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Motivation

• Empirical analysis of games in econometrics and industrial
organization.

• Discrete choice model with other agent’s actions entering as a
right hand side variable.

• Often most straight forward to estimate a game in two steps.

• In a first step, the economist estimates the reduced forms
implied by the model.

• In the second step, recover structural utility parameters that
rationalize the observed reduced forms.

• Computation of multiple equilibria.



Literature

• Early examples, Vuong and Bjorn (1984) and Bresnahan and
Reiss (1990,1991).

• Also, Aradillas-Lopez (2005), Ho(2005), Ishii (2005), Pakes,
Porter, Ho and Ishii (2005), Rysman (2004), Seim(2004),
Sweeting (2004), Tamer (2003) and Ciliberto and Tamer
(2005).

• Single agent dynamic models: Rust (1987), Hotz and Miller
(1993), Magnac and Thesmar (2003), Heckman and Navarro
(2005), among many others.

• Dynamic games: Aguirregabiria and Mira (2003), Bajari,
Benkard and Levin (2004), Pakes, Ovstrovsky and Berry
(2004), and Pesendorfer and Schmidt-Dengler (2004).



Static Model: Notations

• “Estimating Static Models of Strategic Interactions”

• Players, i = 1, ..., n.

• Actions ai ∈ {0, 1, . . . ,K}.
• A = {0, 1, . . . ,K}n and a = (a1, ..., an)..

• si ∈ Si : state for player i .

• S = ΠiSi and s = (s1, ..., sn) ∈ S .

• s is common knowledge and also observed by econometrician.

• For each agent i , K + 1 state variables εi (ai )

• εi (ai ): private information to each agent.

• εi = (εi (0) , . . . , εi (K )).

• Density f (εi ), i.i.d. across i = 1, . . . , n.



• Period utility for player i with action profile a:

ui (a, s, εi ; θ) = Πi (ai , a−i , s; θ) + εi (ai )

• Example: the period profit of firm i for entering the market.

• Generalizes a standard discrete choice model.

• Agents act in isolation in standard discrete choice models.

• Unlike a standard discrete choice model, a−i enters utility.

• Player i ’s decision rule is a function ai = δi (s, εi ).

• Note that ε−i does not enter.

• ε−i is private information of other players.



Static model

• Conditional choice probability σi (ai |s) for player i :

σi (ai = k|s) =

∫
1 {δi (s, εi ) = k} f (εi )dεi .

• Choice probability is conditional s: public information.

• Choice specific expected payoff for player i :

Πi (ai , s; θ) =
∑
a−i

Πi (ai , a−i , s; θ)σ−i (a−i |s).

• Expected utility from choosing ai , excluding preference shock.

• The optimal action for player i satisfies:

σi (ai |s) = Prob

{
εi |Πi (ai , s; θ) + εi (ai )

> Πi (aj , s; θ) + εi (aj) for j 6= i .

}



• Πi (ai , a−i , s; θ) is often a linear function, e.g.:

Πi (ai , a−i , s) =

{ s ′ · β + δ
∑
j 6=i

1 {aj = 1} if ai = 1

0 if ai = 0

• Mean utility from not entering normalized to zero.

• δ measures the influence of j ’s entry choice on i ’s profit.

• If firms compete with each other: δ < 0.

• β measure the impact of the state variables on profits.

• εi (ai ) capture shocks to the profitability of entry.

• Often εi (ai ) are assumed to be i.i.d. extreme value distributed:

f (εi (k)) = e−εi (k)ee−εi (k)
.



• Choice specific expected payoff under linearity:

Πi (ai = 1, s; θ) = s ′ · β + δ
∑
j 6=i

σj(aj = 1|s).

• Choice probability under the extreme value distribution

σi (ai = 1|s) =
exp(s ′ · β + δ

∑
j 6=i σj(aj = 1|s))

1 + exp(s ′ · β + δ
∑

j 6=i σj(aj = 1|s))

• Two approaches for estimation:

• Full information maximum likelihood estimation.

• Semiparametric two step estimation method.



Full information maximum likelihood

• Choice probability equations define fixed point mappings for

σj(aj = 1|s).

• For each θ = (β, δ), solve for

σj(aj = 1|s; θ)

for all j = 1, . . . , n.
• Maximize likelihood function:

L(θ) =
TY

t=1

nY
i=1

(σi (ai = 1|s; θ))1{ai,t=1}

(1− σi (ai = 1|s; θ))1{ai,t=0}



Two step semiparametric approach

• At the true parameter θ, σj(aj = 1|s; θ)) can be recovered
from the data nonparametrically:

σ̂j(aj = 1|s).

• Pseudo likelihood easy to maximize: (multinomial) logit

TY
t=1

nY
i=1

 
exp(s ′ · β + δ

P
j 6=i σ̂j(aj = 1|s))

1 + exp(s ′ · β + δ
P

j 6=i σ̂j(aj = 1|s))

!1{ai,t=1}

 
1−

exp(s ′ · β + δ
P

j 6=i σ̂j(aj = 1|s))
1 + exp(s ′ · β + δ

P
j 6=i σ̂j(aj = 1|s))

!1{ai,t=0}

• Both the first stage estimates σ̂i (ai = 1|s) and the term s ′ · β
depend on the vector of state variables s.

• Colinearity and identification: Need a covariate that enters
the first stage, but not the second stage.



Nonparametric Identification

A1 Assume that the error terms εi (ai ) are distributed i.i.d. across
actions ai and agents i , and come from a known parametric
family.

• Not possible to allow nonparametric mean utility and error
terms at once, even in simple single agent problems (e.g. a
probit).

• In Bajari, Hong and Ryan (2005)- even a single agent model is
not identified without an independence assumption.

• Well known that Πi (0, s) are not identified.

• σi (ai |s) only functions of Πi (ai , s)− Πi (0, s).

• Suppose εi (ai ) is extreme value,

σi (ai |s) =
exp(Πi (ai , s)− Πi (0, s))∑K
k=0 exp(Πi (k, s)− Πi (0, s))



A2 For all i and all a−i and s, Πi (ai = 0, a−i , s) = 0.

• Can only learn choice specific value functions up to a first
difference. Need normalization

• Similar to “outside good” assumption in single agent model.

• Entry: the utility from not entering is normalized to zero.



• Hotz and Miller (1993) inversion, for any k, k ′:

log (σi (k|s))− log
(
σi (k

′|s)
)

= Πi (k, s)− Πi (k
′, s).

