
PROJECTION METHODS FOR DYNAMIC MODELS

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

1

Functional Problems

• Many problems involve solving for some unknown function
— Dynamic programming

— Consumption and investment policy functions

— Pricing functions in asset pricing models

— Strategies in dynamic games

• The projection method is a robust method for solving such problems

2

An Ordinary Differential Equation Example

• Consider the differential equation
y0 − y = 0, y(0) = 1, 0 ≤ x ≤ 3. (11.1.1)

• Define L
Ly ≡ y0 − y . (11.1.2)

— L is an operator mapping functions to functions; domain is C1 functions and range is C0.

— Define Y = {y(x)|y ∈ C1, y(0) = 1}
— (11.1.1) wants to find a y ∈ Y such that Ly = 0.

• Approximate functions: consider family

ŷ(x; a) = 1 +
nX

j=1

ajx
j. (11.1.3)

— An affine subset of the vector space of polynomials.

— Note that ŷ(0; a) = 1 for any choice of a, so ŷ(0; a) ∈ Y for any a.

• Objective: find a s.t. ŷ(x; a) “nearly” solves differential equation (11.1.1).

3

• Define residual function

R (x; a) ≡ Lŷ = −1 +
nX

j=1

aj(jx
j−1 − xj) (11.1.4)

— R (x; a) is deviation of Lŷ from zero, the target value.

— A projection method adjusts a until it finds a “good” a that makes R(x; a) “nearly” the zero
function.

— Different projection methods use different notions of “good” and “nearly.”

• Consider
ŷ(x; a) = 1 +

3X
j=1

ajx
j

• Least Squares:
— Find a that minimizes the total squared residual

min
a

Z 3

0

R(x; a)2 dx. (11.1.5)

4

• Method of moments:
— Idea: If R(x; a) were zero, then

R 3
0 R(x; a) f(x) dx = 0 for all f(x).

— Use low powers of x to identify a via projection conditions

0 =

Z 3

0

R(x; a)xj dx , j = 0, 1, 2. (11.1.9)

• Galerkin
— Idea: use basis elements, x, x2, and x3 in projection conditions

— Form projections of R against the basis elements

0 =

Z 3

0

R(x; a)xj dx , j = 1, 2, 3.

• Collocation
— Idea: If R(x; a) = 0 then it is zero at all x.

— Specify a finite set of X and choose a so that R(x; a) is zero x ∈ X. If X = {0, 3/2, 3}, the
uniform grid, this reduces to linear equations

• Chebyshev Collocation
— Idea: interpolation at Chebyshev points is best

— List the zeroes of T3(x) adapted to [0,3]

X =

½
3

2
(cos

π

6
+ 1),

3

2
,
3

2
(cos

5π

6
+ 1)

¾
5

• Solutions
Table 11.1: Solutions for Coefficients in (11.1.3)

Scheme: a1 a2 a3
Least Squares 1.290 -.806 .659

Galerkin 2.286 -1.429 .952
Chebyshev Collocation 1.692 -1.231 .821
Uniform Collocation 1.000 -1.000 .667

Optimal L2 1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2): L2 errors of solutions
Uniform Chebyshev Least

n Collocation Collocation Squares Galerkin Best poly.
3 5.3(0) 2.2(0) 3.2(0) 5.3(-1) 1.7(-1)
4 1.3(0) 2.9(-1) 1.5(-1) 3.6(-2) 2.4(-2)
5 1.5(-1) 2.5(-2) 4.9(-3) 4.1(-3) 2.9(-3)
6 2.0(-2) 1.9(-3) 4.2(-4) 4.2(-4) 3.0(-4)
7 2.2(-3) 1.4(-4) 3.8(-5) 3.9(-5) 2.8(-5)
8 2.4(-4) 9.9(-6) 3.2(-6) 3.2(-6) 2.3(-6)
9 2.2(-5) 6.6(-7) 2.3(-7) 2.4(-7) 1.7(-7)
10 2.1(-6) 4.0(-8) 1.6(-8) 1.6(-8) 1.2(-8)

6

Continuous-Time Life-Cycle Consumption Models

• Consider life-cycle problem
maxc

R T

0 e−ρtu(c) dt,
Ȧ = rA+ w(t)− c(t)

A(0) = A(T) = 0

(10.6.10)

• Parameters
— u(c) = c1+γ/(1 + γ)

— ρ = 0.05, r = 0.10, γ = −2
— w(t) = 0.5 + t/10− 4(t/50)2, and T = 50.

