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Outline: Six Topics

� Introduction

� Unconstrained optimization

• Limited-memory variable metric methods

� Systems of Nonlinear Equations

• Sparsity and Newton’s method

� Automatic Differentiation

• Computing sparse Jacobians via graph coloring

� Constrained Optimization

• All that you need to know about KKT conditions

� Solving optimization problems

• Modeling languages: AMPL and GAMS
• NEOS
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Topic 1: The Optimization Viewpoint

� Modeling

� Algorithms

� Software

� Automatic differentiation tools

� Application-specific languages

� High-performance architectures
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View of Optimization from Applications
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Classification of Constrained Optimization Problems

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

• Number of variables n

• Number of constraints m

• Number of linear constraints

• Number of equality constraints ne

• Number of degrees of freedom n− ne

• Sparsity of c′(x) = (∂icj(x))

• Sparsity of ∇2
xL(x, λ) = ∇2f(x) +

∑m
k=1∇2ck(x)λk
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Classification of Constrained Optimization Software

• Formulation

• Interfaces: MATLAB, AMPL, GAMS

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Linear solvers
• Direct solvers
• Iterative solvers
• Preconditioners

• Partially separable problem formulation

• Documentation

• License
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Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.

Question. What are the characteristics of the life-cycle problem?
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Constrained Optimization Software: IPOPT

• Formulation

min {f(x) : xl ≤ x ≤ xu, c(x) = 0}

• Interfaces: AMPL

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Direct solvers: MA27, MA57

• Partially separable problem formulation: None

• Documentation

• License

Leyffer, Moré, and Munson Computational Optimization



Life-Cycles Saving Problem: Results

(R, T ) = (30, 50) (R, T ) = (60, 100)

Question. Problem formulation to results: How long?
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Topic 2: Unconstrained Optimization

Augustin Louis Cauchy (August 21, 1789 – May 23, 1857)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Unconstrained Optimization: Background

Given a continuously differentiable f : Rn 7→ R and

min {f(x) : x ∈ Rn}

generate a sequence of iterates {xk} such that the gradient test

‖∇f(xk)‖ ≤ τ

is eventually satisfied

Theorem. If f : Rn 7→ R is continuously differentiable and
bounded below, then there is a sequence {xk} such that

lim
k→∞

‖∇f(xk)‖ = 0.

Exercise. Prove this result.
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Ginzburg-Landau Model

Minimize the Gibbs free energy for a homogeneous superconductor∫
D

{
−|v(x)|2 + 1

2 |v(x)|4 + ‖[∇− iA(x)] v(x)‖2 + κ2 ‖(∇×A)(x)‖2}
dx

v : R2 → C (order parameter)
A : R2 → R2 (vector potential)

Unconstrained problem. Non-convex function. Hessian is singular.
Unique minimizer, but there is a saddle point.
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Unconstrained Optimization

What can I use if the gradient ∇f(x) is not available?

� Geometry-based methods: Pattern search, Nelder-Mead, . . .

� Model-based methods: Quadratic, radial-basis models, . . .

What can I use if the gradient ∇f(x) is available?

� Conjugate gradient methods

� Limited-memory variable metric methods

� Variable metric methods
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Computing the Gradient

Hand-coded gradients

� Generally efficient

� Error prone

� The cost is usually less than 5 function evaluations

Difference approximations

∂if(x) ≈ f((x + hei)− f(x)

hi

� Choice of hi may be problematic in the presence of noise.

� Costs n function evaluations

� Accuracy is about the ε
1/2
f where εf is the noise level of f
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Cheap Gradient via Automatic Differentiation

Code generated by automatic differentiation tools

� Accurate to full precision

� For the reverse mode the cost is ΩT T{f(x)}.
� In theory, ΩT ≤ 5.

� For the reverse mode the memory is proportional to the
number of intermediate variables.

Exercise

Develop an order n code for computing the gradient of

f(x) =
n∏

k=1

xk
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Line Search Methods

A sequence of iterates {xk} is generated via

xk+1 = xk + αkpk,

where pk is a descent direction at xk, that is,

∇f(xk)
T pk < 0,

and αk is determined by a line search along pk.

