our Bayesian procedures give reasonable results for a 

wide range of sample sizes, and it matters whether or not one specifies a normal distribution 

of the error terms.  Moreover, it appears that the Bayesian non-parametric model is capable 

of discovering and exploiting structure in the data, resulting in tighter posterior distributions.  

                                                                                                                                                 
distribution, in general they differ from highest posterior density intervals. 
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However, this evidence is far from conclusive.  For this reason, we consider sampling 

experiments in section 5. 
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5.  Simulation Studies 

The Bayesian semi-parametric procedure outlined in sections 2 and 3 above can be evaluated 

by comparison with other Bayesian procedures based on normally distributed equation 

errors or by comparison with classical procedures.  Comparison with a Bayesian procedure 

based on normal errors is straightforward as both procedures are in the same inference 

framework.  Comparison with classical procedures is somewhat more complicated as 

classical methods often draw a distinction between what is termed an “estimation problem” 

and an “inference problem.”  A variety of k-class estimation procedures have been proposed 

for the linear structural equations problem, but the recent classical literature has focused on 

improved methods of inference.  Inference is often viewed as synonymous with the 

construction of confidence intervals with correct coverage probabilities.   In this section, we 

discuss simulation experiments designed to compare the sampling properties of our Bayesian 

semi-parametric procedure with those of alternative Bayes and classical procedures.  

 
5.1  Experimental Design 

We consider the model of section 2.1 which is a linear structural equation with one 

endogeneous right hand side variable.  The simplicity of this case will allow us to explore the 

parameter space thoroughly and focus on the effects of departures from normality which we 

regard as our key contribution.  Moreover, this model is empirically relevant.  A survey 

(Chernozhukov and Hansen (2005)) of the leading journals in economics (QJE/AER/JPE) 

in the period 1996-2004 produced 129 articles using linear structural equations models of 

which 89 had only one endogenous right hand side variable.  It appears, therefore, that the 

canonical use of instrumental variables methods is to allay concerns about endogeneity in 

regression models with a small number of potentially endogeneous right hand side variables.   

 The model considered in our simulation experiments is given below: 
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(5.1)       ( ) 1'x z ιδ ε= +  

(5.2) 2y xβ ε= +  

 
ι  is a vector of k ones.  Throughout we assume that 1β = .  Since the classical literature 

considers both the case of “many” instruments and weak instruments, we will consider the 

case in which z  is of dimension k = 10.  Each element of the z vector is generated as iid 

Uniform(0,1) and the z are redrawn for each simulation replicate.   

 We specify both a normal and log-normal distribution of the error terms in (5.1).   

(5.3)  ( ) ( )1 1

2 2
~ 0, ; ~ ln 0,N or cv v N s

ε ε
ε ε

⎛ ⎞ ⎛ ⎞
Σ = Σ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

⎡ ⎤
Σ = ⎢ ⎥

⎣ ⎦

1 .6
.6 1

, s = .6 and c is taken so that the interquartile range of log-normal variables is 

the same as the normal distribution in the base case.   The idea is to create skewed errors 

without an excessive number of positive outliers. 

 The value of δ  is chosen to reflect various degrees of strength of instruments from a 

“weak” to “strong” settings.  In the classical literature, the F statistic from the first stage 

regression or the concentration parameter, kF, is used to assess the strength of the 

instruments.  It is also possible to compute the population R-squared implied by a particular 

choice of δ. 

(5.4)  
δ

ρ
δ σ

=
+

21
2 12

21
1112

k
k

 

We chose three values of δ : (.5, 1.0, 1.5); hereafter we refer to these values as “weak,” 

“moderate,” and “strong.”  For the normal distribution case, these correspond to population 

R-squared values of (.17, .45, .65).  These are the approximate quartiles of the empirical 
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distributions of R-squared found in our literature search.   Some may object to our 

characterization of .17 with 10 instruments as case of weak instruments.  The implied p-

value for the F statistic in the weak instrument case with 10 instruments and 100 

observations given the population R-squared is .068.   

 We use a sample size, N, of 100.   For each of 400 replications, we draw z values 

(uniform on (0,1)) and then errors from the two error distributions specified in (5.3).  We 

repeat this process for each of three values of delta, resulting in a sampling experiment with 

six cells.   Figure 6 provides boxplots of the distribution of R-squared and F over each of the 

400 replicates for each of our six cells (note that the box extends from the 2.5 to 97.5 

percentiles in these plots).  We can see that our weak instrument cells contain a substantial 

number of datasets with first-stage R-squares below 10 per cent or concentration parameters 

below 10.   

 For each of our generated data sets, we will compute a Bayesian 95 percent Credibility 

Interval and the posterior mean using our semi-parametric procedures.  We will compare 

these intervals and estimates to standard Bayesian estimates using normal errors, standard k-

class estimators and intervals constructed using standard asymptotics, many instrument 

asymptotics and weak instrument asymptotics.  The next section briefly describes classical 

estimation and inference approaches that are compared to our Bayesian procedure. 

 
5.2  Alternative Classical Estimators and Inference Procedures 

For comparison, we report results from a variety of other procedures which have 

been suggested for point and interval estimation in IV models.  We consider four point 

estimators: ordinary least squares (OLS), two stage least squares (TSLS), limited information 

maximum likelihood (LIML), and Fuller’s (1977) modification of LIML (F1) to produce an 

estimator with moments in finite samples.  OLS provides a useful benchmark, and TSLS is 
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the most commonly used estimator in instrumental variables contexts though it may have 

undesirable properties when the number of instruments is large or instruments are weak.  

LIML and F1 have been suggested as alternatives to 2SLS that may perform better when 

instruments are many or weak.   

For interval estimation, we use large sample approximations in connection with each 

of the point estimators described above and, in addition, consider alternative interval 

estimators that are robust to weak/many instruments. We construct interval estimates using 

the ‘many instrument’ asymptotic approximation of Bekker (1994) for LIML and F1. This 

provides an asymptotic refinement of the typical large sample approximations when there 

are over-identifying restrictions (Hansen, Hausman, and Newey (2005)).  Finally, we consider 

three recently proposed procedures for constructing confidence intervals that are robust to 

weak identification by test statistic inversion. Specifically, we invert two score-based statistics 

due to Kleibergen (2002, 2005) and the conditional likelihood ratio (CLR) statistic proposed 

by Moreira (2003).  Details on these estimators and test statistics can be found in appendix 

B.  

