PROJECTION METHODS FOR DYNAMIC MODELS

Kenneth L. Judd
Hoover Institution and NBER

June 28, 2006

Functional Problems

- Many problems involve solving for some unknown function
- Dynamic programming
- Consumption and investment policy functions
- Pricing functions in asset pricing models
- Strategies in dynamic games
- The projection method is a robust method for solving such problems

An Ordinary Differential Equation Example

- Consider the differential equation

$$
\begin{equation*}
y^{\prime}-y=0, \quad y(0)=1, \quad 0 \leq x \leq 3 . \tag{11.1.1}
\end{equation*}
$$

- Define L

$$
\begin{equation*}
L y \equiv y^{\prime}-y \tag{11.1.2}
\end{equation*}
$$

$-L$ is an operator mapping functions to functions; domain is C^{1} functions and range is C^{0}.

- Define $Y=\left\{y(x) \mid y \in C^{1}, \quad y(0)=1\right\}$
- (11.1.1) wants to find a $y \in Y$ such that $L y=0$.
- Approximate functions: consider family

$$
\begin{equation*}
\hat{y}(x ; a)=1+\sum_{j=1}^{n} a_{j} x^{j} . \tag{11.1.3}
\end{equation*}
$$

- An affine subset of the vector space of polynomials.
- Note that $\hat{y}(0 ; a)=1$ for any choice of a, so $\hat{y}(0 ; a) \in Y$ for any a.
- Objective: find a s.t. $\hat{y}(x ; a)$ "nearly" solves differential equation (11.1.1).
- Define residual function

$$
\begin{equation*}
R(x ; a) \equiv L \hat{y}=-1+\sum_{j=1}^{n} a_{j}\left(j x^{j-1}-x^{j}\right) \tag{11.1.4}
\end{equation*}
$$

$-R(x ; a)$ is deviation of $L \hat{y}$ from zero, the target value.

- A projection method adjusts a until it finds a "good" a that makes $R(x ; a)$ "nearly" the zero function.
- Different projection methods use different notions of "good" and "nearly."
- Consider

$$
\hat{y}(x ; a)=1+\sum_{j=1}^{3} a_{j} x^{j}
$$

- Least Squares:
- Find a that minimizes the total squared residual

$$
\begin{equation*}
\min _{a} \int_{0}^{3} R(x ; a)^{2} d x \tag{11.1.5}
\end{equation*}
$$

- Method of moments:
- Idea: If $R(x ; a)$ were zero, then $\int_{0}^{3} R(x ; a) f(x) d x=0$ for all $f(x)$.
- Use low powers of x to identify a via projection conditions

$$
\begin{equation*}
0=\int_{0}^{3} R(x ; a) x^{j} d x, \quad j=0,1,2 . \tag{11.1.9}
\end{equation*}
$$

- Galerkin
- Idea: use basis elements, x, x^{2}, and x^{3} in projection conditions
- Form projections of R against the basis elements

$$
0=\int_{0}^{3} R(x ; a) x^{j} d x, \quad j=1,2,3 .
$$

- Collocation
- Idea: If $R(x ; a)=0$ then it is zero at all x.
- Specify a finite set of X and choose a so that $R(x ; a)$ is zero $x \in X$. If $X=\{0,3 / 2,3\}$, the uniform grid, this reduces to linear equations
- Chebyshev Collocation
- Idea: interpolation at Chebyshev points is best
- List the zeroes of $T_{3}(x)$ adapted to $[0,3]$

$$
X=\left\{\frac{3}{2}\left(\cos \frac{\pi}{6}+1\right), \frac{3}{2}, \frac{3}{2}\left(\cos \frac{5 \pi}{6}+1\right)\right\}
$$

Table 11.1: Solutions for Coefficients in (11.1.3)

$$
\begin{array}{rrrr}
\text { Scheme: } & a_{1} & a_{2} & a_{3} \\
\text { Least Squares } & 1.290 & -.806 & .659 \\
\text { Galerkin } & 2.286 & -1.429 & .952 \\
\text { Chebyshev Collocation } & 1.692 & -1.231 & .821 \\
\text { Uniform Collocation } & 1.000 & -1.000 & .667 \\
\text { Optimal } L_{2} & 1.754 & -.838 & .779
\end{array}
$$

Table 11.2: Projection Methods Applied to (11.1.2): L_{2} errors of solutions Uniform Chebyshev Least
n Collocation Collocation Squares Galerkin Best poly.

3	$5.3(0)$	$2.2(0)$	$3.2(0)$	$5.3(-1)$	$1.7(-1)$
4	$1.3(0)$	$2.9(-1)$	$1.5(-1)$	$3.6(-2)$	$2.4(-2)$
5	$1.5(-1)$	$2.5(-2)$	$4.9(-3)$	$4.1(-3)$	$2.9(-3)$
6	$2.0(-2)$	$1.9(-3)$	$4.2(-4)$	$4.2(-4)$	$3.0(-4)$
7	$2.2(-3)$	$1.4(-4)$	$3.8(-5)$	$3.9(-5)$	$2.8(-5)$
8	$2.4(-4)$	$9.9(-6)$	$3.2(-6)$	$3.2(-6)$	$2.3(-6)$
9	$2.2(-5)$	$6.6(-7)$	$2.3(-7)$	$2.4(-7)$	$1.7(-7)$
10	$2.1(-6)$	$4.0(-8)$	$1.6(-8)$	$1.6(-8)$	$1.2(-8)$

Continuous-Time Life-Cycle Consumption Models

- Consider life-cycle problem

$$
\begin{align*}
& \max _{c} \int_{0}^{T} e^{-\rho t} u(c) d t, \\
& \dot{A}=r A+w(t)-c(t) \tag{10.6.10}\\
& A(0)=A(T)=0
\end{align*}
$$

- Parameters

$$
\begin{aligned}
& -u(c)=c^{1+\gamma} /(1+\gamma) \\
& -\rho=0.05, r=0.10, \gamma=-2 \\
& -w(t)=0.5+t / 10-4(t / 50)^{2}, \text { and } T=50 .
\end{aligned}
$$

- The functions $c(t)$ and $A(t)$ must approximately solve the two point BVP

$$
\begin{align*}
& \dot{c}(t)=-\frac{1}{2} c(t)(0.05-0.10), \\
& \dot{A}(t)=0.1 A(t)+w(t)-c(t), \tag{11.4.7}\\
& A(0)=A(T)=0 .
\end{align*}
$$

- Approximation: degree 10 Chebyshev polys for $c(t)$ and $A(T)$:

$$
\begin{align*}
& A(t)=\sum_{i=0}^{10} a_{i} T_{i}\left(\frac{t-25}{25}\right), \tag{11.4.6}\\
& c(t)=\sum_{i=0}^{10} c_{i} T_{i}\left(\frac{t-25}{25}\right),
\end{align*}
$$