• The functions c(t) and A(t) must approximately solve the two point BVP
ċ(t) = −12c(t)(0.05− 0.10),
Ȧ(t) = 0.1A(t) + w(t)− c(t),

A(0)= A(T) = 0.

(11.4.7)

• Approximation: degree 10 Chebyshev polys for c(t) and A(T):
A(t)=

P10
i=0 aiTi

¡
t−25
25

¢
,

c(t) =
P10

i=0 ciTi
¡
t−25
25

¢
,

(11.4.6)

7

• Define the two residual functions
R1(t)= ċ(t)− 0.025c(t)
R2(t)= Ȧ(t)− ¡.1A(t) + ¡.5 + t

10 − 4(t50)2
¢− c(t)

¢
.

(11.4.8)

• Choose ai and ci so that R1(t) and R2(t) are nearly zero and A(0) = A(T) = 0 hold.

— Boundary conditions impose two conditions

— Need 20 more conditions to determine the 22 unknown coefficients.

— Use 10 collocation points on [0, 50]: the 10 zeros of T10(t− 25/25)
C ≡ {0.31, 2.72, 7.32, 13.65, 21.09, 28.91, 36.35, 42.68, 47.28, 49.69}

— Choose the ai and ci coefficients, which solve

R1(ti)= 0, ti ∈ C, i = 1, ..., 10,
R2(ti)= 0, ti ∈ C, i = 1, ..., 10,
A(0) =

P10
i=1 ai(−1)i = 0,

A(50) =
P10

i=1 ai = 0.

(11.4.9)

— 22 linear equations in 22 unknowns.

— The system is nonsingular; therefore there is a unique solution.

• The true solution to the system (11.4.7) can be solved since it is a linear problem.

8

• Residuals:

·
c equation residuals

·
A equation residuals

• Errors

relative consumption errors relative asset errors

• Note: Errors are roughly same size as residuals

9

Continuous-Time Growth Model

• Consider
max
c

Z ∞
0

e−ρt u(c) dt

k̇ = f(k)− c

• Optimal policy function, C(k), satisfies the ODE

0=C 0(k) (f(k)−C(k))− u0(C(k))
u00(C(k))

(ρ− f 0(k)) ≡ N (C)
N : C1 → C0

together with the boundary condition that C(k∗) = f(k∗), f 0(k∗) = ρ

10

• Example:
— f(k) = ρkα/α, u(c) = c1+γ/(1 + γ)

— ρ = 0.04, α = 0.25, γ = −2
— k∗ = 1.

• Use Chebyshev polynomials for k ∈ [0.25, 1.75],

Ĉ(k; a) ≡
nX
i=0

ai Ti

µ
k − 1
0.75

¶
• Define residual

0=R(k; a) = N (Ĉ(·; a))(k)
= Ĉ 0(k)

³
f(k)− Ĉ(k)

´
− u0(Ĉ(k))

u00(Ĉ(k))
(ρ− f 0(k))

11

• Collocation: compute a by solving
R (ki ; a) = 0, i = 1, · · · , n + 1,

where the ki are the n + 1 zeroes of Tn+1
¡
k−1
0.75

¢
.

• Results: Ên(k) is error of degree n approximation

Table 11.3: Projection Methods Applied to (5.1)
k Ê2(k) Ê5(k) Ê8(k) Ê12(k) Ĉ12(k)

.6 -9(-3) -2(-3) 4(-6) -9(-9) 0.159638

.8 -2(-2) -2(-4) -2(-6) -1(-8) 0.180922
1.0 5(-16) -2(-4) -5(-16) 5(-16) 0.200000
1.2 1(-2) 1(-4) 1(-6) 7(-9) 0.217543
1.4 4(-3) -9(-5) -2(-6) 7(-9) 0.233941

12

Simple Example: One-Sector Growth

• Consider

max
ct

∞X
t=1

βtu(ct)

kt+1 = f(kt)− ct

• Optimality implies that ct satisfies
u0(ct) = βu0(ct+1)f 0(kt+1)

• Problem: The number of unknowns ct, t = 1, 2, ... is infinite.
• Step 0: Express solution in terms of an unknown function

ct = C(kt) : consumption function

— Consumption function C(k) must satisfy the functional equation:

0=u0(C(k))− βu0(C(f(k)− C(k)))f 0(f(k)− C(k))