• More generally let Γ : {0, ...,K} × S → [0, 1]:

(σi (0|s), ..., σi (K |s)) = Γi (Πi (1, s)− Πi (0, s), ...,Πi (K , s)− Πi (0, s))

• And the inverse Γ−1:

(Πi (1, s)− Πi (0, s), ...,Πi (K , s)− Πi (0, s)) = Γ−1
i (σi (0|s), ..., σi (K |s))

• Invert equilibrium choice probabilities to nonparametrically
recover Πi (1, s)− Πi (0, s), ...,Πi (K , s)− Πi (0, s).

• Πi (ai , s) is known by our inversion and probabilites σi can be
observed by econometrician.



• Next step: how to recover Πi (ai , a−i , s) from Πi (ai , s).

• Requires inversion of the following system:

Πi (ai , s) =
∑
a−i

σ−i (a−i |s)Πi (ai , a−i , s),

∀i = 1, . . . , n, ai = 1, . . . ,K ..

• Given s, n×K × (K + 1)n−1 unknowns utilities of all agents.

• Only n × (K ) known expected utilities.

• Obvious solution: impose exclusion restrictions.



• Partition s = (si , s−i ), and suppose

Πi (ai , a−i , s) = Πi (ai , a−i , si )

depends only on the subvector si .

Πi (ai , s−i , si ) =
∑
a−i

σ−i (a−i |s−i , si )Πi (ai , a−i , si ).

• Identification: Given each si , the second moment matrix of
the “regressors” σ−i (a−i |s−i , si ),

Eσ−i (a−i |s−i , si )σ−i (a−i |s−i , si )
′

is nonsingular.

• Needs at least (K + 1)n−1 points in the support of the
conditional distribution of s−i given si .



Nonparametric Estimation

• Step 1: Estimation of choice probabilities (e.g. sieve)

bσi (k|s) =
TX

t=1

1(ait = k)qκ(T )(st)(Q
′
TQT )−1qκ(T )(s).

where
QT = (qκ(T )(s1), . . . , q

κ(T )(sT ),

and

qκ(T )(s) = (q1(s), . . . , qκ(T )(s)).

• Step 2: Inversion of expected utilities�bΠi (1, st)− bΠi (0, st), ...bΠi (K , st)− bΠi (0, st)
�

= Γ−1
i (bσi (0|st), ..., bσi (K |st))

In the logit model

Π̂i (k, st)− Π̂i (0, st) = log (bσi (k|st))− log (bσi (0|st))



• Step 3: Recovering structural parameters.

• Infer Πi (ai , a−i , si ) from Π̂i (k, s).

• Use empirical analog of

Πi (ai , s−i , si ) =
X
a−i

σ−i (a−i |s−i , si )Πi (ai , a−i , si ).

• For given si and given a = (ai , a−i ), run local regression

TX
t=1

0@Π̂i (ai , s−it , si )−
X
a−i

σ̂−i (a−i |s−it , si ) Πi (ai , a−i , si )

1A2

w (t, si ) .

Nonparametric weights can take different forms, e.g.

w (t, si ) = k
� sit − si

h

�
/

TX
τ=1

k
� siτ − si

h

�
.

• Asymptotically identified.



Semiparametric Estimation

• Linear model of deterministic utility

Πi (ai , a−i , si ) = Φi (ai , a−i , si )
′ θ.

• Choice specific value function

Πi (ai , s) = E [Πi (ai , a−i , si ) |s, ai ] = Φi (ai , s)
′ θ.

where

Φi (ai , s) =
X
a−i

Φi (ai , a−i , si )
Y
j 6=i

σ(aj = kj |s).

• Estimated parameter choice probabilities:

σi

�
ai |s, Φ̂, θ

�
=

exp
�
Φ̂i (ai , s)

′ θ
�

1 +
PK

k=1 exp
�
Φ̂i (k, s)′ θ

�
• Semiparametric method of moment estimator

1

T

TX
t=1

Â (st)
�
yt − σ

�
st , Φ̂, θ̂

��
= 0.

where

σ
�
st , Φ̂, θ

�
=
�
σi

�
k|st , Φ̂, θ

�
,∀k = 1, . . . , K ,∀i = 1, . . . , n

�



• Nonparametric vs semiparametric methods

• Typically σ̂i (k|s) will converge to the true σi (k|s) at a
nonparametric rate which is slower than T 1/2.

• Alternative estimators: kernel smoothing or local polynomial

• Nonparametric method is more robust against
misspecification.

• May suffer from curse of dimensionality.

• Semiparametric method more practical in applications.

• θ can be estimated at parametric rates despite first stage
nonparametric estimation.

• Pseudo MLE can be used in place of Method of moments.



Linear probability model

• Binary choice model K = 1:

Πi (0, a−i , s) = εi (0) ≡ 0, , Φi (1, a−i , s; θ) = Φ1
i (si )

′ β + Φ1
i (a−i , s)

′ γ

• Action 1 is chosen if and only if

Φ1
i (si )

′ β + E
h
Φ2

i (a−i , s) |s
i′

γ + εi (1) > 0.

• Assume uniform distribution of εi (1):

ai = Φ1
i (si )

′ β + E
h
Φ2

i (a−i , s) |s
i′

γ + ηit (1) ,

where E (ηit (1) |st) = 0. Alternative representation:

ai = Φ1
i (si )

′ β + Φ2
i (a−i , s)

′ γ + E
h
Φ2

i (a−i , s) |s
i′

γ − Φ2
i (a−i , s)

′ γ + ηit (1) ,

• Valid instruments, function of st are mean independent of

E
h
Φ2

i (a−i , s) |s
i′

γ − Φ2
i (a−i , s)

′ γ + ηit (1) ,

• Can be estimated by 2SLS (ivreg in Stata)



Fixed effect model of unobserved heterogeneity

• Smooth function of state variables s: α (ai , s).

• Estimatable belief of players only a function of s.
• Nonparametric Identification:

Πi (ai , a−i , s; θ) = α (ai , s) + Π̃i (ai , a−i , si ; θ).

• Expected utility nonparametric identified:

Πi (ai , s) = α (ai , s) +
P

a−i
σ−i (a−i |s)Π̃i (ai , a−i , si ).

• Differencing between pairs of players

Πi (k, s)− Πj (k, s) =X
a−i

σ−i (a−i |s) Π̃i (k, a−i , si )−
X
a−j

σ−j (a−j |s) Π̃j(k, a−j , sj)

• Given si and sj , use variations in σ−i (a−i |s) and σ−j (a−j |s)
to identify Π̃i (k, a−i , si ) and Π̃j(k, a−j , sj).

• Under symmetry:

Πi (k, s)− Πj (k, s) =
X
a−ij

σ−ij (a−ij |s)
h
Π̃ij(k, a−ij , si )− Π̃ij(k, a−ij , sj)

i
.