 
5.3  Performance Measures 

For estimation, we consider standard performance measures such as root MSE, Median Bias 

and the interquartile range of the sampling distribution.   For inference, the coverage 

probability and interval length are relevant.  It is possible that our finite sample Bayes 

procedure may be more efficient in exploiting sample information than existing classical 

procedures.  Thus, we may find our intervals are smaller, on average, even with very diffuse 

priors. 

 Comparison of Bayesian Credibility Regions with confidence intervals derived from 

sampling theory considerations may strike some as inappropriate.  However, we take a 
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somewhat more practical view that the Bayes intervals should not be too far off in coverage.  

It is certainly true for parametric models and large samples that the Bayes intervals and 

confidence intervals should be the same.  However, for small to moderate size samples and 

for non-parametric methods, there is no necessary correspondence. 

 In analyzing the results of our sampling experiments, we will report coverage 

probabilities as well as a measure of how close any given interval is to the true value of β.  

For interval [ ],L U , our measure is given by 

(5.5)  1
U

U L
L

IM x dxβ−= −∫  

This measure can be interpreted as the expected distance of a random variable which is 

distributed uniformly on the interval from β.  In the event of an infinite length interval, we 

truncate the interval to [-5,5] for the purpose of computing IM.  Of course, the Bayesian has 

full recourse to the entire posterior distribution, but we focus on intervals and point 

estimates to facilitate comparison with other methods. 

 
5.4     Results 

5.4.1    Interval Coverage and Performance 

For each of the six experimental cells (instrument strength x error distribution),  400 datasets 

with N=100 were simulated.   Interval estimates were constructed from the following set of 

procedures: 

 Standard k-class asymptotics:   
  OLS, TSLS, LIML, F1 (Fuller estimator) 
 
 Many instrument asymptotics:   
  LIML-M and F1-M 
 
 Weak instrument asymptotics:   

K (Kleibergen), J (modified Kleibergen) and CLR (conditional likelihood ratio) 
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 Bayesian: 
  Bayes-NP (Bayesian procedure assuming normal errors) 
  Bayes-DP (Bayesian procedure using DP prior for error distribution) 
 

All classical intervals were constructed with a nominal confidence level of .95.  The Bayesian 

intervals were constructed using the .025 and .975 quantiles of the simulated posterior 

distribution.  Some of the weak instrument procedures produce empty intervals and infinite 

length intervals.  In addition to reporting the actual coverage probabilities, we report the 

Interval Measure (IM) from (5.5) and the number of infinite and empty intervals.  We use 

the “default” prior settings for λ, values of ,α α  corresponding to *I  modes of 1 and 8 

respectively, and ω =.8. 

 Table 1 shows the results for the weak instrument case.  The best coverage is obtained 

by the K, CLR and many instrument methods that achieve actual coverage close to .95 for 

both the normal and non-normal cases.   The Bayes procedures provide intervals whose 

coverage is below the specified level.  For normal errors, the Bayes-NP and Bayes-DP 

methods produce very similar coverages.  The coverage of the Bayes-NP procedure degrades 

under log-Normal errors while the Bayes-DP procedure has coverage close to .95.  

 However, coverage is not the only metric by which performance can be judged.  The K, 

J and CLR methods produce a substantial number of infinite length intervals.  In particular, 

the CLR method produces infinite length intervals about 40 per cent of the time for the case 

of log-normal errors.  If the dataset provides no information about the value of the 

structural parameter, then one might justify producing an infinite length interval.  In this 

case, it is unlikely that over 40 per cent of the weak instruments simulation datasets have 
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insufficient information to make inferences at the 95 per cent confidence level6.  It appears 

that the log-normal errors create difficulties for the weak instrument procedures.   

 The interval measure provides a measure of both the position and length of each 

interval.  The Bayes-DP procedure provides IM values dramatically smaller than all other 

procedures (particularly the weak instrument methods).  Note that infinite intervals are 

truncated to (-5, 5).  It is not only the infinite intervals that create the large values of the 

interval measure.  For example, the F1-M measure in the log-normal error case has an IM 

which is three times the size of the Bayes-DP procedure.  All of the classical procedures 

have IM values which are substantially larger in the case of log-normal errors.  The smaller 

size of the Bayes-DP intervals is not simply that they have lower coverage rates.  In the case 

of log-normal errors, the DP procedure has a coverage rate of .91 yet an interval measure 

less than 1/3 rd of any many instrument procedure and less than 1/8 th of any weak 

instrument method.  The F1-M procedure has virtually the same coverage rate but produces 

intervals 3 times longer.   

 The Bayes-DP procedure captures and exploits the log-normal errors and provides a 

lower interval measure in the case of log-normal errors.   The log-normal distribution has 

many large positive outliers which are downweighted by the DP process.  The remaining 

errors are small.  The idea is that if you can devote normal components to the outliers and 

errors clustered near zero than you will obtain superior interval estimates. 

 These same qualitative results hold even for the moderate and strong instrument 

strength cases presented in Table 2 and Table 3.  We still see infinite length intervals 

produced for some of the weak instrument methods in the case of moderate strength 

instruments.  The Bayesian procedures now provide coverage values close to the nominal 

                                                 
6 The problem of a large number of infinite intervals does not go away if you consider a different confidence 
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levels but still provide intervals that are much smaller.   In the “strong” case, the Bayes-DP 

method provides coverage that is almost exactly correct but with intervals that are one half 

to one third the length of all other classical procedures.  We note that the “strong” 

instrument case is calibrated to a first stage F statistic that is roughly equal to 75th percentile 

of the empirical studies surveyed in the literature.  The weak instrument cell is calibrated so 

that the population R-squared and F correspond to the 25th percentile of the survey of 

empirical work.  However, sampling variation results in many simulated datasets in this cell 

with much weaker instruments than appear in published work.   