- Define the two residual functions

$$
\begin{align*}
& R_{1}(t)=\dot{c}(t)-0.025 c(t) \\
& R_{2}(t)=\dot{A}(t)-\left(.1 A(t)+\left(.5+\frac{t}{10}-4\left(\frac{t}{50}\right)^{2}\right)-c(t)\right) . \tag{11.4.8}
\end{align*}
$$

- Choose a_{i} and c_{i} so that $R_{1}(t)$ and $R_{2}(t)$ are nearly zero and $A(0)=A(T)=0$ hold.
- Boundary conditions impose two conditions
- Need 20 more conditions to determine the 22 unknown coefficients.
- Use 10 collocation points on [0,50]: the 10 zeros of $T_{10}(t-25 / 25)$

$$
\mathcal{C} \equiv\{0.31,2.72,7.32,13.65,21.09,28.91,36.35,42.68,47.28,49.69\}
$$

- Choose the a_{i} and c_{i} coefficients, which solve

$$
\begin{align*}
& R_{1}\left(t_{i}\right)=0, t_{i} \in \mathcal{C}, i=1, \ldots, 10, \\
& R_{2}\left(t_{i}\right)=0, t_{i} \in \mathcal{C}, i=1, \ldots, 10, \\
& A(0)=\sum_{i=1}^{10} a_{i}(-1)^{i}=0, \tag{11.4.9}\\
& A(50)=\sum_{i=1}^{10} a_{i}=0 .
\end{align*}
$$

- 22 linear equations in 22 unknowns.
- The system is nonsingular; therefore there is a unique solution.
- The true solution to the system (11.4.7) can be solved since it is a linear problem.
- Residuals:

- Errors

relative consumption errors

relative asset errors
- Note: Errors are roughly same size as residuals

Continuous-Time Growth Model

- Consider

$$
\begin{gathered}
\max _{c} \int_{0}^{\infty} e^{-\rho t} u(c) d t \\
\dot{k}=f(k)-c
\end{gathered}
$$

- Optimal policy function, $C(k)$, satisfies the ODE

$$
\begin{aligned}
& 0=C^{\prime}(k)(f(k)-C(k))-\frac{u^{\prime}(C(k))}{u^{\prime \prime}(C(k))}\left(\rho-f^{\prime}(k)\right) \equiv \mathcal{N}(C) \\
& \mathcal{N}: C^{1} \rightarrow C^{0}
\end{aligned}
$$

together with the boundary condition that $C\left(k^{*}\right)=f\left(k^{*}\right), f^{\prime}\left(k^{*}\right)=\rho$

- Example:

$$
\begin{aligned}
& -f(k)=\rho k^{\alpha} / \alpha, u(c)=c^{1+\gamma} /(1+\gamma) \\
& -\rho=0.04, \alpha=0.25, \gamma=-2 \\
& -k^{*}=1
\end{aligned}
$$

- Use Chebyshev polynomials for $k \in[0.25,1.75]$,

$$
\hat{C}(k ; a) \equiv \sum_{i=0}^{n} a_{i} T_{i}\left(\frac{k-1}{0.75}\right)
$$

- Define residual

$$
\begin{aligned}
0 & =R(k ; a)=\mathcal{N}(\hat{C}(\cdot ; a))(k) \\
& =\hat{C}^{\prime}(k)(f(k)-\hat{C}(k))-\frac{u^{\prime}(\hat{C}(k))}{u^{\prime \prime}(\hat{C}(k))}\left(\rho-f^{\prime}(k)\right)
\end{aligned}
$$

- Collocation: compute a by solving

$$
R\left(k_{i} ; a\right)=0, \quad i=1, \cdots, n+1
$$

where the k_{i} are the $n+1$ zeroes of $T_{n+1}\left(\frac{k-1}{0.75}\right)$.

- Results: $\hat{E}^{n}(k)$ is error of degree n approximation

Table 11.3: Projection Methods Applied to (5.1)

$$
\begin{array}{rrrrrr}
k & \hat{E}^{2}(k) & \hat{E}^{5}(k) & \hat{E}^{8}(k) & \hat{E}^{12}(k) & \hat{C}^{12}(k) \\
.6 & -9(-3) & -2(-3) & 4(-6) & -9(-9) & 0.159638 \\
.8 & -2(-2) & -2(-4) & -2(-6) & -1(-8) & 0.180922 \\
1.0 & 5(-16) & -2(-4) & -5(-16) & 5(-16) & 0.200000 \\
1.2 & 1(-2) & 1(-4) & 1(-6) & 7(-9) & 0.217543 \\
1.4 & 4(-3) & -9(-5) & -2(-6) & 7(-9) & 0.233941
\end{array}
$$

Simple Example: One-Sector Growth

- Consider

$$
\begin{aligned}
& \max _{c_{t}} \sum_{t=1}^{\infty} \beta^{t} u\left(c_{t}\right) \\
& \quad k_{t+1}=f\left(k_{t}\right)-c_{t}
\end{aligned}
$$

- Optimality implies that c_{t} satisfies

$$
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right) f^{\prime}\left(k_{t+1}\right)
$$

- Problem: The number of unknowns $c_{t}, t=1,2, \ldots$ is infinite.
- Step 0: Express solution in terms of an unknown function

$$
c_{t}=C\left(k_{t}\right): \text { consumption function }
$$

- Consumption function $C(k)$ must satisfy the functional equation:

$$
\begin{aligned}
0 & =u^{\prime}(C(k))-\beta u^{\prime}(C(f(k)-C(k))) f^{\prime}(f(k)-C(k)) \\
& \equiv(\mathcal{N}(C))(k)
\end{aligned}
$$

- This defines the operator

$$
\mathcal{N}: C_{+}^{0} \rightarrow C_{+}^{0}
$$

- Equilibrium solves the operator equation

$$
0=\mathcal{N}(C)
$$

- Step 1: Create approximation:
- Find

$$
\widehat{C} \equiv \sum_{i=0}^{n} a_{i} k^{i}
$$

which "nearly" solves

$$
\mathcal{N}(\widehat{C})=0
$$

- Convert an infinite-dimensional problem to a finite-dimensional problem in R^{n}
* No discretization of state space
* A form of discretization, but in spectral domain
- Step 2: Compute Euler equation error function:

$$
R(k ; \vec{a})=u^{\prime}(\widehat{C}(k))-\beta u^{\prime}(\widehat{C}(f(k)-\widehat{C}(k))) f^{\prime}(f(k)-\widehat{C}(k))
$$

- Step 3: Choose \vec{a} to make $R(\cdot ; \vec{a})$ "small" in some sense:
- Least-Squares: minimize sum of squared Euler equation errors

$$
\min _{\vec{a}} \int R(\cdot ; \vec{a})^{2} d k
$$

- Galerkin: zero out weighted averages of Euler equation errors

$$
P_{i}(\vec{a}) \equiv \int R(k ; \vec{a}) \psi_{i}(k) d k=0, i=1, \cdots, n
$$

for n weighting functions $\psi_{i}(k)$.