• Parametric mean utilities

Π̃i (ai , a−i , si ) = Φi (ai , a−i , si )
′ θ.

• Conditional logit estimation, log L

TX
t=1

 
log

"
exp

 
θ′

nX
i=1

aitΦ̂i (1, sit)

!#
− log

"X
dt∈Bt

exp

 
θ′

nX
i=1

ditΦ̂i (1, sit)

!#!

where

Bt ≡ {dt :
nX

i=1

dit =
nX

i=1

ait}

• Conditional likelihood given the number of entrants.
• Rank estimation

TX
t=1

nX
i=1

X
j 6=i

1 (ait > ajt) ρ−
��

Φ̂i (1, sit)− Φ̂j (1, sjt)
�′

θ
�

.

• Examples of penalty functions

ρ− (x) = 1 (x < 0) or ρ− (x) = 1 (x < 0) x2.



Computing Multiple Equilibria

• Known distribution for the error term F (εi )

• Known mean utility functions Πi (ai , a−i , θ).
• Conditional choice probability fixed point mappings:

σi (ai |s) = Γi

 X
−i

σa−i (a−i |s) [Πi (k, a−i , s; θ)− Πi (0, a−i , s; θ)] ,∀k

!
.

• Given linear mean utility, fixed point mappings:

σi (ai |s) = Γi

0@X
a−i

σ−i (a−i |s)Φi (ai , a−i , s)
′θ, ai = 1, . . . , K

1A , i = 1, . . . , n.

• K × n equations and K × n unknown variables

σi (ai |s) ,∀ai = 1, . . . ,K , i = 1, . . . , n,

• Possibility of multiple solutions.



Homotopy Method

• Find multiple and possibly all solutions

• The fixed point system, for σ = σ (s):

σ − Γ (σ) = 0,

• Homotopy: linear mapping between two spaces of functions

H (σ, τ) = τG (σ) + (1− τ) (σ − Γ (σ)) , τ ∈ [0, 1] ,

• H (σ, τ) and G (σ): vectors of n × K component functions

Hi,ai (σ, τ) and Gi,ai (σ) i = 1, . . . , n ai = 1, . . . ,K .

• Initial system: τ = 1, H (σ, 0) = G (σ).

• End system: τ = 0, H (σ, 0) = Γ (σ).



• Typically initial system G (σ) easy to solve.

• The solution path σ (τ):

H (σ (τ) , τ) = 0.

• Differentiating this homotopy with respect to τ :

d

∂τ
H (σ (τ) , τ) =

∂H

∂τ
+

∂H

∂σ
· ∂σ

∂τ
.

• Trace the path τ = 1 to τ = 0.

• Algorithms for numerically tracing this differential equation
system.



Condition 1 (Regularity) Let ∇ (τ) denote the Jacobian of the
Homotopy functions with respect to σ at the solution path σ (τ):

∇ (τ) =
∂

∂σ
Re{H (σ, τ)}

∣∣∣∣
σ=σ(τ)

,

where Re{H (σ, τ)} denotes the real component of the homotopy
functions. The jacobian σ (τ) has full rank for almost all τ .

Condition 2 (Path Finiteness) Define H−1 (τ) to be the set of
solutions σ (τ) to the homotopy system at τ . H−1 (τ) is bounded
for all 0 < τ ≤ 1. In other words, for all τ > 0.

lim
||σ||→∞

H (σ, τ) 6= 0.



Multiple Equilibria in Static Discrete Games

• Γ (·) a linear function in a linear probability model.

• May not have multiple equilibria if argument to Γ (·) is linear
in choice probabilities.

• For example if profit depends on number of competitors.

• But nonlinear interactions of choice probabilities also possible.

• Functional form of Γ (·) depends on distribution of error terms.

• In general, Γ (σ) nonlinear function of a polynomial index of
choice probabilities.

• Polynomial error distributions difficult to justify.
• Choice of initial system:

Gi,ai (σ) = σi (ai )
qi,ai − 1 = 0, i = 1, . . . , n, ai = 1, . . . , K .



Theorem 2 Define the sets H−1 = {(σr , σi , τ) | H(σr , σi , τ) = 0} amd

H−1(τ) = {(σr , σi ) | H(σ, τ) = 0} for σr ∈ RnK , and σi ∈ RnK .

Also define ℘ε = ∪i,ai {|σr,i,ai | ≤ ε} to be the area around the
imaginary axis.

1) The set H−1 ∩{R2nK \℘ε × [0, 1]} consists of closed disjoint paths.

2) For any τ ∈ (0, 1] there exists a bounded set such that
H−1(τ) ∩ R2nK \ ℘ε is in that set.

3) For (σr , σi , τ) ∈ H−1 ∩ {R2nK \ ℘ε × [0, 1]} the homotopy system
allows parametrization H(σr (s), σi (s), τ(s)) = 0. Moreover, τ(s)
is a monotone function.

Theorem 2 For given τ one can pick the power qi ,ai
of the initial

function (1) such that the homotopy system is regular and path
finite outside any sequence of converging polyhedra ℘ε, ε → 0.



Monte Carlo analysis

• Entry game with a small number of players

• Multiple equilibria computation, not about identification.

• Payoff to player i a linear function of the indicator of the
rival’s entry (ai = 1), market covariates and random term:

Ui (1, a−i ) =θ1 − θ2

∑
j 6=i

1 (aj = 1)

 + θ3x1 + θ4x2 + εi (a) ,

i = 1, . . . , n.

• Symmetric model, ex-ante probability of entry:

Pi =
eθ1−θ2(

P
j 6=i Pj)+θ3x1+θ4x2

1 + eθ1−θ2(
P

j 6=i Pj)+θ3x1+θ4x2



Table: Characteristics of the parameters

Parameter Mean Variance Distribution

θ1 2.45 1 Normal
θ2 5.0 1 Normal
θ3 1.0 1 Normal
θ4 -1.0 1 Normal
x1 1.0 0.33 Uniform
x2 1.0 0.33 Uniform



Table: Results of Monte-Carlo Simulations.

n = 3

Parameter Mean Std Dev Max Min

# of equilibria 1.592 1.175 7 1
P1 0.366 0.362 0.998 0
P2 0.360 0.367 0.995 0
P3 0.363 0.348 0.993 0.003

n = 4

# of equilibria 1.292 0.777 5 1
P1 0.278 0.328 0.981 0.001
P2 0.246 0.320 0.981 0.003
P3 0.276 0.338 0.999 0.001
P4 0.280 0.338 0.987 0.002

n = 5

# of equilibria 1.106 0.505 5 1
P1 0.104 0.201 0.964 0
P2 0.138 0.252 0.975 0
P3 0.315 0.338 0.992 0
P4 0.356 0.385 0.983 0
P5 0.319 0.344 0.982 0



Application: equity analyst’s recommendations

• Build on previous work by Bajari and Krainer.