 It is instructive to compare the Bayes-NP which assumes normal errors with the Bayes-

DP procedure that does not.  Both procedures produce nearly identical intervals for the case 

of normal errors, while the Bayes-DP procedure produces much smaller intervals with less 

“bias” in location for the case of log-normal errors. 

 The difference between the various methods is best illustrated graphically.  Figure 7 

presents the Bayes-DP and CLR intervals for the first 50 simulated data sets in the weak 

instrument, log-normal case.   The Bayes-DP intervals are represented by dark lines and the 

CLR intervals by light lines.  Infinite intervals are indicated by dashed lines.   The true 

parameter value is drawn on the figure as a vertical line.  The Bayes intervals are dramatically 

smaller but exhibit a positive “bias” in location.  Again, the Bayesian non-parametric 

procedure discovers and exploits the non-normality to produce dramatically smaller 

intervals.  Much the same is true for the comparison of the Bayes-DP procedure to  F1-M  

displayed in Figure 8.    Note that the F1-M procedure does not produce any infinite length 

intervals but still has an interval measure substantially larger than Bayes-DP. 

 
5.4.2  Estimation Performance  

                                                                                                                                                 
levels, such as 85 per cent.  
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Our method can uncover and exploit structure in the data which opens the possibility of 

greater efficiency in estimation without a consistency-efficiency tradeoff.   For these reasons, 

we will also investigate the estimation performance of our Bayesian method.  We compare 

this to the standard OLS, TSLS, LIML and F1 methods as well as to the Bayes-NP method 

which assumes normal errors.7 

 Table 4 provides standard metrics including RMSE, Median Bias and the Interquartile 

Range (IQR) of the sampling distribution.   The Bayes-DP method dominates on RMSE and 

IQR across all cells of the experimental design.  F1 and LIML have lower median bias than 

Bayes estimates under normal errors.  In particular, it is noteworthy that the presence of log-

normal errors dramatically worsens the performance of TSLS as measured by both bias and 

RMSE.  The Bayes-DP method exploits the non-normality and produces estimates with 

much smaller RMSE and low bias (comparable to F1).  These results are not driven by 

outliers in the sampling distribution as comparison of the IQR measure reveals.   

5.4.2.1 Prior Sensitivity 

Using the approach outlined in section 3, we assessed a very diffuse prior.  The key 

components of the DP prior are the settings of the hyper-parameters, λ,  and the prior on 

the Dirchlet Process “tightness” parameter, α.   The prior on α influences the number of 

unique values of θi  while λ influences the size and shape of the components drawn.  

 For the prior on α, we choose ,α α  corresponding to modes of *I of 1 and 8 and the 

prior power parameter, ω = .8 .  This provides a prior which implies a distribution of 

*I which puts substantial mass on values between 1 and 8, but with a long tail.  This 

                                                 
7 We do not consider the Bayesian Method of Moments (BMOM) estimator of Zellner (1998).  As Gao and 
Lahiri (2004) note, the BMOM estimator is severely biased for the case of negative correlation in the errors.  
Thus, we regard BMOM as requiring prior knowledge that this correlation is positive. 
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corresponds to our view that with 100 observations,  it would be foolish to attempt models 

with more than 10 normal components.  However, unlike classical procedures, the Bayesian 

procedure computes Bayes factors for the addition of new components.  New components 

are not added unless the fit/parameters tradeoff is very favorable.  We experimented with 

data simulated under weak instruments with both normal and log-normal errors.  We 

selected a wide range of α  values and examined the resulting inference for the structural 

parameter, β.   We found that inference was very insensitive to the choice of α.   

 For the λ settings, we choose a “default” setting which implies a very diffuse prior on 

each ( )θ μ= Σ,i i i .    

(5.6)  ( ) ( )Pr .25 3.25 .8 Pr 10 10 .8andσ μ< < = − < < =  

These imply prior settings 

(5.7)  
( )

( )( )
2

1

~ 2.004, .17

~ 0, .016

IW I

Nμ −

Σ

Σ Σ
 

For comparison purposes, we consider two other prior settings.  The first (termed alternative 

1) is chosen to be less diffuse than our “default” setting.   

(5.8)  ( ) ( )Pr .5 3 .9 Pr 5 5 .9andσ μ< < = − < < =  

with associated settings 

(5.9)  
( )

( )( )
2

1

~ 3.4,1.7

~ 0, .2

IW I

Nμ −

Σ

Σ Σ
 

 The second (termed alternative 2) is less diffuse and is suggested by “standard” natural 

conjugate prior setting used in many Bayesian analyses of the multivariate normal problem 

(5.10) ( ) ( )Pr .4 1.31 .8 Pr .95 .95 .8andσ μ< < = − < < =  
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(5.11) 
( )

( )( )
2

1

~ 4,

~ 0, .1

IW I

Nμ −

Σ

Σ Σ
 

 Table 5 provides evidence on the sensitivity of coverage and the interval measure to the 

prior settings.  The interval measure is completely insensitive to the prior settings for all six 

experimental cells.  The coverage probability is slightly better with the “default” prior.   

These simulations support our view that a diffuse proper prior will provide excellent 

performance without additional tuning.    We note that the view that the settings in (5.7) are 

diffuse depends critically on the fact that we have rescaled both y and x to have unit 

standard deviation and zero mean.  This allows us to take the view that the errors are on a 

standard deviation scale and are unlikely to take on values that are extremely large such as 20 

or more. 
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6.   MCMC Performance and Coding Checks 

The implementation of the Gibbs sampler for the IV problem considered here is very fast 

and exhibits limited autocorrelation.   The sampler operates at 15 seconds per 1000 iterations 

for N=100 on a Xeon, 3.14 Ghz processor running version 2.4.1 of R.  This means that a 

run of 20,000 iterations can be accomplished in approximately 5 minutes.  For large datasets 

such as the Card data set (N=3010), the sampler completes iterations at the rate of 

approximately 600 seconds per 1000.  It should be noted that the timing of our sampler 

depends to a large degree on the speed of memory access.  These computation times are on 

a machine with a small (by contemporary standards) cache.  