- Collocation: zero out Euler equation errors at $k \in\left\{k_{1}, k_{2}, \cdots, k_{n}\right\}$:

$$
P_{i}(\vec{a}) \equiv R\left(k_{i} ; \vec{a}\right)=0, i=1, \cdots, n
$$

- Details of $\int \ldots d k$ computation:
- Exact integration seldom possible in nonlinear problems.
- Use quadrature formulas - they tell us what are good points.
- Monte Carlo - often mistakenly used for high-dimension integrals
- Number Theoretic methods - best for large dimension
- Details of solving \vec{a} :
- Jacobian, $\vec{P}_{\vec{a}}(\vec{a})$, should be well-conditioned
- Newton's method is quadratically convergent since it uses Jacobian
- Functional iteration and time iteration ignore Jacobian and are linearly convergent.
- Homotopy methods are almost surely globally convergent
- Least squares may be ill-conditioned (that is, be flat in some directions).

Bounded Rationality Accuracy Measure

Consider the one-period relative Euler equation error:

$$
E(k)=1-\frac{\left(u^{\prime}\right)^{-1}\left(\beta u^{\prime}(C(f(k)-C(k))) f^{\prime}(f(k)-C(k))\right)}{C(k)}
$$

- Equilibrium requires it to be zero.
- $E(k)$ is measure of optimization error
- 1 is unacceptably large
- Values such as .00001 is a limit for people.
$-E(k)$ is unit-free.
- Define the $L^{p}, 1 \leq p<\infty$, bounded rationality accuracy to be

$$
\log _{10}\|E(k)\|_{p}
$$

- The L^{∞} error is the maximum value of $E(k)$.

Numerical Results

- Machine: Compaq 386/20 w/ Weitek 1167
- Speed: Deterministic case: <15 seconds
- Accuracy: Deterministic case: $8^{\text {th }}$ order polynomial agrees with 250,000 -point discretization to within $1 / 100,000$.

General Projection Method

- Step 0: Express solution in terms of unknown functions

$$
0=\mathcal{N}(h)
$$

where the $h(x)$ are decision and price rules expressing equilibrium dependence on the state x

- Step 1: Choose space for approximation:
- Basis for approximation for h :

$$
\left\{\varphi_{i}\right\}_{i=1}^{\infty} \equiv \Phi
$$

- Norm:

$$
\langle\cdot, \cdot\rangle: C_{+}^{0} \times C_{+}^{0} \rightarrow R
$$

basis should be complete in space of C_{+}^{0} functions basis should be orthogonal w.r.t. $\langle\cdot, \cdot\rangle$ norm and basis should be easy to compute norm and basis should be "appropriate" for problem norms are often of form $\langle f, g\rangle=\int_{D} f(x) g(x) w(x) d x$ for some $w(x)>0$

- Goal: Find \widehat{h} which "nearly" solves $\mathcal{N}(\widehat{h})=0$

$$
\widehat{h} \equiv \sum_{i=1}^{n} a_{i} \varphi_{i}
$$

- We have converted an infinite-dimensional problem to a problem in R^{n}
* No discretization of state space.
* Instead, discretize in a functional (spectral) domain.
- Example Bases:
* $\Phi=\left\{1, k, k^{2}, k^{3}, \cdots\right\}$
* $\Phi=\{\sin k, \sin 2 k, \cdots\}$: Fourier - (periodic problems)
$* \varphi_{n}=T_{n}(x):$ Chebyshev polynomials - (for smooth, nonperiodic problems)
* B-Splines (smooth generalizations of step and tent functions).
- Nonlinear generalization
* For some parametric form, $\Phi(x ; a)$

$$
\widehat{h}(x ; a) \equiv \Phi(x ; a)
$$

* Examples:
- Neural networks
- Rational functions
- Goal: Find an

$$
\widehat{h} \equiv \Phi(x ; a)
$$

which "nearly" solves $\mathcal{N}(\widehat{h})=0$. Promising direction but tools of linear functional analysis and approximation theory are not available.

- Step 2: Compute residual function:

$$
R(\cdot, a)=\widehat{\mathcal{N}}(\widehat{h}) \doteq \mathcal{N}(\widehat{h}) \doteq \mathcal{N}(h)
$$

- Step 3: Choose \vec{a} so that $R(\cdot ; \vec{a})$ is "small" in $\langle\cdot, \cdot\rangle$.
- Alternative Criteria:
* Least-Squares

$$
\min _{\vec{a}}\langle R(\cdot ; \vec{a}), \quad R(\cdot ; \vec{a})\rangle
$$

* Galerkin

$$
P_{i}(\vec{a}) \equiv\left\langle R(\cdot ; \vec{a}), \varphi_{i}\right\rangle=0, i=1, \cdots, n
$$

* Method of Moments

$$
P_{i}(\vec{a}) \equiv\left\langle R(\cdot ; \vec{a}), k^{i-1}\right\rangle=0, i=1, \cdots, n
$$

* Collocation

$$
P_{i}(\vec{a}) \equiv R\left(k_{i} ; \vec{a}\right)=0, i=1, \cdots, n, k_{i} \in\left\{k_{1}, k_{2}, \cdots, k_{n}\right\}
$$

* Orthogonal Collocation (a.k.a. Pseudospectral)

$$
P_{i}(\vec{a}) \equiv R\left(k_{i} ; \vec{a}\right)=0, i=1, \cdots, n, k_{i} \in\left\{k: \varphi_{n}(k)=0\right\}
$$

- Details of $\langle\cdot, \cdot\rangle$ computation:
- Exact integration seldom possible in nonlinear problems.
- Use quadrature formulas - they tell us what are good points.
- Monte Carlo - often mistakenly used for high-dimension integrals
- Number Theoretic methods - best for large dimension
- Details of solving \vec{a} :
- Jacobian, $\vec{P}_{\vec{a}}(\vec{a})$, should be well-conditioned.
- Newton's method is quadratically convergent since it uses Jacobian; functional iteration (e.g., parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.
- If Φ is orthogonal w.r.t. $\langle\cdot, \cdot\rangle$, then Galerkin method uses orthogonal projections, helping with conditioning.
- Least squares uses

$$
\left\langle R, \frac{\partial R}{\partial a_{i}}\right\rangle=0
$$

projection conditions, which may lead to ill-conditioning.

