
Part I

Introduction, Applications, and Formulations

Leyffer, Moré, and Munson Computational Optimization

Outline: Six Topics

� Introduction

� Unconstrained optimization

• Limited-memory variable metric methods

� Systems of Nonlinear Equations

• Sparsity and Newton’s method

� Automatic Differentiation

• Computing sparse Jacobians via graph coloring

� Constrained Optimization

• All that you need to know about KKT conditions

� Solving optimization problems

• Modeling languages: AMPL and GAMS
• NEOS

Leyffer, Moré, and Munson Computational Optimization

Topic 1: The Optimization Viewpoint

� Modeling

� Algorithms

� Software

� Automatic differentiation tools

� Application-specific languages

� High-performance architectures

Leyffer, Moré, and Munson Computational Optimization

View of Optimization from Applications

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.02

0.04

0.06

0.08

0.1

0.12

Leyffer, Moré, and Munson Computational Optimization

Classification of Constrained Optimization Problems

min {f(x) : xl ≤ x ≤ xu, cl ≤ c(x) ≤ cu}

• Number of variables n

• Number of constraints m

• Number of linear constraints

• Number of equality constraints ne

• Number of degrees of freedom n− ne

• Sparsity of c′(x) = (∂icj(x))

• Sparsity of ∇2
xL(x, λ) = ∇2f(x) +

∑m
k=1∇2ck(x)λk

Leyffer, Moré, and Munson Computational Optimization

Classification of Constrained Optimization Software

• Formulation

• Interfaces: MATLAB, AMPL, GAMS

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Linear solvers
• Direct solvers
• Iterative solvers
• Preconditioners

• Partially separable problem formulation

• Documentation

• License

Leyffer, Moré, and Munson Computational Optimization

Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.

Question. What are the characteristics of the life-cycle problem?

Leyffer, Moré, and Munson Computational Optimization

Constrained Optimization Software: IPOPT

• Formulation

min {f(x) : xl ≤ x ≤ xu, c(x) = 0}

• Interfaces: AMPL

• Second-order information options:
• Differences
• Limited memory
• Hessian-vector products

• Direct solvers: MA27, MA57

• Partially separable problem formulation: None

• Documentation

• License

Leyffer, Moré, and Munson Computational Optimization

Life-Cycles Saving Problem: Results

(R, T) = (30, 50) (R, T) = (60, 100)

Question. Problem formulation to results: How long?

Leyffer, Moré, and Munson Computational Optimization

Topic 2: Unconstrained Optimization

Augustin Louis Cauchy (August 21, 1789 – May 23, 1857)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk

Unconstrained Optimization: Background

Given a continuously differentiable f : Rn 7→ R and

min {f(x) : x ∈ Rn}

generate a sequence of iterates {xk} such that the gradient test

‖∇f(xk)‖ ≤ τ

is eventually satisfied

Theorem. If f : Rn 7→ R is continuously differentiable and
bounded below, then there is a sequence {xk} such that

lim
k→∞

‖∇f(xk)‖ = 0.

Exercise. Prove this result.

Leyffer, Moré, and Munson Computational Optimization

Ginzburg-Landau Model

Minimize the Gibbs free energy for a homogeneous superconductor∫
D

{
−|v(x)|2 + 1

2 |v(x)|4 + ‖[∇− iA(x)] v(x)‖2 + κ2 ‖(∇×A)(x)‖2}
dx

v : R2 → C (order parameter)
A : R2 → R2 (vector potential)

Unconstrained problem. Non-convex function. Hessian is singular.
Unique minimizer, but there is a saddle point.

Leyffer, Moré, and Munson Computational Optimization

Unconstrained Optimization

What can I use if the gradient ∇f(x) is not available?

� Geometry-based methods: Pattern search, Nelder-Mead, . . .

� Model-based methods: Quadratic, radial-basis models, . . .

What can I use if the gradient ∇f(x) is available?