Line searches

� Geometry-based: Armijo, . . .

� Model-based: Quadratics, cubic models, . . .
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Powell-Wolfe Conditions on the Line Search

Given 0 ≤ µ < η ≤ 1, require that

f(x + αp) ≤ f(x) + µα∇f(xk)
T pk sufficent decrease

|∇f(x + αp)T p| ≤ η |∇f(x)T p| curvature condition
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Conjugate Gradient Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk + αkpk

pk+1 = −∇f(xk) + βkpk

where αk is determined by a line search.

Three reasonable choices of βk are (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Rivière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus
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Limited-Memory Variable-Metric Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk − αkHk∇f(xk)

where αk is determined by a line search.

The matrix Hk is defined in terms of information gathered during
the previous m iterations.

� Hk is positive definite.

� Storage of Hk requires 2mn locations.

� Computation of Hk∇f(xk) costs (8m + 1)n flops.
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Recommendations

But what algorithm should I use?

� If the gradient ∇f(x) is not available, then a model-based
method is a reasonable choice. Methods based on quadratic
interpolation are currently the best choice.

� If the gradient ∇f(x) is available, then a limited-memory
variable metric method is likely to produce an approximate
minimizer in the least number of gradient evaluations.

� If the Hessian is also available, then a state-of-the-art
implementation of Newton’s method is likely to produce the
best results if the problem is large and sparse.
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Topic 3: Newton’s Method

Sir Isaac Newton (January 4, 1643 – March 331, 1727)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Motivation

Give a continuously differentiable f : Rn 7→ Rn, solve

f(x) =

 f1(x)
...

fn(x)

 = 0

Linear models. The mapping defined by

Lk(s) = f(xk) + f ′(xk)s

is a linear model of f near xk, and thus it is sensible to choose sk

such that Lk(sk) = 0 provided xk + sk is near xk.
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Newton’s Method

Given a starting point x0, Newton’s method generates iterates via

f ′(xk)sk = −f(xk), xk+1 = xk + sk.

Computational Issues

� How do we solve for sk?

� How do we handle a (nearly) singular f ′(xk)?

� How do we enforce convergence if x0 is not near a solution?

� How do we compute/approximate f ′(xk)?

� How accurately do we solve for sk?

� Is the algorithm scale invariant?

� Is the algorithm mesh-invariant?
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Flow in a Channel Problem

Analyze the flow of a fluid during injection into a long vertical
channel, assuming that the flow is modeled by the boundary value
problem below, where u is the potential function and R is the
Reynolds number.

u′′′′ = R (u′u′′ − uu′′′)

u(0) = 0, u(1) = 1

u′(0) = u′(1) = 0
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Sparsity

Assume that the Jacobian matrix is sparse, and let ρi be the
number of non-zeroes in the i-th row of f ′(x).

� Sparse linear solvers can solve f ′(x)s = −f(x) in order ρA

operations, where ρA = avg{ρ2
i }.

� Graph coloring techniques (see Topic 4) can compute or
approximate the Jacobian matrix with ρM function
evaluations where ρM = max{ρi}
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Topic 4: Automatic Differentiation

Gottfried Wilhelm Leibniz (July 1, 1646 – November 14, 1716)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Computing Gradients and Sparse Jacobians

Theorem. Given f : Rn 7→ Rm, automatic differentiation tools
compute f ′(x)v at a cost comparable to f(x)

Tasks

• Given f : Rn 7→ Rm with a sparse Jacobian, compute f ′(x)
with p � n evaluations of f ′(x)v

• Given a partially separable f : Rn 7→ R, compute ∇f(x) with
p � n evaluations of 〈∇f(x), v〉

Requirements:

T{f ′(x)} ≤ ΩT T{f(x)}, M{∇f(x)} ≤ ΩM M{f(x)}

where T{·} is computing time and M{·} is memory.
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Structurally Orthogonal Columns

Structurally orthogonal columns do not have a nonzero in the
same row position.

Observation.