• Study the set of recommendations on a stock can be viewed
as the outcome of a game.

• Payoffs may depend on recommendations made by peers since
they are benchmarked against peer recommendations.

• Also, inherent indeterminacy in system of rankings.

• Focus on interesting behavior during run-up and subsequent
collapse of the NASDAQ in 2000.

• Previous studies: least recommended stocks earned an
average abnormal return of 13% in 2000-2001.

• Most highly recommended stocks earned average abnormal
returns of -7%.



Four factors that could have influenced recommendations.

1 Recommendations must depend on public info about the
future profitability of a firm (stock and time effects).

2 Second, analysts may have heterogeneous forecasts (merge
earnings forecasts with recommendations).

3 Third, conflicts of interest (dummy variable for investment
banking business in quarters before and after recommendation
was made).

4 Finally, recommendations of other analysts matter.



Variables in data set

• RELATION-A dummy variable that is one if the analyst’s
brokerage engages in investment banking business with the
company to which the recommendation applies.

• SPITDUM-A dummy variable that is equal to one after the
quarter starting in June of 2001. Based on a comprehensive
search of Wall Street Journal articles, this is when Elliot
Spitzer began making very public criticisms of industry
practices.

• IBANK-A dummy variable that is equal to one if the
brokerage does any investment banking business with stocks
in the NASDAQ 100.

• SBANK-the share of analysts that issued recommendations for
a particular stock during a particular quarter where IBANK
was one.





• Utility is modeled as an ordered logit.

• The strategic interaction is a best response to the expected
recommendation of other analysts.

• Two sources of identification.

• The first is characteristics of other firms (e.g. whether or not
they are IBANKS).

• The second is Elliot Spitzer.



Empirical Findings

• Reduced form ordered logit regression.

• High correlation between quarterly effects and market indexes.

• Conflict of Interest: coef on RELATION

• IBANK: general investment banking firms generally more
conversative.

• Companies select banking firms favorable to them.

• Peer effects in the interaction model.

• Conformable peer effects important (1.8-2.3 IVBELIEF).

• Explains most of variation in the data.

• Parametric vs semiparametric first stage: similar results.









Computing Multiple Equilibria

• Focus on two player case.
• Quarter 9 and quarter 21.
• Average stock dummies and %DEV.
• Findings: two equilibria pre-Spitzer, one post-Spitzer.



Introducing Dynamics

• Players are forward looking.

• Infinite Horizon, Stationary, Markov Transition

• Now players maximize expected discounted utility using
discount factor β.

Wi (s, εi ; σ) = max
ai∈Ai

�
Πi (ai , s) + εi (ai )

+ β

Z X
a−i

Wi (s
′, ε′i ; σ)g(s ′|s, ai , a−i )σ−i (a−i |s)f (ε′i )dε′i

�

• Definition: A Markov Perfect Equilibrium is a collection of
δi (s, εi ), i = 1, ..., n such that for all i , all s and all εi , δi (s, εi )
maximizes Wi (s, εi ; σi , σ−i ).



• Conditional independence:

• ε distributed i.i.d. over time.

• State variables evolve according to g (s ′|s, ai , a−i ) .

• Define choice specific value function

Vi (ai , s) = Πi (ai , s) + βE
�
Vi (s

′)|s, ai

�
.

• Players chooose ai to maximize Vi (ai , s) + εi (ai ),
• Ex ante value function (Social surplus function)

Vi (s) =Eεi max
ai

[Vi (ai , s) + εi (ai )]

=G (Vi (ai , s),∀ai = 0, . . . , K)

=G (Vi (ai , s)− Vi (0, s) ,∀ai = 1, . . . , K) + Vi (0, s)



• When the error terms are extreme value distributed

Vi (s) = log
KX

k=0

exp (Vi (k, s))

= log
KX

k=0

exp (Vi (k, s)− Vi (0, s)) + Vi (0, s) .

• Relationship between Πi (ai , s) and Vi (ai , s):

Vi (ai , s) =Πi (ai , s) + βE
�
G
�
Vi (ai , s

′),∀ai = 0, . . . , K
�
|s, ai

�
=Πi (ai , s) + βE

�
G
�
Vi (k, s ′)− Vi

�
0, s ′

�
,∀k = 1, . . . , K

�
|s, ai

�
+ βE

�
Vi

�
0, s ′

�
|s, ai

�
• With extreme value distributed error terms

Vi (ai , s) =Πi (ai , s) + βE

"
log

KX
k=0

exp
�
Vi

�
k, s ′

�
− Vi

�
0, s ′

��
|s, ai

#
+ βE

�
Vi

�
0, s ′

�
|s, ai

�



• Hotz and Miller (1993): one to one mapping between σi (ai |s)
and differences in choice specific value functions:

(Vi (1, s)− Vi (0, s), ...Vi (K , s)− Vi (0, s)) = Ωi (σi (0|s), ..., σi (K |s))

• Example: i.i.d extreme value f (εi ):

σi (ai |s) =
exp(Vi (ai , s)− Vi (0, s))PK
k=0 exp(Vi (k, s)− Vi (0, s))

• Inverse mapping:

log (σi (k|s))− log (σi (0|s)) = Vi (k, s)− Vi (0, s)

• Since we can recover Vi (k, s)− Vi (0, s), we only need to
know Vi (0, s) to recover Vi (k, s) ,∀k.

• If we know Vi (0, s), Vi (ai , s) and Πi (ai , s) is one to one.



• Identify Vi (0, s) first. Set ai = 0:

Vi (0, s) =Πi (0, s) + βE

[
log

K∑
k=0

exp (Vi (k, s ′)− Vi (0, s ′)) |s, 0

]
+ βE [Vi (0, s ′) |s, 0]

• This is a single contraction mapping unique fixed point
iteration.

• Add Vi (0, s) to Vi (k, s)− Vi (0, s) to identify all Vi (k, s).

• Then all Πi (k, s) calculated from Vi (k, s) through

Πi (k, s) = Vi (k, s)− βE [Vi (s
′) |s, k] .



• Why normalize Πi (0, s) = 0?

• Why not Vi (0, s) = 0?

• If a firm stays out of the market in period t, current profit 0,
but option value of future entry might depend on market size,
number of other firms, etc.

• These state variables might evolve stochastically.

• Rest of the identification arguments: identical to the static
model.