≡(N (C))(k)
— This defines the operator

N : C0+ → C0+

— Equilibrium solves the operator equation

0 = N (C)

13

• Step 1: Create approximation:
— Find bC ≡ nX

i=0

aik
i

which “nearly” solves
N (bC) = 0

— Convert an infinite-dimensional problem to a finite-dimensional problem in Rn

∗ No discretization of state space
∗ A form of discretization, but in spectral domain

• Step 2: Compute Euler equation error function:
R (k; a) = u0(bC(k))− βu0(bC(f(k)− bC(k)))f 0(f(k)− bC(k))

14

• Step 3: Choose a to make R(·; a) “small” in some sense:
— Least-Squares: minimize sum of squared Euler equation errors

min
a

Z
R(·; a)2dk

— Galerkin: zero out weighted averages of Euler equation errors

Pi(a) ≡
Z

R(k; a)ψi(k)dk = 0, i = 1, · · · , n

for n weighting functions ψi(k).

— Collocation: zero out Euler equation errors at k ∈ {k1, k2, · · · , kn} :
Pi(a) ≡ R(ki; a) = 0 , i = 1, · · · , n

15

• Details of R ...dk computation:
— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving a:
— Jacobian, Pa(a), should be well-conditioned

— Newton’s method is quadratically convergent since it uses Jacobian

— Functional iteration and time iteration ignore Jacobian and are linearly convergent.

— Homotopy methods are almost surely globally convergent

— Least squares may be ill-conditioned (that is, be flat in some directions).

16

Bounded Rationality Accuracy Measure
Consider the one-period relative Euler equation error:

E(k) = 1− (u
0)−1 (βu0 (C (f(k)−C(k))) f 0 (f(k)−C(k)))

C(k)

• Equilibrium requires it to be zero.
• E(k) is measure of optimization error
— 1 is unacceptably large

— Values such as .00001 is a limit for people.

— E(k) is unit-free.

• Define the Lp, 1 ≤ p <∞, bounded rationality accuracy to be
log10 k E(k) kp

• The L∞ error is the maximum value of E(k).

Numerical Results

• Machine: Compaq 386/20 w/ Weitek 1167
• Speed: Deterministic case: < 15 seconds
• Accuracy: Deterministic case: 8th order polynomial agrees with 250,000—point discretization to
within 1/100,000.

17

General Projection Method

• Step 0: Express solution in terms of unknown functions
0 = N (h)

where the h(x) are decision and price rules expressing equilibrium dependence on the state x

• Step 1: Choose space for approximation:
— Basis for approximation for h:

{ϕi}∞i=1 ≡ Φ

— Norm:
h·, ·i : C0+ ×C0+ → R

basis should be complete in space of C0+ functions basis should be orthogonal w.r.t. h·, ·i norm
and basis should be easy to compute norm and basis should be “appropriate” for problem
norms are often of form hf, gi = RD f(x)g(x)w(x)dx for some w(x) > 0

— Goal: Find bh which “nearly” solves N (bh) = 0
bh ≡ nX

i=1

ai ϕi

— We have converted an infinite-dimensional problem to a problem in Rn

∗ No discretization of state space.
∗ Instead, discretize in a functional (spectral) domain.

18

— Example Bases:

∗ Φ = {1, k, k2, k3, · · · }
∗ Φ = {sin k, sin 2k, · · · }: Fourier — (periodic problems)
∗ ϕn = Tn (x): Chebyshev polynomials — (for smooth, nonperiodic problems)

∗ B-Splines (smooth generalizations of step and tent functions).
— Nonlinear generalization

∗ For some parametric form, Φ(x; a) bh(x; a) ≡ Φ(x; a)

∗ Examples:
· Neural networks
· Rational functions

— Goal: Find an bh ≡ Φ(x; a)

which “nearly” solves N (bh) = 0. Promising direction but tools of linear functional analysis
and approximation theory are not available.

19

• Step 2: Compute residual function:

R(·, a) = bN (bh) .
= N (bh) .