 The autocorrelation properties of the sampler depend on the strength of the 

instruments.  As instruments become weaker,  β  becomes unidentified.  In the normal error 

case (see Rossi, Allenby, and McCulloch (2005), chapter 7), there is a ridge in the likelihood 

between β and 12

11

σ
σ .  In the case with DP priors, dependence remains in the error term 

density but it is more difficult to quantify.   Our chain is most autocorrelated for the weak 

instruments case.  Even in this case, the chain has only moderate autocorrelation.  The 

numerical relative efficiency for the weak instruments, normal errors case is 5.6.  This means 

that our samples contain 1/5.6 of the information of an iid sample.   Thus, a draw sequence 

of 20,000 has an effective sample size of 3500 or so.  In all of our computations, the 

numerical standard error is several orders of magnitude less than the posterior standard 

deviation.   We start our chain from the least squares estimates of ,β δ  and with one 

standard normal component.  The chain rapidly dissipates these initial conditions, allowing 

us to use a burn-in of 1000 iterations. 
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 The validity of our Gibbs sampler depends on our derivation of the various conditional 

distributions as well as the implementation of these draws in code.   Many of the conditional 

draws are standard from normal theory and use tried and tested functions from our R 

package, bayesm.  The derivation of the vector of normalizing constants, 0q , involves 

computing the marginal density of the data for each of the N observations.  These 

derivations use conjugate theory applied to bivariate normal data.  It is possible, though 

highly unlikely8, that these derivations are incorrect or implemented incorrectly in our code.  

In order to check for this and other coding errors, we implement the Geweke (2004) test for 

validity of MCMC samplers.  The idea of Geweke’s test is to draw from the joint distribution 

of the data and model parameters in two different ways.  One (which we term method A) 

simply uses a draw from the prior and simulation from the model.  The other way (method 

B) involves a “Gibbs sampler” which alternates between draws from the posterior using our 

MCMC method and draws of the data given these parameters.  If the implementation and 

derivation of our Gibbs sampler is correct, both distributions should be the same. 

 In order to improve the power of this procedure,  we used highly informative prior 

settings (if the priors are diffuse, then the joint distribution of the data and parameters will 

be highly diffuse and it will be harder to resolve differences between the two methods).  In 

figure 9, we display quantile-quantile plots for the two simulators using 25,000 draws and 

focusing on the ,β δ  parameters (45 degree line is super-imposed on the graph).  The two 

distributions are virtually identical.  We also implemented significance tests as suggested by 

Geweke.   We consider the first three moments of both ,β δ  and construct a test based on 

                                                 
8 We checked our derivations by direct analytical solution of the integrals as well as by the identity that the 
marginal density of the data is equal to the ratio of the un-normalized posterior to the normalized posterior. 
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the difference in sample moments for each of the parameters.  None of these six tests are 

significant at even the .05 level.  
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7.  Conclusions 

A system of one structural equation and one “reduced form” or first stage equation is very 

common in empirical work in economics.  Instrumental variables methods seek to correct 

for endogeneity problems in the estimation of structural coefficients by using only variation 

induced by instruments to measure the effects of a variable on the right hand side of the 

structural equation.  Previous Bayesian treatments of this problem (with the notable 

exception of the BMOM approach) use specific distributional and functional form 

assumptions.  In this paper, we develop an approach which can be applied to a general form 

of the instrumental variable problem with unspecified error distributions.  Our approach is 

based on allowing the parameters of the model to vary from observation to observation and 

uses a DP prior.  The DP prior makes the observation-specific parameters dependent by 

clustering or grouping together sets of observations.  For example, if the DP prior is applied 

to a base normal model for the error distributions, then the resulting posterior can be 

interpreted as a mixture of normal distributions with a random number of components.  

Since the posterior clusters together errors that are similar in magnitude and location, we can 

also interpret our method as an approach to handling general forms of heterogeneity.  

 Our semi-parametric procedure enjoys the advantage of any formal Bayes method with 

a sensible proper prior in that we avoid “over-fitting.”  In the course of our MCMC method, 

Bayes Factors for the addition of clusters of observation parameters will be computed.  

These Bayes Factors have an implicit penalty which avoids introduction of redundant 

parameters.  Our methods have excellent sampling properties with as few as 100 

observations.   

 While the DP prior is conceptually appealing, choice of the process parameters is 

important.   We develop a new class of priors for the DP tightness parameter and we 
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demonstrate how to assess a reasonable prior by choice of the base prior hyper-parameters.  

In addition, we implement our procedure in highly efficient vectorized code which affords 

us the speed required to handle large datasets and sampling experiments. 

 Sampling experiments illustrate the value of our approach by comparison  with leading 

large sample approximation methods in the weak and many-instrument literature.  In the 

weak instrument case, the coverage rates of our procedure are 4 to 12 percentage points 

lower than the nominal 95 per cent rate.  We find that the weak instrument procedures 

produce very long intervals, especially in the case of non-normal errors.  In our view, very 

long intervals with correct coverage is not the answer that most applied researchers are 

seeking.  Moreover, coverage is not necessarily the most appropriate metric for assessing 

interval estimation performance.  Our Bayes intervals have some what lower coverage only 

for the weak instrument cases.  Even then, the intervals are located “close” to the parameter 

values relative to other methods.  That is, when we miss, we don’t miss by much.   

 In practice (see Chernozhukov and Hansen (2005)), many empirical studies are more 

similar to our sampling experiments with moderate strength instruments.  For these 

examples, our Bayesian methods produce intervals with correct size and much smaller length 

than the classical procedures.  

 Our Bayesian semi-parametric procedure produces credibility regions which are 

dramatically shorter than confidence intervals based on the weak instrument asymptotics.  

The shorter intervals from our method are produced by more efficient use of sample 

information. The RMSE of our semi-parametric Bayes estimator is much smaller than 

classical IV methods,9 especially in the case of non-normal errors.   A Bayesian method that 

assumes normal errors produces misleading and inaccurate inference under non-normality 
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and about the same answers as our non-parametric method under normality.  It appears, 

then, our non-parametric Bayesian method dominates Bayesian methods based on normal 

errors and may be preferable to methods from the recent weak instruments literature if the 

investigator is willing to trade-off lower coverage for dramatically smaller intervals. 