� Conjugate gradient methods

� Limited-memory variable metric methods

� Variable metric methods

Leyffer, Moré, and Munson Computational Optimization

Computing the Gradient

Hand-coded gradients

� Generally efficient

� Error prone

� The cost is usually less than 5 function evaluations

Difference approximations

∂if(x) ≈ f((x + hei)− f(x)

hi

� Choice of hi may be problematic in the presence of noise.

� Costs n function evaluations

� Accuracy is about the ε
1/2
f where εf is the noise level of f

Leyffer, Moré, and Munson Computational Optimization

Cheap Gradient via Automatic Differentiation

Code generated by automatic differentiation tools

� Accurate to full precision

� For the reverse mode the cost is ΩT T{f(x)}.
� In theory, ΩT ≤ 5.

� For the reverse mode the memory is proportional to the
number of intermediate variables.

Exercise

Develop an order n code for computing the gradient of

f(x) =
n∏

k=1

xk

Leyffer, Moré, and Munson Computational Optimization

Line Search Methods

A sequence of iterates {xk} is generated via

xk+1 = xk + αkpk,

where pk is a descent direction at xk, that is,

∇f(xk)
T pk < 0,

and αk is determined by a line search along pk.

Line searches

� Geometry-based: Armijo, . . .

� Model-based: Quadratics, cubic models, . . .

Leyffer, Moré, and Munson Computational Optimization

Powell-Wolfe Conditions on the Line Search

Given 0 ≤ µ < η ≤ 1, require that

f(x + αp) ≤ f(x) + µα∇f(xk)
T pk sufficent decrease

|∇f(x + αp)T p| ≤ η |∇f(x)T p| curvature condition

Leyffer, Moré, and Munson Computational Optimization

Conjugate Gradient Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk + αkpk

pk+1 = −∇f(xk) + βkpk

where αk is determined by a line search.

Three reasonable choices of βk are (gk = ∇f(xk)):

βFR
k =

(
‖gk+1‖
‖gk‖

)2

, Fletcher-Reeves

βPR
k =

〈gk+1, gk+1 − gk〉
‖gk‖2

, Polak-Rivière

βPR+
k = max

{
βPR

k , 0
}

, PR-plus

Leyffer, Moré, and Munson Computational Optimization

Limited-Memory Variable-Metric Algorithms

Given a starting vector x0 generate iterates via

xk+1 = xk − αkHk∇f(xk)

where αk is determined by a line search.

The matrix Hk is defined in terms of information gathered during
the previous m iterations.

� Hk is positive definite.

� Storage of Hk requires 2mn locations.

� Computation of Hk∇f(xk) costs (8m + 1)n flops.

Leyffer, Moré, and Munson Computational Optimization

Recommendations

But what algorithm should I use?

� If the gradient ∇f(x) is not available, then a model-based
method is a reasonable choice. Methods based on quadratic
interpolation are currently the best choice.

� If the gradient ∇f(x) is available, then a limited-memory
variable metric method is likely to produce an approximate
minimizer in the least number of gradient evaluations.

� If the Hessian is also available, then a state-of-the-art
implementation of Newton’s method is likely to produce the
best results if the problem is large and sparse.

Leyffer, Moré, and Munson Computational Optimization

Topic 3: Newton’s Method

Sir Isaac Newton (January 4, 1643 – March 331, 1727)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk

Motivation

Give a continuously differentiable f : Rn 7→ Rn, solve

f(x) =

 f1(x)
...

fn(x)

 = 0

Linear models. The mapping defined by

Lk(s) = f(xk) + f ′(xk)s

is a linear model of f near xk, and thus it is sensible to choose sk

such that Lk(sk) = 0 provided xk + sk is near xk.

Leyffer, Moré, and Munson Computational Optimization

Newton’s Method

Given a starting point x0, Newton’s method generates iterates via

f ′(xk)sk = −f(xk), xk+1 = xk + sk.

Computational Issues

� How do we solve for sk?

� How do we handle a (nearly) singular f ′(xk)?

� How do we enforce convergence if x0 is not near a solution?

� How do we compute/approximate f ′(xk)?

� How accurately do we solve for sk?

� Is the algorithm scale invariant?

� Is the algorithm mesh-invariant?