Convergence Properties of Galerkin Methods

- Zeidler (1989): If the nonlinear operator \mathcal{N} is monotone, coercive, and satisfies a growth condition then Galerkin method proves existence and works numerically.
- Krasnosel'skii and Zabreiko (1984): If \mathcal{N} satisfies certain degree conditions, then a large set of projection methods (e.g., Galerkin methods with numerical quadrature) converge.
- Convergence is neither sufficient nor necessary
- Usually only locally valid
- Convergence theorems don't tell you when to stop.
- Non-convergent methods are no worse if they satisfy stopping rules

Perfect Foresight Models

- General model
$-x_{t} \in R^{n}$: list of time t values consumption, labor supply, capital stock, output, prices, interest rates, wages, etc.
$-z_{t}$: list of exogenous variables, such as productivity levels, tax rates, monetary growth rates, etc., at time t.
- Perfect foresight equations

$$
\begin{aligned}
g(t, \vec{x}, \vec{z}) & =0, t=0,1,2, \ldots \\
x_{0, i} & =\bar{x}_{0, i}, i=1,2, \ldots, n_{I} \\
x_{t} & \text { bounded }
\end{aligned}
$$

- Optimal growth example:

$$
\begin{array}{ll}
\max _{c_{t}} & \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
\text { s.t. } & k_{t+1}=F\left(k_{t}\right)-c_{t} \\
& k_{0}=\bar{k}_{0}
\end{array}
$$

implies the Euler equation

$$
u^{\prime}\left(c_{t}\right)-\beta u^{\prime}\left(c_{t+1}\right) F^{\prime}\left(k_{t+1}\right)=0, t=0,1,2, \ldots
$$

Eliminate c_{t} to arrive at equations for k_{t}

$$
\begin{align*}
g(t, \vec{k}) \equiv & u^{\prime}\left(F\left(k_{t}\right)-k_{t+1}\right) \tag{1}\\
& -\beta u^{\prime}\left(F\left(k_{t+1}\right)-k_{t+2}\right) F^{\prime}\left(k_{t+1}\right)=0, t=0,1, \ldots \\
k_{0}= & \bar{k}_{0} \\
\lim _{t \rightarrow \infty} k_{t} \rightarrow & k^{s s}
\end{align*}
$$

Newton Method

- Canonical model

$$
g\left(t, x_{t}, x_{t+1}\right)=0, t=0,1,2, \ldots
$$

- Fair-Taylor (Ecm., 1983)
- A Gauss-Jacobi scheme
- Slow, possibly nonconvergent
- L-B-J (see Boucekkine, (JEDC, 1995), and Juillard et al (JEDC, 1998))
- Sparse Jacobian: time t eq'n depends on only $\left(x_{t}, x_{t+1}\right)$

$$
J(x)=\left(\begin{array}{cccc}
g_{2}\left(1, x_{1}, x_{2}\right) g_{3}\left(1, x_{1}, x_{2}\right) & 0 & \cdots \\
0 & g_{2}\left(2, x_{2}, x_{3}\right) & g_{3}\left(2, x_{2}, x_{3}\right) & \cdots \\
0 & 0 & g_{2}\left(3, x_{3}, x_{4}\right) & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \ddots \\
\vdots & \vdots & \vdots &
\end{array}\right)
$$

- Use sparse Newton method from large systems literature

$$
\begin{align*}
J\left(x^{k}\right) \Delta & =-g\left(x^{k}\right) \tag{2}\\
x^{k+1} & =x^{k}+\Delta
\end{align*}
$$

- Faster, more accurate than Fair-Taylor

Recursive Models and Dynamic Iteration Methods

- Consider representative agent growth problem

$$
\begin{align*}
& \max _{c_{t}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \tag{16.4.1}\\
& \text { s.t. } \quad k_{t+1}=F\left(k_{t}\right)-c_{t} .
\end{align*}
$$

- Equilibrium consumption rule $C(k)$ satisfies

$$
\begin{equation*}
u^{\prime}(C(k))=\beta u^{\prime}(C(F(k)-C(k))) F^{\prime}(F(k)-C(k)) \tag{16.4.2}
\end{equation*}
$$

- $C(k)$ is zero of operator

$$
\begin{align*}
0 & =u^{\prime}(C(k))-\beta u^{\prime}(C(F(k)-C(k))) F^{\prime}(F(k)-C(k)) \tag{16.4.3}\\
& \equiv(\mathcal{N}(C))(k)
\end{align*}
$$

$-\mathcal{N}$ is an operator from continuous functions to continuous functions.

- Consider the four occurrences of C and define the operator \mathcal{F} :

$$
\begin{align*}
0 & =u^{\prime}\left(C_{1}\right)-\beta u^{\prime}\left(C_{2}\left(F-C_{3}\right)\right) F^{\prime}\left(F-C_{4}\right) \tag{16.4.4}\\
& \equiv \mathcal{F}\left(C_{1}, C_{2}, C_{3}, C_{4}\right) .
\end{align*}
$$

- We want a function C that solves the equation

$$
\begin{equation*}
0=\mathcal{F}(C, C, C, C) \equiv \mathcal{N}(C) \tag{16.4.5}
\end{equation*}
$$

Time Iteration

- Time iteration implements the iterative scheme

$$
\begin{equation*}
0=u^{\prime}\left(C_{i+1}\right)-\beta u^{\prime}\left(C_{i}\left(F-C_{i+1}\right)\right) F^{\prime}\left(F-C_{i+1}\right) \tag{16.4.7}
\end{equation*}
$$

- Intuition: if $C_{i}(k)$ is tomorrow's consumption policy function, then today's policy, denoted by $C_{i+1}(k)$, must satisfy

$$
\begin{equation*}
u^{\prime}\left(C_{i+1}(k)\right)=\beta u^{\prime}\left(C_{i}\left(F(k)-C_{i+1}(k)\right)\right) F^{\prime}\left(F(k)-C_{i+1}(k)\right) . \tag{16.4.9}
\end{equation*}
$$

- In terms of \mathcal{F}, time iteration is the iteration implicitly defined by

$$
\begin{equation*}
0=\mathcal{F}\left(C_{i+1}, C_{i}, C_{i+1}, C_{i+1}\right) . \tag{16.4.8}
\end{equation*}
$$

- Convergence
- Monotonicity property of (16.4.9); that is, if $C_{i}^{\prime}(k)>0$ and $C_{i}(k)<C_{i-1}(k)$ then $C_{i+1}(k)<$ $C_{i}(k)$ and C_{i+1} is an increasing function.
- Monotonicity implies monotone convergence of (16.4.7)
- However, numerical implementations may introduce numerical error which violates monotonicity.