We can compute the columns in a group of structurally orthogonal
columns with an evaluation of f ′(x)v.

f ′(x) =


× ×
× × ×

× × ×
× × ×

× × ×
× ×

 , v =


1
0
0
1
0
0


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Coloring the Jacobian matrix f ′(x)

Partitioning the columns of f ′(x) into p groups of structurally
orthogonal columns is equivalent to a graph coloring problem.

For each group of structurally orthogonal columns, define v ∈ Rn

with vi = 1 if column i is in the group, and vi = 0 otherwise. Set

V = (v1, v2, . . . , vp)

Compute f ′(x) from the compressed Jacobian matrix f ′(x)V .

Observation. In practice p ≈ ρM where

ρM ≡ max{ρi},

and ρi is the number of non-zeros in the i-th row of f ′(x).
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Coloring the Jacobian matrix with p = 17 colors
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Sparsity pattern of Jacobian matrix with 17 colors  
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Sparsity Pattern of the Jacobian Matrix

Optimization software tends to require the closure of the sparsity
pattern ⋃ {

S(f ′(x)) : x ∈ D
}

.

in a region D of interest. In our case,

D = {x ∈ Rn : xl ≤ x ≤ xu}

Given x0 ∈ D, we evaluate the sparsity pattern of fE
′(x̄0), where

x̄0 is a random, small perturbation of x0, for example,

x̄0 = (1 + ε)x0 + ε, ε ∈ [10−6, 10−4]
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Partially Separable Functions

The mapping f : Rn → R is partially separable if

f(x) =
m∑

i=1

fi(x),

and fi only depends on pi � n variables.

Theorem (Griewank and Toint [1981]). If f : Rn → R has a
sparse Hessian matrix then f is partially separable.

Optimization problems with a finite
element formulation usually associate
fi with each element.
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Partially Separable Functions: The Trick

If f : Rn → R is partially separable, the extended function

fE(x) =

 f1(x)
...

fm(x)


has a sparse Jacobian matrix fE

′(x). Moreover,

f(x) = fE(x)T e =⇒ ∇f(x) = fE
′(x)T e

Observation. We can compute the dense gradient by computing
the sparse Jacobian matrix fE

′(x).
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Computational Experiments

Experiments based on the MINPACK-2 collection of large-scale
problems show that gradients of partially separable functions can
be computed efficiently.

T {∇f(x)} = κ ρM max T{f(x)}

Quartiles of κ

2, 500 ≤ n ≤ 40, 000

1.3 2.9 5.0 8.2 22.2

Leyffer, Moré, and Munson Computational Optimization



Topic 5: Constrained Optimization

Joseph-Louis Lagrange (January 25, 1736 – April 10, 1813)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk
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Geometric Viewpoint of the KKT Conditions

For any closed set Ω, consider the abstract problem

min {f(x) : x ∈ Ω}

The tangent cone

T (x∗) =

{
v : v = lim

k→∞

xk − x∗

αk
, xk ∈ Ω, αk ≥ 0

}
The normal cone

N(x∗) = {w : 〈w, v〉 ≤ 0, v ∈ T (x∗)}

First order conditions

−∇f(x∗) ∈ N(x∗)
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Computational Viewpoint of the KKT Conditions

In the case Ω = {x ∈ Rn : c(x) ≥ 0}, define

C(x∗) =

{
w : w =

m∑
i=1

λi (−∇ci(x
∗)) , λi ≥ 0

}

In general C(x∗) ⊂ N(x∗), and under a constraint qualification

C(x∗) = N(x∗)

Hence, for some multipliers λi ≥ 0,

∇f(x) =
m∑

i=1

λi∇ci(x), λi ≥ 0,
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Constraint Qualifications

In the case where

Ω = {x ∈ Rn : l ≤ c(x) ≤ u}

the main two constraint qualifications are

Linear independence
The active constraint normals are positively linearly independent,
that is, if

CA = (∇ci(x) : ci(x) ∈ {li, ui})

then CA has full rank.