• Nonparametric and Semiparametric Estimation

• Hotz-Miller inversion recovers Vi (k, s)− Vi (0, s) instead of
Πi (k, s)− Πi (0, s).

• Nonparametrically compute Vi (0, s) using

V̂i (0, s) =βÊ

[
log

K∑
k=0

exp
(
V̂i (k, s ′)− V̂i (0, s ′)

)
|s, 0

]
+ βÊ

[
V̂i (0, s ′) |s, 0

]
• Obtain and V̂i (k, s) and forward compute Π̂i (k, s).

• The rest is identical to the static model.



• In semiparametric models, θ̂ converges at a T 1/2 rate and has
normal asymptotics.

• Apply the results of Newey (1994)-derive appropriate
“influence functions”.

• The asymptotic distribution is invariant to the choice of
method used to estimate the first stage.

• With proper weighting function (need to estimate
nonparametrically), can achieve the same efficiency as full
information maximum likelihoood.

• These results hold for both static and dynamic models.



Conclusion

• Static and dynamic interaction models.

• Incomplete information assumption.

• Nonparametric identification.

• Nonparametric and Semiparametric estimation.

• Need for computation of multiple equilibria.

• Equilibria computation important for model simulation.

• Extension: parametric estimation method that allows for
multiple equilibria.



Complete information static model

Patrick Bajari, Han Hong and Stephen Ryan.
Identification and Estimation of Discrete Games of Complete
Information.
Working paper, 2005.

• Preference shocks common knowledge- much harder.

• Important previous work includes original works of Bresnahan
and Reiss (1990,1991), Berry (1992), and recent papers by
Tamer (2002), and Ciliberto and Tamer (2003).

• Issues with existence and multiplicity of equilibrium.



Contribution to the literature

• Work with general games instead of entry games.

• Allow for mixed strategies.

• Equilibrium selection is part of model.

• Exploit computational tools in McKelvy and McLennan
(1994) to find all equilibrium.

• Reduce computational burden in structural models using
importance sampling.

• Study nonparametric identification.



• Previous papers establish negative results on identification.

• Since our model is more general (allowing for selection of
equilibrium) we also get negative results.

• Positive results with exclusion restrictions.

• Find variables that influence selection equation (which
equilibrium is played) but not treatment (latent utility).

• Laws, regulations, previous plays may generate exclusion
restrictions.



The model

• Simultaneous move game of complete information (normal
form game).

• There are i = 1, ...,N players with a finite set of actions Ai .

• Let A =
∏
i

Ai .

• Utility is ui : A → R, where R is the real line.

• Let πi denote a mixed strategy over Ai .

• A Nash equilibrium is a set of best responses.



• Following Bresnahan and Reiss (1990,1991), utility is:

ui (a) = fi (x , a; θ) + εi (a).

• Mean utility, fi (x , a; θ1)

• a, the vector of actions, covariates x , and a parameters θ.

• εi (a) preference shocks.

• εi (a) ∼ g(ε|θ) iid.

• Standard random utility model, except utility depends on
actions of others.

• E (u) set of Nash equilibrium.

• λ(π;E (u), β) is probability of equilibrium, π ∈ E (u) given
parameters β.

• λ(π;E (u), β) corresponds to a finite vector of probabilities.



• Example of λ. Theorists have suggested that an equilibrium
may be more likely to be played if it:

• Satisfies a particular refinement concept (e.g. trembling hand
perfection).

• The equilibrium is in pure strategies.
• The equilibrium is risk dominant.

• Create dummy variable for whether a given equilibrium,
π ∈ E (u) satisfies criteria 1-3 above.

• Let x(π, u) denote the vector of covariates that we generate
in this fashion.

• Then a straightforward way to model λ is:

λ(π;E(u), β) =
exp(β · x(π, u))P

π′∈E(u) exp(β · x(π′, u))



Estimation

• Computing the set E (u), all of the equilibrium to a normal
form game, is a well understood problem.

• McKelvy and McLennan (1996) survey the available
algorithms in detail.

• Software package Gambit.

• P(a|x , θ, β) is probability of a given x , θ and β

P(a|x , θ, β) =
R ( P

π∈E(u(x,θ,ε))

λ(π; u(x , θ1, ε), β)
�Q N

i=1π(ai )
�)

g(ε|θ2)dε

• Computation of the above integral is facilitated by the
importance sampling procedure. (cf. Ackerberg (2003))



• Often g(ε|θ2) is a simple parametric distribution (e.g.
normal). For instance, suppose it is normal and let φ(·|µ, σ)
denote the normal density.

• Then, the density h(u|θ, x) for the vNM utilities u is:

h(u|θ, x) =
Y

i

Y
a∈A

φ(εi (a); fi (θ, x , θ) + µ, σ)

where for all i and all a, εi (a) = fi (x , a; θ1)− ui (a)

• Evaluating h(u|θ, x) is not difficult.

• Draw s = 1, ...,S vectors of vNM utilities,

u(s) = (u
(s)
1 , ..., u

(s)
N ) from an importance density q(u).



• We can then simulate P(a|x , θ, β) as follows:

bP(a|x , θ, β) =
PS

s=1

( P
π∈E(u)

λ(π;E(u(s)), β)
�Q N

i=1π(ai )
�) h(u(s)|θ,x)

q(u(s))

• Precompute E (u(s)) for a large number of randomly drawn
games s = 1, ...,S .

• Evaluating P̂(a|x , θ, β) at new parameters does not require
recomputing E (u(s)) for new s = 1, ...,S!

• Evaluating simulation estimator of P̂(a|x , θ, β) of P(a|x , θ, β)
only requires “reweighting” of the equilibrium by new λ and
h(u(s)|θ,x)

q(u(s))
.

• This is a feasible computation.



• Normally, the computational expense of structural estimation
comes from recomputing the equilibrium many times.

• This can save on the computational time by orders of
magnitude.

• Given P̂(a|x , θ, β) we can simulate the likelihood function or
simulate the moments.

• The asymptotics are standard.

• Simulated method of moments is unbiased and might have
lower number of simulation draws required to converge to the
asymptotic distribution at T 1/2 rate.

• The model we propose is parametric.

• We want to see if identification hinges on parametric
assumptions.

• Main result: To identify with weak functional form
assumptions, need exclusion restrictions.



Monte Carlo Simulation

• Three firms who must decide whether or not to enter a single
market.

• Two actions, ai = 0 if they do not enter and ai = 1 if they do.

• The payoffs from entering the market:

ui (ai = 1) = θ1 − θ2(
∑
j 6=i

1(aj = 1)) + θ3x1 + θ4x2 + εi (a),

• Payoff staying out of market

ui (ai = 0) = εi (a).