Fixed-Point Iteration

- Fixed-point iteration applied to (16.4.3) implements the implicit iterative scheme

$$
\begin{equation*}
0=\mathcal{F}\left(C_{i+1}, C_{i}, C_{i}, C_{i}\right) \tag{16.4.10}
\end{equation*}
$$

- C_{i+1} is easy to compute since at any k,

$$
\begin{align*}
C_{i+1}(k) & =\left(u^{\prime}\right)^{-1}\left(\beta u^{\prime}\left(C_{i}\left(F(k)-C_{i}(k)\right)\right) F^{\prime}\left(F(k)-C_{i}(k)\right)\right) \tag{16.4.11}\\
& \equiv\left(T_{f p}\left(C_{i}\right)\right)(k)
\end{align*}
$$

- Convergence is not guaranteed

Recursive Models with Nonlinear Equation Methods

- Use nonlinear equations and Chebyshev approximations to solve

$$
\begin{equation*}
0=\mathcal{F}(C, C, C, C) . \tag{16.4.10}
\end{equation*}
$$

- No economic "intuition" or "story"; it just works!
- Approximate C with the linear representation

$$
\begin{equation*}
\widehat{C}(k ; a)=\sum_{i=1}^{n} a_{i} \psi_{i}(k), \tag{16.5.1}
\end{equation*}
$$

$-\psi_{i}(k) \equiv T_{i-1}\left(2 \frac{k-k_{m}}{k_{M}-k_{m}}-1\right)$ and n is the number of terms used.

- Domain D is $\left[k_{m}, k_{M}\right]$.
- Residual function

$$
\begin{equation*}
R(k ; a)=u^{\prime}(\widehat{C}(k ; a))-\beta u^{\prime}(\widehat{C}(F(k)-\widehat{C}(k ; a) ; a)) F^{\prime}(F(k)-\widehat{C}(k ; a)) . \tag{16.5.2}
\end{equation*}
$$

- Orthogonal collocation chooses k_{j} and solves

$$
\begin{equation*}
R\left(k_{j} ; a\right)=0, j=1, \ldots, n . \tag{16.5.3}
\end{equation*}
$$

- Multiple solutions
- Multiple solutions to first-order conditions exist
- Only one satisfies global stability
- If initial guess is close then one typically converges to correct answer
- Can sometimes avoid bad ones
* Specify steady state
* Pick functional form which cannot go bad
* Alter problem to penalize divergent paths

Coefficients of Solution

- Theoretical predictions
- Approximation theory says that the Chebyshev coefficients should fall rapidly if $C(k)$ is smooth.
- Orthogonal basis should imply that coefficients do not change as we increase n.
- Table 16.1 verifies these predictions.

Table 16.1: Chebyshev Coefficients for Consumption Function

k	$n=2$	$n=5$	$n=9$	$n=15$
1	0.0589755899	0.0600095844	0.0600137797	0.0600137922
2	0.0281934398	0.0284278730	0.0284329464	0.0284329804
3		-0.0114191783	-0.0113529374	-0.0113529464
4	0.0007725731	0.0006990930	0.0006988353	
5		-0.0001616767	-0.0001633928	-0.0001634209
6		0.0000427201	0.0000430853	
7		-0.0000123570	-0.0000122160	
8		0.0000042498	0.0000036367	
9		-0.0000011464	-0.0000011212	
10			0.0000003557	
11			-0.0000001147	
12			0.0000000370	

Each entry is the coefficient of the k 'th Chebyshev polynomial (over the interval [.333, 1.667]) in the n-term approximation of the consumption policy function in (4.3) for the case discussed in Section 4.2.

Errors in Consumption Policy Function

- "Truth" computed by a $1,000,000$ state discrete approximation
- "True solution" also has some error because of discretization
- Table 16.2 displays difference between approximations and "truth"

Table 16.2: Policy Function Errors

k	y	c	$n=20$	$n=10$	$n=7$	$n=4$	$n=2$
0.5	0.1253211	0.1010611	$1(-7)$	$5(-7)$	$5(-7)$	$2(-7)$	$5(-5)$
0.6	0.1331736	0.1132936	$2(-6)$	$1(-7)$	$1(-7)$	$2(-6)$	$8(-5)$
0.7	0.1401954	0.1250054	$2(-6)$	$3(-7)$	$3(-7)$	$1(-6)$	$2(-4)$
0.8	0.1465765	0.1362965	$1(-6)$	$4(-7)$	$4(-7)$	$4(-6)$	$2(-4)$
0.9	0.1524457	0.1472357	$1(-6)$	$3(-7)$	$3(-7)$	$5(-6)$	$2(-4)$
1.0	0.1578947	0.1578947	$4(-6)$	$0(-7)$	$1(-7)$	$2(-6)$	$1(-4)$
1.1	0.1629916	0.1683016	$4(-6)$	$2(-7)$	$2(-7)$	$1(-6)$	$9(-5)$
1.2	0.1677882	0.1784982	$3(-6)$	$2(-7)$	$2(-7)$	$4(-6)$	$7(-6)$
1.3	0.1723252	0.1884952	$7(-7)$	$4(-7)$	$4(-7)$	$3(-6)$	$9(-5)$

Stochastic Dynamic General Equilibrium

- Canonical RBC Model

$$
\begin{gathered}
\max _{c_{t}} E\left\{\sum_{t=1}^{\infty} \beta^{t} u\left(c_{t}\right)\right\} \\
k_{t+1}=\theta_{t} f\left(k_{t}\right)-c_{t} \\
\ln \theta_{t+1}=\rho \ln \theta_{t}+\varepsilon_{t}
\end{gathered}
$$

- Euler equation

$$
u^{\prime}\left(c_{t}\right)=\beta E\left\{u^{\prime}\left(c_{t+1}\right) \theta_{t+1} f^{\prime}\left(k_{t+1}\right) \mid \theta_{t}\right\}
$$

- Consumption is determined by recursive function

$$
c_{t}=C\left(k_{t}, \theta_{t}\right)
$$

- $C(k, \theta)$ satisfies functional equation

$$
0=u^{\prime}(C(k, \theta))-\beta E\left\{u^{\prime}(C(\theta f(k)-C(k, \theta), \tilde{\theta})) \tilde{\theta} f^{\prime}(\theta f(k)-C(k, \theta)) \mid \theta\right\}
$$

- Transform Euler equation into the more linear form

$$
\begin{aligned}
0=C(k, \theta)-\left(u^{\prime}\right)^{-1} & \left(\beta E\left\{u^{\prime}(C(\theta f(k)-C(k, \theta), \tilde{\theta})) \times \tilde{\theta} f^{\prime}(\theta f(k)-C(k, \theta)) \mid \theta\right\}\right) \\
& \equiv \mathcal{N}(C)(k, \theta)
\end{aligned}
$$

but this rewriting is not essential

- Approximate policy function

$$
\begin{aligned}
\widehat{C}(k, \theta ; \mathbf{a}) & =\sum_{i=1}^{n_{k}} \sum_{j=1}^{n_{\theta}} a_{i j} \psi_{i j}(k, \theta) \\
\psi_{i j}(k, \theta) & \equiv T_{i-1}\left(2 \frac{k-k_{m}}{k_{M}-k_{m}}-1\right) T_{j-1}\left(2 \frac{\theta-\theta_{m}}{\theta_{M}-\theta_{m}}-1\right)
\end{aligned}
$$