Leyffer, Moré, and Munson Computational Optimization

Flow in a Channel Problem

Analyze the flow of a fluid during injection into a long vertical
channel, assuming that the flow is modeled by the boundary value
problem below, where u is the potential function and R is the
Reynolds number.

u′′′′ = R (u′u′′ − uu′′′)

u(0) = 0, u(1) = 1

u′(0) = u′(1) = 0

Leyffer, Moré, and Munson Computational Optimization

Sparsity

Assume that the Jacobian matrix is sparse, and let ρi be the
number of non-zeroes in the i-th row of f ′(x).

� Sparse linear solvers can solve f ′(x)s = −f(x) in order ρA

operations, where ρA = avg{ρ2
i }.

� Graph coloring techniques (see Topic 4) can compute or
approximate the Jacobian matrix with ρM function
evaluations where ρM = max{ρi}

Leyffer, Moré, and Munson Computational Optimization

Topic 4: Automatic Differentiation

Gottfried Wilhelm Leibniz (July 1, 1646 – November 14, 1716)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk

Computing Gradients and Sparse Jacobians

Theorem. Given f : Rn 7→ Rm, automatic differentiation tools
compute f ′(x)v at a cost comparable to f(x)

Tasks

• Given f : Rn 7→ Rm with a sparse Jacobian, compute f ′(x)
with p � n evaluations of f ′(x)v

• Given a partially separable f : Rn 7→ R, compute ∇f(x) with
p � n evaluations of 〈∇f(x), v〉

Requirements:

T{f ′(x)} ≤ ΩT T{f(x)}, M{∇f(x)} ≤ ΩM M{f(x)}

where T{·} is computing time and M{·} is memory.

Leyffer, Moré, and Munson Computational Optimization

Structurally Orthogonal Columns

Structurally orthogonal columns do not have a nonzero in the
same row position.

Observation.

We can compute the columns in a group of structurally orthogonal
columns with an evaluation of f ′(x)v.

f ′(x) =


× ×
× × ×

× × ×
× × ×

× × ×
× ×

 , v =


1
0
0
1
0
0



Leyffer, Moré, and Munson Computational Optimization

Coloring the Jacobian matrix f ′(x)

Partitioning the columns of f ′(x) into p groups of structurally
orthogonal columns is equivalent to a graph coloring problem.

For each group of structurally orthogonal columns, define v ∈ Rn

with vi = 1 if column i is in the group, and vi = 0 otherwise. Set

V = (v1, v2, . . . , vp)

Compute f ′(x) from the compressed Jacobian matrix f ′(x)V .

Observation. In practice p ≈ ρM where

ρM ≡ max{ρi},

and ρi is the number of non-zeros in the i-th row of f ′(x).

Leyffer, Moré, and Munson Computational Optimization

Coloring the Jacobian matrix with p = 17 colors

0 20 40 60 80

0

10

20

30

40

50

60

70

80

90

Sparsity pattern of Jacobian matrix with 17 colors

Leyffer, Moré, and Munson Computational Optimization

Sparsity Pattern of the Jacobian Matrix

Optimization software tends to require the closure of the sparsity
pattern ⋃ {

S(f ′(x)) : x ∈ D
}

.

in a region D of interest. In our case,

D = {x ∈ Rn : xl ≤ x ≤ xu}

Given x0 ∈ D, we evaluate the sparsity pattern of fE
′(x̄0), where

x̄0 is a random, small perturbation of x0, for example,

x̄0 = (1 + ε)x0 + ε, ε ∈ [10−6, 10−4]

Leyffer, Moré, and Munson Computational Optimization

Partially Separable Functions

The mapping f : Rn → R is partially separable if

f(x) =
m∑

i=1

fi(x),

and fi only depends on pi � n variables.

Theorem (Griewank and Toint [1981]). If f : Rn → R has a
sparse Hessian matrix then f is partially separable.

Optimization problems with a finite
element formulation usually associate
fi with each element.