  

 

                                                                                                                                                 
9 With lower median bias than TSLS.  Our intervals have comparable median bias as LIML and the Fuller 
modification of LIML in all cases considered except the case of very weak instruments with normal errors. 
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Appendix A 
MCMC and Computational Issues 

 

A.1  MCMC Method 

The basic MCMC strategy is a Gibbs Sampler with three blocks of parameters.  The first 

block of parameters, denoted η , represents the parameters associated with the 

regression/mean functions in the structural equations model, the second block are the 

parameters associated with the distribution of the error terms and the third block is the 

parameters of the DP prior: 

(A.1) η αΘ, , , , ,y X Z W  

(A.2) η αΘ , , , , ,y X Z W  

(A.3) α η Θ, , , , ,y X Z W  

Here { }θΘ = = …, 1, ,i i N .  Draws of (A.1) will depend on the specification of the 

regression and mean functions.  We will outline the strategy for linear mean functions below.  

Draws of (A.2) will depend on the base model and prior ( )( )λ0G for the DP prior.  We will 

take as our base model the normal distribution and associated natural conjugate prior.   

Draw of Θ 

Given η , we “observe” the matrix of errors ⎡ ⎤= ⎣ ⎦
'
iE e .   Θ  is a list of N θi  values 

corresponding to each observation.  We use the standard (c.f. Escobar and West (1998) and 

MacEachern (1998)) Polya Urn representation to draw θ θ−j j ,  where θ− j  represents all of 

the values except the jth.   This is accomplished as a multinomial mixture of degenerate 

distributions at each of the θ− j  values and the one observation posterior of θ je . 

(A.4) 
( )*

0 0

*

,
, , , ~

i

j j
j j j

i

with prob q draw from e G
e

with prob q draw from i jθ

θ λ
θ θ λ α

δ
−

⎧⎪
⎨

≠⎪⎩
 

To make the draws in (A.4), we must compute the N multinomial probabilities 

{ }* *
0 , iq q i j≠ .  A multinomial draw is made and if the multinomial indicator is one of the 

− 1N  { }θ− j  values, we simply replace the jth θ value with this one.  If the indicator 
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corresponds to the “null” or “zero” model, we draw from the posterior of θ given the jth 

observation and the base prior 0G .   The q values are computed as follows: 

(A.5) 

{ }

( ) ( ) ( )

( ) ( )

*
0

0

0 0

; ,

1
1

1

i

j j j j

i j i

qq q q q i j
q q

q p e G d
N

q p e
N

αθ θ λ θ
α

θ
α

= = ≠
+ ∑

= ×∫
+ −

= ×
+ −

 

Below we will provide specific formulas for computing the constants in (A.5).  In addition, 

we will outline an efficient computing strategy for vectorizing these computations and 

avoiding unnecessary repetition.  We have designed our code to be very modular so that the 

exact model for the observations and the base prior are completely arbitrary. 

 After Θ is drawn using (A.5), we can classify each observation according to which of 

the *I  unique values of iθ  it is associated with (e.g. create an indicator vector to flag which 

of the unique values are associated with each observation,  = *1, ...,iind I ).   We also perform 

a “remix” step (c.f. Escobar and West (1998)) in which we redraw the unique elements of 

Θ, denoted *Θ , from their posterior given ind. 

(A.6) * , ,ind E λΘ  

Draw of α 

The draw from the posterior of α is simplified by the observation that the sufficient statistic 

for the conditioning arguments is simply the number of unique elements in the Θ,  denoted 
*I .   

(A.7) 
( ) ( ) ( )

( )
( )

( )
( )

( )
ω

α α α

α α α
α α α α

α α α

∝

⎛ ⎞Γ −
∝ × − ∈⎜ ⎟Γ + −⎝ ⎠

*

* *

1 ,I

p I p I p

N

 

(A.7) uses the result of Antoniak (1974) for ( )α*p I .   Since α  is univariate, we simply 

discretize the support and use a multinomial draw.   
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Draw of η 

The draw of the mean parameters will depend on the models used.  However, as discussed 

in section 2, the general idea of drawing the parameters associated with the structural 

equation conditional on the “first stage” or instrument equation parameters and vice versa 

will be useful for many models.  In this section, we will consider the linear case with the base 

model of normal errors.  In this case, each observation will have its own associate 

parameters of the normal distribution, e. g. { }θ μ= Σ,i i i .  The DP prior will cause some of 

the observations to have the same θ values.  For any given draw of Θ, the model will be a 

system with a mixture of normal errors.  We can exploit the mixture to appropriately 

standardize the observations and generalize the approach of Rossi, Allenby, and McCulloch 

(2005) to the mixture of normals case.  

 Consider the case of the linear model with one right hand side endogenous variable 

(A.8) ( ) ( )
δ ε

ε ε μ
β γ ε

= +
Σ

= + +

'
1,

1, 2,'
2,

, ~ ,i i i
i i i i

i i i i

x z
N

y x w
 

Note that by including non-zero means in the error terms, we do not require intercepts in 

the model and we allow for greater flexibility in the error distribution.  For any given draw of 

Θ there will be *I  unique θ values.  We simply create an indicator vector to flag which of 

the unique values are associated with each observation,  = *1, ...,iind I .   To draw η , we 

break the draw into two conditionals: 

(A.9) 
( ), , , , , ,

, , , , , ,

y x Z W

y x Z W

β γ δ

δ β γ

Θ

Θ
 

For the draw of β, we exploit the fact that we can “observe”  ε1  and, therefore, can 

compute the conditional distribution of ε ε2 1 .  We simply normalize using the moments of 

this distribution and perform a Bayes regression draw using N(0,1) errors. 

(A.10) 

( ) ( )

( )

ε ε ε ε ε ε

ε ε

ε ε σ β σ γ σ

σ σ
σ σ ε ε μ ε μ

σ σ

⎡ ⎤− = + +⎣ ⎦

⎡ ⎤= − = + −⎣ ⎦

2, 1, 2, 1, 2, 1,

2, 1,

'
2, 1,

2
12, 12,

22, 2, 1, 2, 1, 1,2
11, 11,

~ 0,1

;

i i i i i i

i i
i i ii i

i i

i i i i i i i

ind ind
ind i i ind i ind

ind ind

y E x w u u N

E
 

For the draw of δ in (A.9), we simply used the reduced form and properly standardize. 