- Define integrand of expectations

$$
I(k, \theta, \mathbf{a}, z)=u^{\prime}\left(\widehat{C}\left(\theta f(k)-\widehat{C}(k, \theta ; \mathbf{a}), e^{\sigma z} \theta^{\rho}, \mathbf{a}\right)\right) \times e^{\sigma z} \theta^{\rho} f^{\prime}(\theta f(k)-\widehat{C}(k, \theta ; \mathbf{a})) \pi^{-\frac{1}{2}}
$$

- $\mathcal{N}(\widehat{C}(\cdot, \cdot ; \mathbf{a}))(k, \theta)$ becomes

$$
\widehat{C}(k, \theta ; \mathbf{a})-\left(u^{\prime}\right)^{-1}\left(\beta \int_{-\infty}^{\infty} I(k, \theta ; \mathbf{a}, z) \frac{e^{-z^{2} / 2}}{\sqrt{2 \pi}} d z\right)
$$

- Use Gauss-Hermite quadrature over z :

$$
\int_{-\infty}^{\infty} I(k, \theta, \mathbf{a}, z) \frac{e^{-z^{2} / 2}}{\sqrt{2}} d z \doteq \sum_{j=1}^{m_{z}} I\left(k, \theta, \mathbf{a}, \sqrt{2} z_{j}\right) \omega_{j}
$$

where ω_{j}, z_{j} are Gauss-Hermite quadrature weights and points.

- The computable residual function is

$$
R(k, \theta ; \mathbf{a})=\widehat{C}(k, \theta ; \mathbf{a})-\left(u^{\prime}\right)^{-1}\left(\beta \sum_{j=1}^{m_{z}} I\left(k, \theta, \mathbf{a}, \sqrt{2} z_{j}\right) w_{j}\right) \equiv \widehat{\mathcal{N}}(\widehat{C}(\cdot, \cdot ; \mathbf{a}))(k, \theta) .
$$

- Fitting Criteria:
- Collocation:
* Choose n_{k} capital stocks, $\left\{k_{i}\right\}_{i=1}^{n_{k}}$, and n_{θ} productivity levels, $\left\{\theta_{i}\right\}_{j=1}^{n_{\theta}}$
* Find a such that

$$
R\left(k_{i}, \theta_{j} ; \mathbf{a}\right)=0, i=1, \cdots, n_{k}, j=1, \cdots, n_{\theta}
$$

- Galerkin:
* Compute the $n_{k} n_{\theta}$ projections with Chebyshev weight $w(k, \theta)$ adapted to $\left[k_{m}, k_{M}\right] \times\left[\theta_{m}, \theta_{M}\right]$

$$
P_{i j}(\mathbf{a}) \equiv \int_{k_{m}}^{k_{M}} \int_{\theta_{m}}^{\theta_{M}} R(k, \theta ; \mathbf{a}) \psi_{i j}(k, \theta) w(k, \theta) d \theta d k
$$

* Approximate projections by Gauss-Chebyshev quadrature

$$
\hat{P}_{i j}(\mathbf{a}) \equiv \sum_{\ell_{k}=1}^{m_{k}} \sum_{\ell_{\theta}=1}^{m_{\theta}} R\left(k_{i}, \theta_{j} ; \mathbf{a}\right) \psi_{i j}\left(k_{\ell_{k}}, \theta_{\ell_{\theta}}\right),
$$

where

$$
\begin{aligned}
k_{\ell_{\theta}} & =k_{m}+\frac{1}{2}\left(k_{M}-k_{m}\right)\left(z_{\ell_{k}}^{m_{k}}+1\right), \ell_{k}=1, \ldots, m_{k} \\
\theta_{\ell_{\theta}} & =\theta_{m}+\frac{1}{2}\left(\theta_{M}-\theta_{m}\right)\left(z_{\ell_{\theta}}^{m_{\theta}}+1\right), \ell_{\theta}=1, \ldots, m_{\theta} \\
z_{\ell}^{n} & \equiv \cos \left(\frac{(2 i-1) \pi}{2 n}\right), \ell=1, \ldots, n
\end{aligned}
$$

* Coefficients, a, are fixed by the system (solved by Newton's method)

$$
\hat{P}_{i j}(\mathbf{a})=0, i=1, \cdots, n_{k}, j=1, \cdots, n_{\theta}
$$

- Bounded Rationality Accuracy Measure
- Consider the computable Euler equation error

$$
E(k, \theta)=\frac{\widehat{\mathcal{N}}(\widehat{C}(\cdot, \cdot ; \mathbf{a}))(k, \theta)}{\widehat{C}(k, \theta ; \mathbf{a})}
$$

where $\widehat{\mathcal{N}}$ uses some integration formula for $E\{\cdot\} ;$ need not be the same as used in computing $R(k, \theta ; \mathbf{a})$. In fact, should use better one.

- Define the $L^{p}, 1 \leq p<\infty$, bounded rationality accuracy to be

$$
\log _{10}\|E(k)\|_{p}
$$

- Verify solution: Accept solution to projection equations, a, only if it passes tests
- Check stability
* For example, there should be positive savings at low k, high θ
* Could simulate capital stock process implied by $\widehat{C}(k, \theta ;$ a) to see if it has a stationary distribution
- Check Euler equation errors
* $E(k, \theta)$ should be moderate for most (k, θ) points in $\left[k_{m}, k_{M}\right] \times\left[\theta_{m}, \theta_{M}\right]$
* $E(k, \theta)$ should be small for most (k, θ) points frequently visited
- If $\widehat{C}(k, \theta ; \mathbf{a})$ does not pass these tests, go back and use higher values for n_{k} and n_{θ}, and increase m_{k}, and m_{θ}
- Numerical Results
- Basis: Chebyshev polynomials
- Initial guess: Linear rule through deterministic steady state and zero.
$-k \in[.333,2.000]$
- Method: Collocation and Galerkin.
- Newton's method solved projection equations, $P_{i}(\mathbf{a})=0$, for a.
- Machine: Compaq 386/20 (old, but relative speeds are still valid)
- Speed: Stochastic case: under two minutes for a 60 parameter fit.
- Errors: 2% for 6 parameter fit, $.1 \%$ for 60 parameter fit - about a penny loss per $\$ 10,000$ dollar expenditure
- Orth. poly. + orthog. collocation + Gaussian quad. + Newton outperforms naive methods by factor of 10 or greater; exceeded Monte Carlo methods by factor of $100+$.
$-\widehat{C}(k, \theta ;$ a) is an ε-equilibrium with small ε - a bounded rationality interpretation.