Mangasarian-Fromovitz
The active constraint normals are positively linearly independent.
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Lagrange Multipliers

For the general problem with 2-sided constraints

min {f(x) : l ≤ c(x) ≤ u}

the KKT conditions for a local minimizer are

∇f(x) =
m∑

i=1

λi∇ci(x), l ≤ c(x) ≤ u,

where the multipliers satisfy complementarity conditions

� λi is unrestricted if li = ui.

� λi = 0 if ci(x) /∈ {li, ui}
� λi ≥ 0 if ci(x) = li

� λi ≤ 0 if ci(x) = ui

Leyffer, Moré, and Munson Computational Optimization



Lagrangians

The KKT conditions for the problem with constraints l ≤ c(x) ≤ u
can be written in terms of the Lagrangian

L(x, λ) = f(x)−
m∑

i=1

λici(x).

Examples.

The KKT conditions for the equality-constrained c(x) = 0 are

∇xL(x, λ) = 0, c(x) = 0.

The KKT conditions for the inequality-constrained c(x) ≥ 0 are

∇xL(x, λ) = 0, c(x) ≥ 0, λ ≥ 0, λ ⊥ c(x)

where λ ⊥ c(x) means that λici(x) = 0.
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Newton’s Method: Equality-Constrained Problems

The KKT conditions for the equality-constrained problem c(x) = 0,

∇xL(x, λ) = ∇f(x)−
m∑

i=1

λi∇ci(x) = 0, c(x) = 0.

are a system of n + m nonlinear equations.

Newton’s method for this system can be written as

x+ = x + sx, λ+ = λ + sλ

where(
∇2

xL(x, λ) −∇c(x)
∇c(x)T 0

) (
sx

sλ

)
= −

(
∇xL(x, λ)

c(x)

)
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Saddle Point Problems

Given a symmetric n× n matrix H and a n×m matrix C, under
what conditions is

A =

(
H C
CT 0

)
nonsingular?

Lemma. If C has full rank and

CT u = 0, u 6= 0, =⇒ uT Hu > 0

then A is nonsingular.
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Topic 6: Solving Optimization Problems

Environments

� Modeling Languages: AMPL, GAMS

� NEOS
http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg

http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg7/11/2004 8:19:27 AM
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The Classical Model

Fortran C Matlab NWChem
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The NEOS Model

A collaborative research project that represents the efforts of the
optimization community by providing access to 50+ solvers from
both academic and commercial researchers.
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NEOS: Under the Hood

� Modeling languages for optimization: AMPL, GAMS

� Automatic differentiation tools: ADIFOR, ADOL-C, ADIC

� Python

� Optimization solvers (50+)

• Benchmark, GAMS/AMPL (Multi-Solvers)

• MINLP, FortMP, GLPK, Xpress-MP, . . .

• CONOPT, FILTER, IPOPT, KNITRO, LANCELOT,
LOQO, MINOS, MOSEK, PATHNLP, PENNON, SNOPT

• BPMPD, FortMP, MOSEK, OOQP, Xpress-MP, . . .

• CSDP, DSDP, PENSDPP, SDPA, SeDuMi, . . .

• BLMVM, L-BFGS-B, TRON, . . .

• MILES, PATH

• Concorde

Leyffer, Moré, and Munson Computational Optimization
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Research Issues for NEOS

� How do we add solvers?

� How are problems specified?

� How are problems submitted?

� How are problems scheduled for solution?

� How are the problems solved?

� Where are the problems solved?

• Arizona State University
• Lehigh University
• Universidade do Minho, Portugal
• Technical University Aachen, Germany
• National Taiwan University, Taiwan
• Northwestern University
• Universitá di Roma La Sapienza, Italy
• Wisconsin University
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Solving Optimization Problems: NEOS Interfaces

Interfaces

• Kestrel

• NEOS Submit

• Web browser

• Email

Leyffer, Moré, and Munson Computational Optimization



Pressure in a Journal Bearing

min

{∫
D

{
1
2wq(x)‖∇v(x)‖2 − wl(x)v(x)

}
dx : v ≥ 0

}

wq(ξ1, ξ2) = (1 + ε cos ξ1)
3

wl(ξ1, ξ2) = ε sin ξ1

D = (0, 2π)× (0, 2b)
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Number of active constraints depends on the choice of ε in (0, 1).
Nearly degenerate problem. Solution v /∈ C2.
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AMPL Model for the Journal Bearing: Parameters