Substituting in for x in the structural equation, we obtain the following system: 
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(A.11) 
μ

δ
βμ γ βμ

−⎛ ⎞ ⎡ ⎤
⎜ ⎟ = +⎢ ⎥⎜ ⎟− − − ⎣ ⎦⎝ ⎠

1,

'
2, 1,

i

i i

i ind i
i

ii ind i ind

x z
v

zy w
 

( )
β

⎡ ⎤
= Σ = = ⎢ ⎥

⎣ ⎦
' 1 0

'
1i i ii ind ind indVar v A A L L A  

If we standardize (A.11) using −1
iindL , we can draw δ using Bayes regression with unit normal 

errors. 

 
Draw of 1Nθ +  

The Bayesian density estimate (see (2.14)) requires a method for drawing 1Nθ + Θ .  This is 

simply a draw from the DP prior using the Polya Urn representation. 

(A.12) 
( )0

1 ~
1 1, ,

i

N

with prob draw from G
N

with prob draw i N
N θ

α λ
αθ

δ
α

+

⎧
⎪⎪ +Θ ⎨
⎪ =
⎪ +⎩

…
 

 
 
A.2  Computational  Issues 

The computational issues are threefold: 

 1). Avoiding redundant computations 

 2). Vectorizing computations including evaluation of 0q  and density evaluation 

 3). Allowing for general models and base priors 

Avoiding Redundant Computations 

 The sub-Gibbs Sampler which draws from the posterior of Θ in (A.4) requires the 

evaluation of the density of the error term for each “observed” e and for each unique value 

of *I  to compute the q weights.  We can fill out an *I x N matrix of these values 

(A.13) ( )*
,i j j idenMAT denMAT eϕ θ⎡ ⎤= =⎢ ⎥⎣ ⎦

 

This matrix will be comprised mostly of density values which do not change through one 

cycle of the Gibbs sampler.  The only time it will change is when a new unique value of θ  is 

drawn.   Even in this case, only one row of the matrix would need to be updated. In 

addition, we do not expect to encounter a situation with more than a couple of hundred 

unique components.  For this reason, we pre-compute (A.13) before entering the Gibbs 
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sampler for Θ.  We can also vectorize the computation of this matrix which is even more 

incentive to pre-compute. 

Vectorizing Computations 

 Most higher level languages such as MATLAB and R perform vector/matrix algebra 

at equal or higher speeds (due to the use of an optimized Basic Linear Algebra Subroutines 

(BLAS) than lower level languages such as C or FORTRAN.   For this reason, there is a 

premium on vectorizing as much of the basic operations in the DP sampler as possible.   

Even if one were coding all of this sampler in a lower level language, the simplifications 

given below would be extremely useful.  Our approach was to vectorize as much as possible 

and leave the main Gibbs Sampler loop for Θ in C using the R facility to call R functions 

from this C routine (the .call() interface). 

Vectorizing 0q   

The unnormalized 0q  is the marginal density of the “data” (in our case the errors) given one 

observation and a prior.  We are using a multivariate normal model for the data.  If natural 

conjugate priors are used, 0q  can be computed analytically.  First, we will present the 

formula for 0q  for this case and then discuss how this can be vectorized.  Consider the 

natural conjugate prior for the multivariate normal model. 

(A.14) 

( ) ( ) ( )
( )

( )1

,

~ ,

~ ,

p p p

IW V

N a

μ μ

υ

μ μ −

Σ = Σ Σ

Σ
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(A.15) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )0

,
,

,
y p p

q e p p d d
p e p e

ϕ μ μ
ϕ μ μ μ

μ
Σ Σ Σ

= Σ Σ Σ Σ =∫
Σ Σ

 

Here e is the vector corresponding to one data observation.  After much simplification, we 

obtain 

(A.16) 
( ) ( )

22

1
2 2

0 12
1

12

k

k

Vaq K
a V S

υ

υ
π

+
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with ( ) ( ) ( ) ( )' 'S e e aμ μ μ μ μ μ= − − + − −� � � �  and ( )1(1 )a e aμ μ−= + +�  and ( )dimk e= .   

(A.17) 
( ) ( )
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12 2 2
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Note that for k=2, 12 1K υ= − . 

 0q  in (A.16) must be computed for each of the N observations.  To vectorize, we 

observe that the only part that varies from observation to observation is iV S+ . Here we 

have added the subscript to S to emphasize that there is a different value of S for every 

observation.   S can be simplified to 

(A.18) ( ) ( )'
1

a
i i iaS e eμ μ+= − −  

Let 'V R R=  and ( ) ( )1
1' a

i iav R e μ−
+= − , then  

(A.19) ( )2 '1i i iV S R v v+ = +  

using the fact that ' 1 'I vv v v+ = + . 

 We can then completely vectorize the computation of the N ( )0ln q  values as 

follows: 

(A.20) 
( ) ( ) ( ) ( )

( ) ( )( )
1

0 122 2 1 2

1
2

ln ln 2 ln ln ln

2 ln ln 1

k k
aq K V

R vsq

υ

υ

π +

+

= − + + +

− + +
 

with '
i i ivsq v v= . 

Vectorizing denMAT  

Each row of denMat contains the values of the normal density for a given unique value of 

θ.  The calculation of each row can be vectorized as follows assuming that there is a 

vectorized function to compute column sums of a matrix (colSums in R) and a function to 

extract the diagonal of a matrix 

(A.21) 

( )( )

[ ] ( ) ( )( )( )

21

1 1
2 2

'

'

, exp ln 2 lnk

quads colSums R E

R R

denMat i diag R quads

μ

π

−

−

⎛ ⎞= −⎜ ⎟
⎝ ⎠

Σ =

= − + −∑

 

 

quads is an N dimensional vector giving the value of the normal density quadratic form for 

each of the observations.  In the top line of (A.21), we exploit the fact that in R vectors are 

reused to fill out a difference between an array (E) and a vector (μ).  That is, the vector is  

duplicated to fill out (column by column) a matrix of the same dimension as E’ before 
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performing element by element subtraction.  This may require modification in other matrix 

level languages.  