Table 17.1: $\log _{10}$ Euler Equation Errors

$$
\|E\|_{\infty}\|E\|_{1} \quad\|E\|_{\infty} \quad\|E\|_{1}
$$

\[

\]

Table 17.2: Alternative Implementations

$$
\begin{aligned}
& n_{k}=7, n_{\theta}=5, m_{k}=7, m_{\theta}=5 \\
& \begin{array}{lllllll}
\gamma & \rho & \sigma & \mathrm{G}^{a} & \mathrm{P}^{b} & \mathrm{U}^{c} & \mathrm{UP}^{d}
\end{array}
\end{aligned}
$$

${ }^{a}$ Chebyshev polynomial basis, Chebyshev zeroes used in evaluating fit ${ }^{b}$ Ordinary polynomial basis, Chebyshev zeroes used in evaluating fit
${ }^{c}$ Chebyshev polynomial basis, uniform grid points
${ }^{d}$ Ordinary polynomial basis, uniform grid points
${ }^{e}$ error measure is $\|E(k)\|_{\infty}$

Table 17.3: Tensor Product vs. Complete Polynomials ${ }^{a}$

		Tensor Product		Complete Polynomials				
γ	ρ	σ	$n=3$	$n=6$	$n=10$	$n=3$	$n=6$	$n=10$
-15.0	.8	.04	-2.34^{b}	-3.26	-3.48	-1.89	-3.10	-4.06
			$: 01^{c}$	$: 13$	$14: 21$	$: 03$	$: 07$	$1: 09$
-.9	.3	.10	-2.19	-3.60	-5.27	-2.14	-3.55	-5.22
			$: 01$	$: 08$	$1: 21$	$: 01$	$: 05$	$: 32$
-.1	.3	.01	-1.00	-2.84	-5.21	-0.99	-2.83	-5.17
		$: 01$	$: 08$	$1: 24$	$: 01$	$: 05$	$: 35$	

${ }^{b} \log _{10}\|E\|_{\infty} ;{ }^{c}$ Computation time expressed in minutes :seconds.

- Tensor product cases used orthogonal collocation with $n_{k}=n_{\theta}=m_{k}=m_{\theta}=n$ to identify the n^{2} free parameters. Complete polynomial cases used Galerkin projections to identify the $1+n+n(n+1) / 2$ free parameters..
- General Observations:
- Tensor product of degree n takes more time, but achieves higher accuracy
- For a specific level of accuracy, complete polynomial method is faster

Fixed-Point Iteration

- Gaussian Quadrature Implementation
- In fixed-point iteration we execute the iteration

$$
\begin{align*}
& C_{i+1}(k, \theta)=\left(u^{\prime}\right)^{-1}\left(\beta E\left\{u^{\prime}\left(C_{i}\left(k^{+}, \theta^{+}\right)\right) F_{k}\left(k^{+}, \theta^{+}\right) \mid \theta\right\}\right) \\
& \equiv F(k, \theta)-C_{i}(k, \theta) \tag{3}\\
& k^{+} \\
& \theta^{+} \sim N\left(\rho \ln \theta, \sigma^{2}\right)
\end{align*}
$$

- Note that this is a simple rewriting of Euler equation.
- Strategy: compute the right hand side for several (k, θ) choices and interpolate to get new C.
- RHS of (3) is tomorrow's return on saving one more dollar today conditional on today's (k, θ) and if $c=C(k, \theta)$ at all times.
- RHS of (3) is integral over θ^{+}.
* Since integrand is smooth and Gaussian, use four- or five-point Gauss-Hermite rule is adequate.
* Therefore, to compute the, say, quadratic, solution to this problem, one need only examine a handful of k and θ values. This results in a very rapid way to compute an iterate.
* May converge slowly if at all; use extrapolation or dampening.
- This is essentially Miranda-Helmburger (AER, 1988)

Examples: Multiagent Dynamic General Equilibrium

- Model:
$-n$ types of agents, utility functions, $u_{i}(c), i=1,2, \ldots, n$,
- Common discount factor β.
- Equity is the only asset
- $c_{i}=C_{i}(k)$, wealth distribution is $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$
- Approximate $c_{i}=\widehat{C}_{i}(k, \theta ; \mathbf{a})$.
- Euler equation for type $i=1,2, \ldots, n$

$$
\begin{aligned}
R_{i}(k, \theta, C) & =u_{i}^{\prime}\left(C_{i}(k, \theta)\right)-\beta E\left\{u^{\prime}\left(C_{i}(Y(k, \theta)-C(k, \theta), \tilde{\theta})\right)\right. \\
& \left.\times F_{k}(Y(k, \theta)-C(k, \theta), \tilde{\theta}) \mid \theta\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
Y_{i}(k, \theta) & =k_{i} F_{1}(\bar{k}, \theta)+w(\bar{k}, \theta), i=1, . ., n \\
w(\bar{k}, \theta) & =F(\bar{k}, \theta)-\bar{k} F_{1}(\bar{k}, \theta) \\
\bar{k} & \equiv \sum_{i} k_{i} .
\end{aligned}
$$

- Approximate residual function for agents of type $i=1,2, \ldots, n$

$$
\begin{aligned}
\widehat{R}_{i}(k, \theta, \widehat{C}(\cdot ; \mathbf{a}))= & \widehat{C}_{i}(k, \theta ; \mathbf{a})-\left(u_{i}^{\prime}\right)^{-1}\left(\beta \widehat{E}\left\{u_{i}^{\prime}\left(c^{+}\right) F_{k}\left(k_{.}^{+}, \tilde{\theta}\right) \mid \theta\right\}\right) \\
& c_{i}^{+} \equiv \widehat{C}_{i}\left(y^{+}, \tilde{\theta} ; \mathbf{a}\right) \\
& k^{+} \equiv Y(k, \theta ; \mathbf{a})-\widehat{C}(k, \theta ; a)
\end{aligned}
$$

where \widehat{E} is a numerical approximation of the integral. Use product Gaussian quadrature

- Identifying projections are

$$
P_{i j}(\mathbf{a}) \equiv \int_{\theta_{m}}^{\theta_{M}} \int_{k_{m}}^{k_{M}} \cdots \int_{k_{m}}^{k_{M}} \widehat{R}_{i}(k, \theta, \widehat{C}(\cdot ; \mathbf{a})) \psi_{j}(k, \theta) w(k, \theta) d k_{1} \cdots d k_{n} d \theta
$$

where $i=1, \ldots, n$, and $j=1, \ldots, m$.