• Logit probability of selecting a given equilibrium:

λ(πi ;E(u), β) =
exp(β1MIXEDi )P

π′∈E(u) exp(β1MIXEDi )
,

MIXEDi is a dummy variable indicating mixed strategy
equilibrium.

• True parameters (θ1, θ2, θ3, θ4, β1) are (5, 1.5, 1.0, -1.0, 1.0).





Identification Assumptions

A1. For every i and a−i ∈ A−i , we let fi (ai , a−i , x) = 0 for some
chosen ai ∈ Ai and for all a−i ∈ A−i .

A2. For every i and for every a, εi (a) are distributed i.i.d.
standard normal.

A3. λ does not depend on the stochastic preference shocks ε.

A4. Given x , λ only depends only on the support of the elements
in E(u).

• The observable moments of conditional probabilities P (a|x)
are determined by the mean utilities and the selection
mechanism. Denote this mapping as
P (a|x) = H (f (x) , λ (x)).

A5. The map H is continuously differentiable. Also suppose that
for all x , the Jacobian matrix DHf ,λ has rank equal to the
dimension of the parmeter vector (f (a, x), λ(x)) .

A6. λ is a function of x and z , where z can be excluded from fi
for all i .



Two by two games

L R

T (ε1(TL), ε2(TL)) (ε1(TR), f2(TR, x) + ε2(TR))

B (f1(BL, x) + ε1(BL), ε2(BL)) (f1(BR, x) + ε1(BR), f2(BR, x) + ε2(BR))

Lemma 1. (2 by 2 Equilibrium). With probability one, the set of equilibrium is
either unique or has three elements. If it has three elements (i) One
equilibrium is in mixed strategies and (ii) In the two pure strategy
equilibrium, no player plays the same strategy in both equilibria.



Lemma 2. Given A1-A4, λ can be characterized by a finite dimensional
vector of parameters holding x fixed.

• Equilibrium selection probabilities: λ1 (x) , ..., λ4 (x) .

• If the equilibrium set is {(T , L), (B,R), a mixed strategy
equilibrium}, select (T , L) with probability λ1 (x), (B,R) with
probability λ2 (x) and the mixed strategy equilibrium with
probability 1− λ1 (x)− λ2 (x) .

• If the equilibrium set is {(T ,R), (B, L), a mixed strategy
equilibrium}, select (T ,R) with probability λ3 (x), (B, L) with
probability λ4 (x) and the mixed strategy equilibrium with
probability 1− λ3 (x)− λ4 (x) .



Identifcation: Negative Results

Theorem

In a game with two players and two strategies, if we make
assumptions A1-A5, the deterministic utility components

f1 (BL, x) , f1 (BR, x) , f2 (TR, x) , f2 (BR, x)

are not identified from the distribution of P(a|x) even if the
selection mechanism

λ1 (x) , . . . , λ4 (x)

is known.



Proof: To begin with, consider the identification problem holding
a given realization of x fixed. Since there are two players with two
strategies, the econometrician observes four conditional moments,

P(TL|x), P(TR|x), P (BL|x) , and P (BR|x) ,

Since the probability of the actions must sum to one, there are
effectively three moments that the econometrician observes. This
leaves us with 4 utility parameters,

f1 (BL, x) , f1 (BR, x) , f2 (TR, x) , f2 (BR, x)

to identify. Clearly, for a given realization of x we are not
identified. Q.E.D.



Theorem

In a game with more than two players and at least two strategies
per player, if we make assumptions A1-A5, the deterministic utility
parameters fi (a, x) are not identified from the distribution of
P(a|x), even if the selection mechanism λ (·) is known.



Proof: Consider a game with N players and #Ai strategies for
player i . Holding x fixed, the total number of mean utility
parameters fi (a, x) is equal to

N ·
∏
i

#Ai −
∑

i

∏
j 6=i

#Aj .

This is equal to the cardinality of the number of strategies, times
the number of players, minus the normalizations allowed by
assumption A1. The number of moments that the economist can
observe, conditional on x , is only equal to∏

i

#Ai − 1.

If each player has at least two strategies and if there are at least 2
players in the game, then for each given x the difference between
the number of utility parameters, fi , to estimate and the number of
available moment conditions is bounded from below by(

(N − 1)− N

2

) ∏
i

#Ai + 1 ≥ 0.



Exclusion Restriction in Equilibrium Selection

A6. λ is a function of x and z , where z can be excluded from fi
for all i .

A7. The covariates, x , can be partitioned into

x = (xλ, xu)

such that λ (x , z) depends only on xλ and not xu:

λ (x , z) = λ (xλ, z) .

Theorem

In the two by two game, suppose that A1-A7 are satisfied. Also
suppose that (xλ, xu, z) takes on a discrete number of values and
#xu > 3 and #z > 3. Then the mean utilities fi (a, x) and the
selection parameters λ (xλ, z) are locally identified.



Proof

The number of moments generated by observable population conditional
outcome probabilities, P(a|xλ, xu, z) is

3× (#xλ)× (#xu)× (#z) , (1)

Note that, in this equation, we multiply by 3 because the probabilities of the
various actions must sum to one. The total number of parameters needed to
characterize both the utility functions and the equilibrium selection probabilities
is

4× (#xλ)× (#xu) + 4× (#xλ)× (#z) . (2)

Alternatively, we can think for each each given xλ, there are

3× (#xu)× (#z) , (3)

conditional outcome probabilities and there are

4× (#xu) + 4× (#z) , (4)

parameters to estimate. It is clear that as long as #xu > 3 and #z > 3,

3× (#xu)× (#z) > 4× (#xu) + 4× (#z) (5)

and the model is locally identified by the implicit function theorem. Q.E.D.



Theorem

In a general N player game, suppose that A1-A7 are satisfied.
Also suppose that (xλ, xu, z) takes on a discrete number of values.
If #xu and #z are sufficiently large, the model is locally identified.

Proof. Holding xλ and z fixed, by Lemma 2, it must be possible to characterize λ with
a finite dimensional parameter vector. Since this vector depends on the supports of
the elements in E(u), it is possible to create a bound on the size of this vector that is
independent of xλ and z. Let #E denote this number. Holding xu fixed, the number
of vNM utilities is equal to N ·

Q
i

#Ai −
P
i

Q
j 6=i

#Aj .

Then the number of parameters is bounded by above by:

#E (#z) +

0
@N ·

Y
i

#Ai −
X

i

Y
j 6=i

#Aj

1
A (#xu)

The number of moments is proportional to

(#A− 1)× (#xu)× (#z) .