Leyffer, Moré, and Munson Computational Optimization

Partially Separable Functions: The Trick

If f : Rn → R is partially separable, the extended function

fE(x) =

 f1(x)
...

fm(x)


has a sparse Jacobian matrix fE

′(x). Moreover,

f(x) = fE(x)T e =⇒ ∇f(x) = fE
′(x)T e

Observation. We can compute the dense gradient by computing
the sparse Jacobian matrix fE

′(x).

Leyffer, Moré, and Munson Computational Optimization

Computational Experiments

Experiments based on the MINPACK-2 collection of large-scale
problems show that gradients of partially separable functions can
be computed efficiently.

T {∇f(x)} = κ ρM max T{f(x)}

Quartiles of κ

2, 500 ≤ n ≤ 40, 000

1.3 2.9 5.0 8.2 22.2

Leyffer, Moré, and Munson Computational Optimization

Topic 5: Constrained Optimization

Joseph-Louis Lagrange (January 25, 1736 – April 10, 1813)
Additional information at Mac Tutor

www-history.mcs.st-andrews.ac.uk

Leyffer, Moré, and Munson Computational Optimization

www-history.mcs.st-andrews.ac.uk

Geometric Viewpoint of the KKT Conditions

For any closed set Ω, consider the abstract problem

min {f(x) : x ∈ Ω}

The tangent cone

T (x∗) =

{
v : v = lim

k→∞

xk − x∗

αk
, xk ∈ Ω, αk ≥ 0

}
The normal cone

N(x∗) = {w : 〈w, v〉 ≤ 0, v ∈ T (x∗)}

First order conditions

−∇f(x∗) ∈ N(x∗)

Leyffer, Moré, and Munson Computational Optimization

Computational Viewpoint of the KKT Conditions

In the case Ω = {x ∈ Rn : c(x) ≥ 0}, define

C(x∗) =

{
w : w =

m∑
i=1

λi (−∇ci(x
∗)) , λi ≥ 0

}

In general C(x∗) ⊂ N(x∗), and under a constraint qualification

C(x∗) = N(x∗)

Hence, for some multipliers λi ≥ 0,

∇f(x) =
m∑

i=1

λi∇ci(x), λi ≥ 0,

Leyffer, Moré, and Munson Computational Optimization

Constraint Qualifications

In the case where

Ω = {x ∈ Rn : l ≤ c(x) ≤ u}

the main two constraint qualifications are

Linear independence
The active constraint normals are positively linearly independent,
that is, if

CA = (∇ci(x) : ci(x) ∈ {li, ui})

then CA has full rank.

Mangasarian-Fromovitz
The active constraint normals are positively linearly independent.

Leyffer, Moré, and Munson Computational Optimization

Lagrange Multipliers

For the general problem with 2-sided constraints

min {f(x) : l ≤ c(x) ≤ u}

the KKT conditions for a local minimizer are

∇f(x) =
m∑

i=1

λi∇ci(x), l ≤ c(x) ≤ u,

where the multipliers satisfy complementarity conditions

� λi is unrestricted if li = ui.

� λi = 0 if ci(x) /∈ {li, ui}
� λi ≥ 0 if ci(x) = li

� λi ≤ 0 if ci(x) = ui

Leyffer, Moré, and Munson Computational Optimization

Lagrangians

The KKT conditions for the problem with constraints l ≤ c(x) ≤ u
can be written in terms of the Lagrangian

L(x, λ) = f(x)−
m∑

i=1

λici(x).

Examples.

The KKT conditions for the equality-constrained c(x) = 0 are

∇xL(x, λ) = 0, c(x) = 0.

The KKT conditions for the inequality-constrained c(x) ≥ 0 are

∇xL(x, λ) = 0, c(x) ≥ 0, λ ≥ 0, λ ⊥ c(x)

where λ ⊥ c(x) means that λici(x) = 0.

Leyffer, Moré, and Munson Computational Optimization

Newton’s Method: Equality-Constrained Problems

The KKT conditions for the equality-constrained problem c(x) = 0,

∇xL(x, λ) = ∇f(x)−
m∑

i=1

λi∇ci(x) = 0, c(x) = 0.

are a system of n + m nonlinear equations.