Efficient Draws from the Posterior of  iθ  

Given the natural conjugate prior, draws from the posterior can be done as a special case of 

draws from the multivariate regression model posterior.  A very efficient implementation of 

this is discussed in Rossi, Allenby, and McCulloch (2005 section 2.12) and implemented in 

the R package, bayesm.  We use this function. 

 

Allowing for General Models and Base Priors 

The basic Gibbs Sampler for sampling each element of Θ given in (A.4) can be implemented 

for arbitrary base models and priors by recognizing that this code is already generic except 

for three functions: 

1. Computation of 0q (see (A.20) for normal-conjugate case) 

2. Evaluation of base model density (see (A.21) for normal case) 

3. Draw from posterior of iθ  given a subset of the data (implemented via rmultireg 

in bayesm) 

Shell code for the draw of Θ takes general function objects for each of these three draws.  

To implement another base model and/or prior, one would simply replace these function 

objects with the appropriate ones.  The Gibbs Sampler is implemented in C for efficiency 

with calls to the R functions which are already vectorized.  

 Our code is publicly available and will be incorporated into version 2.1.0 of bayesm, 

an R package available on CRAN (google “bayesm”). 
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Appendix B 
Alternative Estimation Procedures 

 

To facilitate exposition, we use matrix notation, thus the analog of equation (5.2) becomes: 

(B.1) Y X β ε= + , 

and the analog of equation (5.1) is:  

(B.2) NX Z vδ= + . 

Note that we allow the first stage coefficients δN  to depend on the sample size to facilitate 

discussion of many/weak instrument asymptotic sequences.   

Our point estimators of  β are all k-class estimators defined as  

(B.3) 1ˆ ( ' ' ) ( ' ' )k Z ZX X kX M X X Y kX M Yβ −= − −  

where 1( ' ) 'ZM I Z Z Z Z−= −  and k indexes different estimators.  OLS corresponds to the 

choice of k = 0, and 2SLS corresponds to k = 1.  LIML is a k-class estimator where k λ=  

and λ is the smallest eigenvalue of the matrix [( , ) '( , )][( , ) ' ( , )]ZY X Y X Y X M Y X , and F1 is 

a k-class estimator with ( )
a

N Kk λ −= −  where a is a parameter chosen by the researcher.  In 

our simulations, we use the commonly selected a of 1 which produces a higher-order 

unbiased estimator.   

Under the usual asymptotic approximation in which δ δ=N  is fixed and → ∞N , 

TSLS, LIML, and F1 are consistent and asymptotically normal with the same limiting 

covariance matrices.  However, they do have different higher-order properties.  In particular, 

LIML is approximately median unbiased though it has no finite sample moments, and F1 

with a = 1  is mean-unbiased to second order; see, for example Hahn, Hausman, and 

Kuersteiner (2004).  The higher order bias of 2SLS on the other hand increases linearly with 

the number of instruments, K.   

 When considering departures from the usual asymptotic approach, it is useful to 

define a measure of instrument strength. Following Rothenberg (1984) we define what is 

commonly referred to as the concentration parameter 2μ  : 

(B.4) 2
2

' 'N N

v

Z Zδ δμ
σ

= . 
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Large values of 2μ indicate strong identification.  Rothenberg (1984) also demonstrates that 

the usual asymptotic approximation may be obtained by considering asymptotics as 
2μ → ∞ ; that is, the usual asymptotic approximation will tend to provide a better 

approximation when 2μ  is large and will tend to perform poorly when 2μ  is small regardless 

of the sample size.  It is also worth noting that 
2μ

K corresponds to an infeasible F-statistic 

which uses the true first stage coefficients and population variance of the first stage error 

term, 2
vσ . 

Under many instrument asymptotics (Bekker (1994)), we allow the number of 

instruments, K, to increase with the sample size in such a way that K
N  converges to a 

constant while assuming that 
2μ

K  does not become infinite.  Note that since K is increasing, 

the concentration parameter does become infinite under this sequence but the infeasible F-

statistic remains bounded.  In this sense, this sequence provides an intermediate case 

between the usual asymptotics in which the concentration parameter and F-statistic diverge 

and the weak instrument sequence considered below in which neither the concentration 

parameter nor the F-statistic become arbitrarily large.  Under this sequence, information 

accumulates rapidly enough for LIML and F1 to be consistent and asymptotically normal, 

though the asymptotic distributions show more dispersion under this sequence than under 

the usual sequence.  TSLS, on the other hand, is inconsistent under many instrument 

asymptotics.  The intuition for this result is that the higher-order bias of TSLS increases 

linearly with K; thus, under this sequence, the bias increases at the same rate at which 

information accrues resulting in TSLS being incorrectly centered asymptotically.  Hansen, 

Hausman, and Newey (2005) show that the use of the many instrument asymptotic 

approximation provides an improved rate of approximation relative to the use of the 

conventional asymptotic approximation and verify that this approximation is valid without 

assuming normality of the error terms. 

Finally, we examine inference under weak instrument asymptotics.  Under this 

asymptotic sequence, pioneered by Staiger and Stock (1998), we consider a sequence of 

models that are local to being unidentified; that is, we let δ =n C N .  Under this sequence, 

the information in the data as measured by the concentration parameter remains bounded 

even as the sample size becomes arbitrarily large and none of the estimators will be 
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consistent.  However, we can still construct tests with correct size and, by inverting the 

associated test statistics, intervals that have correct sampling coverage rates.   

Our first two approaches to obtaining weak instrument robust intervals are based on 

the following function of the LIML likelihood: 

(B.5) 
1

1

( ) '( ( ' ) ')( )( )
( ) '( ( ' ) ')( )

β ββ
β β

−

−

− − −
=

− − −
N K Y X Z Z Z Z Y XQ

N Y X I Z Z Z Z Y X
, 

which is an Anderson and Rubin (1949) statistic. The K-statistic, proposed by Kleibergen 

(2002), is a score statistic based on Q(β) and as such has no power at inflection points of 

Q(β). To address this issue of the K-statistic Kleibergen (2007) introduced a J-statistic that is 

the difference between Q(β)  and the K-statistic.  