The number of moments grows at a rate involving the product of (#xu)× (#z) while

the number of parameters is a linear combination of these terms. For sufficiently large

#xu and #z, the number of moments is greater than the number of parameters.



Identification using payoff exclusions

A8. For each agent i , there exists some covariate, xi that enters the utility of
agent i , but not the utility of other agents. That is, i ’s utility can be
written as fi (a, x , xi ). Furthermore, xi can be excluded from λ.

Theorem

Suppose that A1-A5 and A8 hold. If #xi are sufficiently large, the model is
nonparametrically (locally) identified.

Proof: The proof follows similarly to the previous section. Hold x fixed.

Consider a large, but finite number of values of xi equal to K for each agent.

Consider the all the distinct vectors of the form x = (x1, ..., xN) that can be

formed. The number will be equal to KN . Consider the moments generated

by these KN distinct covariates. The number of moments is equal to

KN ·
P
i

(#Ai − 1) . The number of mean utility parameters is equal toP
i

K (#Ai − 1)
Q
j 6=i

#A plus the number of parameters required to characterize

λ (which is independent of the xi ). Thus, the number of moments depends

linearly on K but the number of moments grows exponentially with K .



Application 1

• Small business decision to go online.

• Focus on a single industry.

• Golf course in the Carolinas.

• Owner-operated, compete in spatially separated markets.

• Small business as marginal internet adopters.

• Slower and more varied than larger firms.

• Netwok dynamics in internet adoption.

• Long evolution of the internet.

• Web sites that aggregate information.



• Strategic considerations of web site creation.

• Negative demand consequences if competitors adopt.

• Negative supply side network effect even in absence of
competition.

• Model the decision of internet technology adoption as a
strategic game.

• Low number of firms deciding on a discrete action.

• Information aggregators in the online golf market.

• generic listing: location, rating, yardage, slope, price.

• Some golf courses maintain own web page.

• Largely informational.



Data

• North Carolina and South Carolina

• variables:
• Course type (public, private, resort, military) and Location
• Have web site or not
• Number of holes, rating, slope,
• weekday and weekend prices
• Local population, median rent, median house value, median

household income.
• Internet golf guides for course characteristics
• Census sources for housing and income information.

• Market definitions critical: chaining all courses within 10 miles
of any other course in the market.

• Only use markets with five or fewer courses.





Results

• Are adoption decisions by other firms strategic compliments or
substitutes?

• What type of equilibrium is most likely to be played (efficient, mixed
strategies)?

λi =
exp (β1MIXEDi + β2 (πi − πeff ))P
exp (β1MIXEDj + β2 (πj − πeff ))

• Utility of firm i is a linear function of the weekend price, number of
competing firms adopting internet, population, home price, income.

• Weekend price excluded from the other firms’ utility and from the
selection mechanism.

• Two step procedure.

• First stage: private information game.

• Starting values in regression coefficients in a probit regression with
predicted number of competitors.





• Negative constant shows disincentive to adopt a web site
absent all other effects.

• Adoption is driven by the price differences.

• Significant penalties with adopting a web site when your
competition has also done so.

• But not significant determinants of the decision of adopting
web site.

• Price is most informative.

• Mixed strategy equilibria are more likely to be played than
pure strategy equilibria! But marginal effect is small.

• Potentially large number of mixed strategy equilibria.

• Sampler draws games with only mixed strategy equilibria.

• Efficient equilibrium most likely to be played.

• No dynamics yet.



Model Simulations

• How close the expected utility of an observed outcome is to the joint
utility maximizing equilibrum.

• Solve for all equilibria of observed games.

• Compute the expected surplus as the expected payoff of the observed
action and the most efficient equilibrium.

• Distributions of the observed utility surplus.

• Negatively skewed to the left of zero.

• Percentage difference: two modes at 0 and 100.

• Larger market tends to be more efficient.









Application 2

• Strategic entry by bidder in highway procurement auctions.

• California Department of Transportation, 1999-2000.

• Multiple entry equilibria in bidding markets.

• Equilibrium selection important for simulating entry process.

• Two stage game.

• Stage 1: simultaneous entry decision by bidders.

• Stage 2: first price sealed bid auction.

• i = 1, . . . ,N potential bidders.

• t = 1, . . . ,T highway paving contracts.

• first price auction, independent private values.

• N (t) ∈ {1, . . . ,N}.



Bidding Game

• Private information of cost estimate Fi (cit |zit)

• zit : distance of contractor i to project t, project fixed effects.
• Bidder i chooses bit to maximize

(bi,t − ci,t)
Y

j∈N(t),j 6=i

(1− Fj (φj,t(bi,t)|zj,t))

=(bi,t − ci,t)
Y

j∈N(t),j 6=i

(1− Gj(bi,t |zt)).

• First condition of profit maximization

ci,t = bi,t −

 ∑
j∈N(t),j 6=i

gj(bi,t |zt)

(1− Gj(bi,t |zt))

−1

• Guerre, Perrigne and Vuong (GPV).



Entry Game

• Bid cost substantial part of the profit margins.

• 271 bidding firms. 4 major firms.

• Entry of other bidders N (t)− {1, 2, 3, 4} predetermined.

• Participating bidders N (t|a) include large entering firms and
exogenous fringe firms.

• Zero profit if a firm does not participate.
• Profit if a firm participates

ui (ai = 1, a−i ; zt) =

Z
(bi,t − ci,t)

Y
j 6=i

(1− Gj(bi,t |zt , N(t|a)))dF (ci,t |zi,t)− fi

• bit = bit (cit ; zt ,N (t|a)) equilibrium bidding strategy.



Markup Estimation

• Step 1, form estimates of Ĝj(bi ,t |zt ,N(t|a)) and
ĝj(bi ,t |zt ,N(t|a)).

• Step 2, recover private cost information:

bci,t = bi,t −

24X
j 6=i

bgj(bi,t |zt , N(t|a))
(1− bGj(bi,t |zt , N(t|a))

35−1

• Step 3, simulate s = 1, . . . ,S random draws b
(s)
it from

estimated bid distribution

c
(s)
i,t = b

(s)
i,t −

24X
j 6=i

bgj(b
(s)
i,t |zt , N(t|a))

(1− bGj(b
(s)
i,t |zt , N(t|a))

35−1

• Simulate expected profit

bui (bi,t , ci,t ; zt , N(t|a)) =
1

S

X
s

(b
(s)
i,t −c

(s)
i,t )

Y
j 6=i,j∈N(t)

(1−bGj(b
(s)
i,t |zt , N(t|a)))−fi

(6)



Equilibrium Selection

• Pure strategy equilibium vs mixed strategy equilibrium

• Efficiency of equilibrium: joint payoff maximizing.