Newton’s method for this system can be written as

x+ = x + sx, λ+ = λ + sλ

where(
∇2

xL(x, λ) −∇c(x)
∇c(x)T 0

) (
sx

sλ

)
= −

(
∇xL(x, λ)

c(x)

)

Leyffer, Moré, and Munson Computational Optimization

Saddle Point Problems

Given a symmetric n× n matrix H and a n×m matrix C, under
what conditions is

A =

(
H C
CT 0

)
nonsingular?

Lemma. If C has full rank and

CT u = 0, u 6= 0, =⇒ uT Hu > 0

then A is nonsingular.

Leyffer, Moré, and Munson Computational Optimization

Topic 6: Solving Optimization Problems

Environments

� Modeling Languages: AMPL, GAMS

� NEOS
http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg

http://www.cadburylearningzone.co.uk/environment/images/pictures/emporer.jpg7/11/2004 8:19:27 AM

Leyffer, Moré, and Munson Computational Optimization

The Classical Model

Fortran C Matlab NWChem

Leyffer, Moré, and Munson Computational Optimization

The NEOS Model

A collaborative research project that represents the efforts of the
optimization community by providing access to 50+ solvers from
both academic and commercial researchers.

Leyffer, Moré, and Munson Computational Optimization

NEOS: Under the Hood

� Modeling languages for optimization: AMPL, GAMS

� Automatic differentiation tools: ADIFOR, ADOL-C, ADIC

� Python

� Optimization solvers (50+)

• Benchmark, GAMS/AMPL (Multi-Solvers)

• MINLP, FortMP, GLPK, Xpress-MP, . . .

• CONOPT, FILTER, IPOPT, KNITRO, LANCELOT,
LOQO, MINOS, MOSEK, PATHNLP, PENNON, SNOPT

• BPMPD, FortMP, MOSEK, OOQP, Xpress-MP, . . .

• CSDP, DSDP, PENSDPP, SDPA, SeDuMi, . . .

• BLMVM, L-BFGS-B, TRON, . . .

• MILES, PATH

• Concorde

Leyffer, Moré, and Munson Computational Optimization

http://www-neos.mcs.anl.gov/neos/server-solver-types.html

Research Issues for NEOS

� How do we add solvers?

� How are problems specified?

� How are problems submitted?

� How are problems scheduled for solution?

� How are the problems solved?

� Where are the problems solved?

• Arizona State University
• Lehigh University
• Universidade do Minho, Portugal
• Technical University Aachen, Germany
• National Taiwan University, Taiwan
• Northwestern University
• Universitá di Roma La Sapienza, Italy
• Wisconsin University

Leyffer, Moré, and Munson Computational Optimization

Solving Optimization Problems: NEOS Interfaces

Interfaces

• Kestrel

• NEOS Submit

• Web browser

• Email

Leyffer, Moré, and Munson Computational Optimization

Pressure in a Journal Bearing

min

{∫
D

{
1
2wq(x)‖∇v(x)‖2 − wl(x)v(x)

}
dx : v ≥ 0

}

wq(ξ1, ξ2) = (1 + ε cos ξ1)
3

wl(ξ1, ξ2) = ε sin ξ1

D = (0, 2π)× (0, 2b)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of active constraints depends on the choice of ε in (0, 1).
Nearly degenerate problem. Solution v /∈ C2.

Leyffer, Moré, and Munson Computational Optimization

AMPL Model for the Journal Bearing: Parameters

Finite element triangulation

param nx > 0, integer; # grid points in 1st direction

param ny > 0, integer; # grid points in 2nd direction

param b; # grid is (0,2*pi)x(0,2*b)

param e; # eccentricity

param pi := 4*atan(1);

param hx := 2*pi/(nx+1); # grid spacing

param hy := 2*b/(ny+1); # grid spacing

param area := 0.5*hx*hy; # area of triangle

param wq {i in 0..nx+1} := (1+e*cos(i*hx))^3;

Leyffer, Moré, and Munson Computational Optimization

AMPL Model for the Journal Bearing

var v {i in 0..nx+1, 0..ny+1} >= 0;

minimize q:

0.5*(hx*hy/6)*sum {i in 0..nx, j in 0..ny}

(wq[i] + 2*wq[i+1])*

(((v[i+1,j]-v[i,j])/hx)^2 + ((v[i,j+1]-v[i,j])/hy)^2) +

0.5*(hx*hy/6)*sum {i in 1..nx+1, j in 1..ny+1}

(wq[i] + 2*wq[i-1])*

(((v[i-1,j]-v[i,j])/hx)^2 + ((v[i,j-1]-v[i,j])/hy)^2) -

hx*hy*sum {i in 0..nx+1, j in 0..ny+1} (e*sin(i*hx)*v[i,j]);

subject to c1 {i in 0..nx+1}: v[i,0] = 0;

subject to c2 {i in 0..nx+1}: v[i,ny+1] = 0;

subject to c3 {j in 0..ny+1}: v[0,j] = 0;

subject to c4 {j in 0..ny+1}: v[nx+1,j] = 0;

Leyffer, Moré, and Munson Computational Optimization

AMPL Model for the Journal Bearing: Data

Set the design parameters

param b := 10;

param e := 0.1;

Set parameter choices

let nx := 50;

let ny := 50;

Set the starting point.

let {i in 0..nx+1,j in 0..ny+1} v[i,j]:= max(sin(i*hx),0);

Leyffer, Moré, and Munson Computational Optimization

AMPL Model for the Journal Bearing: Commands

option show_stats 1;

option solver "knitro";

option solver "snopt";

option solver "loqo";

option loqo_options "outlev=2 timing=1 iterlim=500";

model;

include bearing.mod;

data;

include bearing.dat;

solve;

printf {i in 0..nx+1,j in 0..ny+1}: "%21.15e\n", v[i,j] > cops.dat;

printf "%10d\n %10d\n", nx, ny > cops.dat;

Leyffer, Moré, and Munson Computational Optimization

Life-Cycles Saving Problem

Maximize the utility
T∑

t=1

βtu(ct)

where St are the saving, ct is consumption, wt are wages, and

St+1 = (1 + r)St + wt+1 − ct+1, 0 ≤ t < T

with r = 0.2 interest rate, β = 0.9, S0 = ST = 0, and

u(c) = − exp(−c)

Assume that wt = 1 for t < R and wt = 0 for t ≥ R.

Leyffer, Moré, and Munson Computational Optimization

Life-Cycles Saving Problem: Model

param T integer; # Number of periods

param R integer; # Retirement

param beta; # Discount rate

param r; # Interest rate

param S0; # Initial savings

param ST; # Final savings

param w{1..T}; # Wages

var S{0..T}; # Savings

var c{0..T}; # Consumption

maximize utility: sum{t in 1..T} beta^t*(-exp(-c[t]));

subject to budget {t in 0..T-1}: S[t+1] = (1+r)*S[t] + w[t+1] - c[t+1];

subject to savings {t in 0..T}: S[t] >= 0.0;

subject to consumption {t in 1..T}: c[t] >= 0.0;

subject to bc1: S[0] = S0;

subject to bc2: S[T] = ST;

subject to bc3: c[0] = 0.0;

Leyffer, Moré, and Munson Computational Optimization

Life-Cycles Saving Problem: Data

param T := 100;

param R := 60;

param beta := 0.9;

param r := 0.2;

param S0 := 0.0;

param ST := 0.0;

Wages

let {i in 1..R} w[i] := 1.0;

let {i in R..T} w[i] := 0.0;

let {i in 1..R} w[i] := (i/R);

let {i in R..T} w[i] := (i - T)/(R - T);

Leyffer, Moré, and Munson Computational Optimization

Life-Cycles Saving Problem: Commands

option show_stats 1;

option solver "filter";

option solver "ipopt";

option solver "knitro";

option solver "loqo";

model;

include life.mod;

data;

include life.dat;

solve;

printf {t in 0..T}: "%21.15e %21.15e\n", c[t], S[t] > cops.dat;

Leyffer, Moré, and Munson Computational Optimization