Our third estimator is the conditional likelihood ratio (CLR) statistic, proposed by 

Moreira (2003). This test conditions upon what is essentially the LIML estimate of ( )δ β for 

the hypothesized value of β . In recent work, Andrews, Moreira, and Stock (2006) have 

shown that the CLR statistic is optimal among a broad class of statistics. 

 All three approaches are identical when there are exactly as many instruments as 

endogenous regressors and produce tests with the asymptotically correct size regardless of 

the strength of the instruments.  They will provide valid confidence intervals when the 

instruments are strong, weak, or even irrelevant. It is important to note that such test statistic 

inversion routinely results in interval estimates that are uninformative (infinite length) under 

weak instruments and can in fact also result in empty intervals for J.   
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Table 1 
Comparison of Procedures: Weak Instruments Case 

 
 
 

 Normal Log-Normal 
Procedure Coverage Interval 

Measure 
Infinite Empty Coverage Interval 

Measure 
Infinite Empty

OLS 0 .5 0 0 0 .5 0 0 
TSLS .75 .27 0 0 .69 .37 0 0 
LIML .92 .36 0 0 .89 .64 0 0 

F1 .92 .32 0 0 .89 .49 0 0 
         

LIML-M .94 .40 0 0 .93 .75 0 0 
F1-M .93 .35 0 0 .92 .61 0 0 

         
K .94 1.38 118 0 .95 2.12 270 0 
J .89 .84 31 16 .93 1.61 173 6 

CLR .92 .75 27 0 .96 1.58 168 0 
         

Bayes-NP .84 .26 0 0 .79 .35 0 0 
Bayes-DP .83 .26 0 0 .91 .18 0 0 
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Table 2 
Comparison of Procedures: Moderate Instruments Case 

 
 
 

 Normal Log-Normal 
Procedure Coverage Interval 

Measure 
Infinite Empty Coverage Interval 

Measure 
Infinite Empty

OLS 0 .33 0 0 .01 .38 0 0 
TSLS .89 .14 0 0 .86 .20 0 0 
LIML .94 .15 0 0 .94 .23 0 0 

F1 .94 .15 0 0 .94 .22 0 0 
         

LIML-M .94 .15 0 0 .95 .24 0 0 
F1-M .94 .15 0 0 .94 .23 0 0 

         
K .93 .27 12 0 .94 .89 75 0 
J .93 .20 0 7 .92 .42 9 9 

CLR .94 .16 0 0 .94 .37 8 0 
         

Bayes-NP .90 .13 0 0 .91 .19 0 0 
Bayes-DP .90 .13 0 0 .92 .10 0 0 
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Table 3 
Comparison of Procedures: Strong Instruments Case 

 
 
 

 Normal Log-Normal 
Procedure Coverage Interval 

Measure 
Infinite Empty Coverage Interval 

Measure 
Infinite Empty

OLS .06 .20 0 0 .03 .29 0 0 
TSLS .92 .09 0 0 .90 .14 0 0 
LIML .96 .10 0 0 .96 .15 0 0 

F1 .95 .10 0 0 .96 .14 0 0 
         

LIML-M .95 .10 0 0 .96 .15 0 0 
F1-M .95 .09 0 0 .96 .14 0 0 

         
K .94 .15 9 0 .93 .45 41 0 
J .92 .17 0 11 .90 .24 0 13 

CLR .94 .10 0 0 .95 .16 0 0 
         

Bayes-NP .94 .09 0 0 .93 .13 0 0 
Bayes-DP .92 .09 0 0 .96 .07 0 0 
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Table 4 
Performance of Estimators 

 
 
 

  Normal Log-Normal 

Instrument 
Strength 

Estimator RMSE Median 
Bias 

IQR RMSE Median 
Bias 

IQR 

Weak OLS .50 .50 .09 .53 .48 .19 
 TSLS .26 .20 .22 .37 .28 .31 
 LIML .36 .02 .34 .47 .01 .57 
 F1 .29 .05 .32 .43 .09 .48 
 Bayes-NP .24 .17 .23 .35 .26 .30 

 Bayes-DP .24 .18 .22 .16 .09 .16 
        

Moderate OLS .34 .33 .08 .40 .37 .15 
 TSLS .12 .07 .14 .18 .11 .17 
 LIML .13 0 .15 .21 .01 .23 
 F1 .12 0 .14 .19 .02 .22 
 Bayes-NP .11 .05 .13 .17 .09 .17 
 Bayes-DP .12 .05 .13 .09 .03 .10 
        

Strong OLS .21 .21 .07 .31 .28 .13 
 TSLS .08 .02 .09 .12 .06 .13 
 LIML .08 -.01 .10 .12 .01 .16 
 F1 .08 0 .10 .12 .01 .15 
 Bayes-NP .07 .02 .09 .11 .04 .13 
 Bayes-DP .07 .02 .09 .05 .01 .07 
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Table 5 
Prior Sensitivity Analysis  

 
 

 
 

 Normal Log-Normal 

Instrument 
Strength Prior Coverage Interval 

Measure Coverage Interval 
Measure 

Weak Default .83 .26 .91 .18 
 Alt 1 .74 .26 .85 .23 
 Alt 2 .74 .26 .86 .21 
      

Moderate Default .90 .13 .92 .10 
 Alt 1 .87 .13 .93 .12 
 Alt 2 .88 .13 .92 .12 
      

Strong Default .92 .09 .96 .07 
 Alt 1 .92 .09 .94 .09 
 Alt 2 .92 .09 .95 .08 
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Figure 2 
Posterior Distribution of the Structural Coefficient: Acemoglu Data 
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Figure 3 
Fitted Error Density: Acemoglu Data 
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Figure 4 
Posterior Distribution of the Structural Coefficient: Card Data 
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Figure 5 
Fitted Error Densities: Card Data 
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Figure 6 
Distribution of R-squared and F Statistics Across Simulation Study Reps 
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Quantile-Quantile Plots for Geweke Test 

 
 