• does not account for revenue or other fringe participants.

• Dummy for pareto dominance.

• Nash product of players’ utilities.



Data

Table: Bidder Identities and Summary Statistics

Company Share No. Wins No. Bids Participation Total Bids for
Entered Rate Contracts Awarded

Granite Construction Company 27.2% 76 244 58.9% 343,987,526
E. L. Yeager Construction Co Inc 10.4% 13 31 7.5% 132,790,460
Kiewit Pacific Co 6.6% 5 30 7.2% 112,057,627
M. C. M. Construction Inc 6.5% 2 6 1.4% 89,344,972
J. F. Shea Co Inc 3.3% 9 40 9.7% 43,030,861
Teichert Construction 3.3% 16 43 10.4% 40,177,076
W. Jaxon Baker Inc 2.9% 13 65 15.7% 37,702,631
All American Asphalt 2.2% 14 33 8.0% 30,764,962
Tullis And Heller Inc 2.1% 10 16 3.9% 27,809,535
Sully Miller Contracting Co 1.9% 17 49 11.8% 27,889,186



Covariates

• bi ,t—The bid of contractor i on project t.

• ESTt—The engineer’s estimate for project t.

• DISTi ,t—The distance (in miles) of firm i to project t.

• CAPi ,t—The capacity utilization of firm i at the time of
bidding for project t.

• FRINGEi ,t—A dummy variable equal to one if firm i is a
fringe firm.



Bidding summary

Table: Bidding Summary Statistics

Obs Mean Std. Dev. Min Max

Winning Bid 414 3,203,130 7,384,337 70,723 86,396,096
Markup: (Winning Bid-
Estimate)/Estimate

414 -0.0617 0.1763 -0.6166 0.7851

Normalized Bid: Winning
Bid/Estimate

414 0.9383 0.1763 0.3834 1.7851

Second Lowest Bid 414 3,394,646 7,793,310 84,572 92,395,000
Money on the Table: Sec-
ond Bid-First Bid

414 191,516 477,578 68 5,998,904

Normalized Money on the
Table: (Second Bid-First
Bid)/Estimate

414 0.0679 0.0596 0.0002 0.3476

Number of Bidders 414 4.68 2.30 2 19
Distance of the Winning
Bidder

414 47.47 60.19 0.27 413.18

Travel Time of the Winning
Bidder

414 56.95 64.28 1.00 411.00

Utilization Rate of the Win-
ning Bidder

414 0.1206 0.1951 0.0000 0.9457

Distance of the Second
Lowest Bidder

414 73.55 100.38 0.19 679.14

Travel Time of the Second
Lowest Bidder

414 82.51 97.51 1.00 614.00

Utilization Rate of the Sec-
ond Lowest Bidder

414 0.1401 0.2337 0.000 0.9959



Bid Regression

Table: Bid Function Regressions

Variable bi,t bi,t/ESTt bi,t/ESTt bi,t/ESTt bi,t/ESTt

ESTt
1.025

(56.26)

DISTi,t
.000246 .000249 .000223

(5.66) (5.73) (5.01)

UTILi,t
0.02539

(0.93)

FRINGEi,t
04288
(4.65)

Constant
-25686 1.19 1.007486 1.001
(0.56) (94.9) (XXXX) (79.98)

Fixed Effects No Project Project Project Project/Firm

R2 0.989 0.5245 0.5290 0.5292 0.5321

Number of observations = 1938.



Logit entry model

Table: Logit Model of Entry

I II III

Constant
-.9067 -1.6811
(7.91) (7.53)

DISTi,t
-.00218 -.00322 -.00854
(5.42) (5.66) (4.85)

Granite
2.889 4.4537

(13.28) (7.31)

E. L. Yeager
- -

Kiewit Pacific
-.1527 1.1969
(0.57) (2.1)

M. C. M.
-1.786 -.70779
(3.94) (1.12)

Fixed Effects Project

Observations 1656 1656 1068

Number of Groups 261

Log-Likelihood -784.20 -511.86 -101.0728

The dependent variable is whether one of the 4 largest firms in the industry decides to
submit a bid in a particular procurement. Standard errors are shown in parentheses.



Estimates of profits

• First stage linear regression

bi,t

ESTt
= x ′i,tθ + u(t) + εi,t

• u(t): auction specific fixed effect.

• Ĥ, Kaplan-Meier estimate of CDF of the fitted residuals ε̂it .

• Impute bid distribution of nonparticipating firms.

• Need to compute distance of nonparticipating firms.

Table: Margin Estimates

Variable Num. Obs. Mean Std. Dev. Median 25th Percentile 75th Percentile

Profit Margin 1938 0.0644 0.1379 0.0271 0.0151 0.0520

The markup is defined as 1 minus the ratio of the estimated cost (private information) to the bid.



Equilibrium selection and bid costs

Table: Games Estimation Results

Variable Mean Median Std.Dev. 95% Confidence Interval

Equilibrium Selection Parameters (λ)

Pure Strategy -1.3524 -1.5345 0.7979 -2.4903 0.1954
Efficient 6.4365 6.4226 0.5321 5.6151 7.5149
Dominated -5.3841 -5.3316 0.7002 -6.7164 -4.0986
Nash Product 4.4143 4.2025 1.1017 2.9651 6.4836

Profit Scale

Profit Scale 0.0965 0.0954 0.0015 0.0954 0.0984

Bid Preparation Costs (fi )

Granite Construction 0.2341 0.2393 0.0977 0.0679 0.4271
E. L. Yeager 1.4583 1.4757 0.0941 1.2563 1.6227
Kiewit Pacific 1.6751 1.6720 0.0511 1.5775 1.7789
M. C. M. Construction 2.4490 2.4360 0.1144 2.2547 2.6966

Estimation was run using LTE method of Chernozhukov and Hong citeyearhong-
chernozhukov:03. A Markov chain was generated with 500 draws for each parameter. 409
importance games were used in the importance sampler for the 409 observations.



Discussion

• Bid costs consistent with participation rates and expected
profits.

• Mixed strategy equilibrium more likely than pure strategy
ones.

• Strong selection effect of efficiency.

• Potential collusive implications.

• Negative coefficient on dominated equilibrium.

• Positive coefficient on highest Nash product.



Conclusion

• Develop algorithms to estimate utilities and equilibrium
selection parameters for static, discrete games.

• Computationally efficient.

• Works well in finite sample Monte Carlo simulations.

• Nonparametric identification: exclusion restrictions.

• Variables that shift equilibrium selection only.

• Variables that shift a specific agent utility only.

• Application to entry of four largest firms into California
procurement auctions.