- Let $\widehat{P}(\mathbf{a})$ denote a numerical integration approximation of $P(\mathbf{a})$; we will use product Gaussian quadrature
- Solution chooses a so that $\widehat{P}(\mathbf{a})=0$.

Representation: Tensor vs. Complete Polynomials

- Tensor method:

$$
\widehat{C}_{i}(k, \theta ; \mathbf{a})=\sum_{j_{1}=0}^{n_{k}} \cdots \sum_{j_{n}=0}^{n_{k}} \sum_{\ell=0}^{n_{\theta}} a_{j_{1} \ldots j_{n} \ell}^{i} \varphi_{i_{1}}\left(k_{1}\right) \cdots \varphi_{i_{n}}\left(k_{n}\right) \psi_{\ell}(\theta), \quad i=1, \ldots, n
$$

where $\varphi_{i}\left(k_{j}\right)\left(\psi_{\ell}(\theta)\right)$ is a degree $i-1(\ell-1)$ polynomial in $k_{j}(\theta)$ from some orthogonal family.

- Complete polynomial method

$$
C_{i}(k, \theta ; \mathbf{a})=\sum_{\substack{0 \leq j_{1}+\cdots+j_{n}+\ell \leq d \\ 0 \leq j_{i}, j_{d}}} a_{j_{1} \ldots j_{n} \ell}^{i} \varphi_{j_{1}}\left(k_{1}\right) \ldots \varphi_{j_{n}}\left(k_{n}\right) \psi_{\ell}(\theta)
$$

- Number of unknown coefficients are far smaller in complete poly case, but not as flexible.

Solution Methods

- Successive Approximation: at grid of (k, θ) points (e.g., Chebyshev zeroes) and given iteration j for $\mathbf{a}\left(\right.$ denoted $\left.\mathbf{a}^{j}\right), \widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j}\right)$, generate data

$$
\begin{align*}
\widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j+1}\right)= & \left(u^{\prime}\right)^{-1}\left(\beta \widehat { E } \left\{u^{\prime}\left(\widehat{C}_{i}\left(Y(k, \theta)-\widehat{C}_{i}(k, \theta ; \mathbf{a}), \tilde{\theta} ; \mathbf{a}\right)\right)\right.\right. \\
& \left.\times F_{k}\left(Y(k, \theta)-\widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j}\right), \tilde{\theta}\right) \mid \theta\right\} \tag{4}
\end{align*}
$$

and set coefficients \mathbf{a}^{j+1} through interpolation or regression

- Time Iteration: same procedure except not generate data for $\widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j+1}\right)$ by solving

$$
\begin{align*}
\widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j+1}\right)= & \left(u^{\prime}\right)^{-1}\left(\beta \widehat { E } \left\{u^{\prime}\left(\widehat{C}_{i}\left(Y(k, \theta)-\widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j+1}\right), \tilde{\theta} ; \mathbf{a}^{j}\right)\right)\right.\right. \tag{5}\\
& \left.\times F_{k}\left(Y(k, \theta)-\widehat{C}_{i}\left(k, \theta ; \mathbf{a}^{j+1}\right), \tilde{\theta}\right) \mid \theta\right\}
\end{align*}
$$

- Newton's Method: just solve nonlinear equations $\widehat{P}(\mathbf{a})=0$

Table 5: Time and Accuracy Comparisons
num. Newt's Method Succ.Approx:

$$
\text { agents } \gamma \text { deg basis coef's time acc'cy time accuracy }
$$

$$
\begin{array}{lllllllll}
1 & -2 & 1 & \mathrm{t} & 4 & : 0.05 & -2.7 & : 0.2 & -2.7
\end{array}
$$

		c	3	$: 0.06$	-2.6	$: 0.4$	-2.6
	2	t	9	$: 0.22$	-3.4	$: 01$	-3.4
		c	6	$: 0.17$	-3.3	$: 01$	-3.3
	3	t	16	$: 0.71$	-4.1	$: 01$	-4.1
		c	10	$: 0.49$	-4.0	$: 02$	-4.0
	4	t	25	$: 02$	-4.8	$: 02$	-4.9
		c	30	$: 0.99$	-4.7	$: 03$	-4.6
-1	1	t	16	$: 0.66$	-3.1	$: 01$	-3.1
-2		c	6	$: 0.38$	-2.7	$: 01$	-2.7
	2	t	54	$: 07$	-4.1	$: 08$	-4.1
		c	20	$: 02$	-3.4	$: 06$	-3.4
	3	t	128	$1: 22$	-5.0	$: 33$	-4.5
		c	40	$: 11$	-4.1	$: 21$	-4.1
	4	t	250	$12: 34$	-5.9	$1: 48$	-4.5
		c	70	$: 45$	-4.8	$: 56$	-4.7

Note: "inf" means infeasible. " h hrs n : m.l" means " h hours n minutes, $m . l$ seconds".

Table 5: Time and Accuracy Comparisons (Continued) num Newt's Method: Succ. Approx.:

Note: "inf" means infeasible. " h hrs n : m.l" means " h hours n minutes, $m . l$ seconds".

Table 7: Final Comparisons

Method:	Basis:	Solution Method:	Advan- tages:	Disad- vantages:
Taylor Series	Complete	Eigenvalues,	Fast	Local linear eq'ns
validity				

Summary of Projection Method

- Can be used for problems with unknown functions
- Uses approximation ideas
- Utilizes standard optimization and nonlinear equation solving software
- Can exploit a priori information about problem
- Flexible: users choose from a variety of approximation, integration, and nonlinear equation-solving methods

Table 17.4: Projection Method Menu

Approximation	Integration	Projections	Equation Solver
Piecewise Linear	Newton-Cotes	Galerkin	Newton
Polynomials	Gaussian Rules	Collocation	Powell
Splines	Monte Carlo	M. of Moments	Fixed-pt. iteration
Neural Networks	Quasi-M.C.	Subdomain	Time iteration
Rational Functions	Monomial Rules		Homotopy
Problem Specific	Asymptotics		

- Unifies literature: Previous work can be classified and compared

Choices			
Authors	Approximation	Integration	Sol'n Method
Gustafson(1959)	piecewise linear	Newt.-Cotes	S.A.-time it.
Wright-W. $(1982,4)$	poly. (of cond. exp.)	Newt.-Cotes	S.A.-time it.
Miranda-H.(1986)	polynomials	Newt.-Cotes	S.A.-learning
Coleman(1990)	finite element	Gaussian	S.A.-time it.
den Haan-M.(1990)	poly. (of cond. exp.)	Sim. M.C.	S.A.-learning
Judd(1992)	orthogonal poly.	Gaussian	Newton