Finite element triangulation

param nx > 0, integer; # grid points in 1st direction

param ny > 0, integer; # grid points in 2nd direction

param b; # grid is (0,2*pi)x(0,2*b)

param e; # eccentricity

param pi := 4*atan(1);

param hx := 2*pi/(nx+1); # grid spacing

param hy := 2*b/(ny+1); # grid spacing

param area := 0.5*hx*hy; # area of triangle

param wq {i in 0..nx+1} := (1+e*cos(i*hx))^3;

Leyffer, Moré, and Munson Computational Optimization



AMPL Model for the Journal Bearing

var v {i in 0..nx+1, 0..ny+1} >= 0;

minimize q:

0.5*(hx*hy/6)*sum {i in 0..nx, j in 0..ny}

(wq[i] + 2*wq[i+1])*

(((v[i+1,j]-v[i,j])/hx)^2 + ((v[i,j+1]-v[i,j])/hy)^2) +

0.5*(hx*hy/6)*sum {i in 1..nx+1, j in 1..ny+1}

(wq[i] + 2*wq[i-1])*

(((v[i-1,j]-v[i,j])/hx)^2 + ((v[i,j-1]-v[i,j])/hy)^2) -

hx*hy*sum {i in 0..nx+1, j in 0..ny+1} (e*sin(i*hx)*v[i,j]);

subject to c1 {i in 0..nx+1}: v[i,0] = 0;

subject to c2 {i in 0..nx+1}: v[i,ny+1] = 0;

subject to c3 {j in 0..ny+1}: v[0,j] = 0;

subject to c4 {j in 0..ny+1}: v[nx+1,j] = 0;
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AMPL Model for the Journal Bearing: Data

# Set the design parameters

param b := 10;

param e := 0.1;

# Set parameter choices

let nx := 50;

let ny := 50;

# Set the starting point.

let {i in 0..nx+1,j in 0..ny+1} v[i,j]:= max(sin(i*hx),0);
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AMPL Model for the Journal Bearing: Commands

option show_stats 1;

option solver "knitro";

option solver "snopt";

option solver "loqo";

option loqo_options "outlev=2 timing=1 iterlim=500";

model;

include bearing.mod;

data;

include bearing.dat;

solve;

printf {i in 0..nx+1,j in 0..ny+1}: "%21.15e\n", v[i,j] > cops.dat;

printf "%10d\n %10d\n", nx, ny > cops.dat;
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Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.
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Life-Cycles Saving Problem: Model

param T integer; # Number of periods

param R integer; # Retirement

param beta; # Discount rate

param r; # Interest rate

param S0; # Initial savings

param ST; # Final savings

param w{1..T}; # Wages

var S{0..T}; # Savings

var c{0..T}; # Consumption

maximize utility: sum{t in 1..T} beta^t*(-exp(-c[t]));

subject to budget {t in 0..T-1}: S[t+1] = (1+r)*S[t] + w[t+1] - c[t+1];

subject to savings {t in 0..T}: S[t] >= 0.0;

subject to consumption {t in 1..T}: c[t] >= 0.0;

subject to bc1: S[0] = S0;

subject to bc2: S[T] = ST;

subject to bc3: c[0] = 0.0;
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Life-Cycles Saving Problem: Data

param T := 100;

param R := 60;

param beta := 0.9;

param r := 0.2;

param S0 := 0.0;

param ST := 0.0;

# Wages

let {i in 1..R} w[i] := 1.0;

let {i in R..T} w[i] := 0.0;

let {i in 1..R} w[i] := (i/R);

let {i in R..T} w[i] := (i - T)/(R - T);
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Life-Cycles Saving Problem: Commands

option show_stats 1;

option solver "filter";

option solver "ipopt";

option solver "knitro";

option solver "loqo";

model;

include life.mod;

data;

include life.dat;

solve;

printf {t in 0..T}: "%21.15e %21.15e\n", c[t], S[t] > cops.dat;
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