= N (h)
• Step 3: Choose a so that R(·; a) is “small” in h·, ·i.
— Alternative Criteria:

∗ Least-Squares
min
a
hR(·; a), R(·; a)i

∗ Galerkin
Pi(a) ≡ hR(·; a), ϕii = 0, i = 1, · · · , n

∗ Method of Moments
Pi(a) ≡

R(·; a), ki−1® = 0 , i = 1, · · · , n

∗ Collocation
Pi(a) ≡ R(ki; a) = 0 , i = 1, · · · , n, ki ∈ {k1, k2, · · · , kn}

∗ Orthogonal Collocation (a.k.a. Pseudospectral)
Pi(a) ≡ R(ki; a) = 0 , i = 1, · · · , n, ki ∈ {k : ϕn(k) = 0}

20

• Details of h·, ·i computation:
— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving a:
— Jacobian, Pa(a), should be well-conditioned.

— Newton’s method is quadratically convergent since it uses Jacobian; functional iteration (e.g.,
parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.

— If Φ is orthogonal w.r.t. h·, ·i, then Galerkin method uses orthogonal projections, helping with
conditioning.

— Least squares uses ¿
R,

∂R

∂ai

À
= 0

projection conditions, which may lead to ill-conditioning.

21

Convergence Properties of Galerkin Methods

• Zeidler (1989): If the nonlinear operator N is monotone, coercive, and satisfies a growth condition
then Galerkin method proves existence and works numerically.

• Krasnosel’skii and Zabreiko (1984): If N satisfies certain degree conditions, then a large set of
projection methods (e.g., Galerkin methods with numerical quadrature) converge.

• Convergence is neither sufficient nor necessary
— Usually only locally valid

— Convergence theorems don’t tell you when to stop.

— Non-convergent methods are no worse if they satisfy stopping rules

22

Perfect Foresight Models

• General model
— xt ∈ Rn : list of time t values consumption, labor supply, capital stock, output, prices, interest
rates, wages, etc.

— zt: list of exogenous variables, such as productivity levels, tax rates, monetary growth rates,
etc., at time t.

— Perfect foresight equations

g(t,−→x ,−→z)=0, t = 0, 1, 2, ...
x0,i=x0,i, i = 1, 2, ..., nI

xt bounded

23

• Optimal growth example:

max
ct

∞X
t=0

βtu(ct)

s.t. kt+1 = F (kt)− ct

k0 = k0

implies the Euler equation

u0 (ct)− βu0 (ct+1)F 0(kt+1) = 0, t = 0, 1, 2, ...

Eliminate ct to arrive at equations for kt

g(t,
−→
k)≡ u0 (F (kt)− kt+1) (1)

−βu0 (F (kt+1)− kt+2)F
0(kt+1) = 0, t = 0, 1, ...

k0 = k0

lim
t→∞ kt→kss

24

Newton Method

• Canonical model
g(t, xt, xt+1) = 0, t = 0, 1, 2, ...

• Fair-Taylor (Ecm., 1983)
— A Gauss-Jacobi scheme

— Slow, possibly nonconvergent

• L-B-J (see Boucekkine, (JEDC, 1995), and Juillard et al (JEDC, 1998))
— Sparse Jacobian: time t eq’n depends on only (xt, xt+1)

J(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g2(1, x1, x2)g3(1, x1, x2) 0 · · ·
0 g2(2, x2, x3)g3(2, x2, x3) · · ·
0 0 g2(3, x3, x4) · · ·
0 0 0 · · ·
0 0 0 . . .
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
— Use sparse Newton method from large systems literature

J(xk)∆=−g(xk) (2)

xk+1=xk +∆

— Faster, more accurate than Fair-Taylor

25

Recursive Models and Dynamic Iteration Methods

• Consider representative agent growth problem
maxct

P∞
t=0 β

t u(ct),

s.t. kt+1 = F (kt)− ct.
(16.4.1)

• Equilibrium consumption rule C(k) satisfies
u0(C(k)) = βu0(C(F (k)− C(k)))F 0(F (k)− C(k)) (16.4.2)

— C(k) is zero of operator

0= u0(C(k))− βu0(C(F (k)−C(k)))F 0(F (k)−C(k))

≡ (N (C))(k) (16.4.3)

— N is an operator from continuous functions to continuous functions.

• Consider the four occurrences of C and define the operator F :
0= u0(C1)− βu0(C2(F − C3))F

0(F −C4)

≡ F(C1, C2, C3, C4).
(16.4.4)

— We want a function C that solves the equation

0 = F(C,C,C,C) ≡ N (C). (16.4.5)

26

Time Iteration

• Time iteration implements the iterative scheme
0 = u0(Ci+1)− βu0(Ci(F − Ci+1))F

0(F − Ci+1) (16.4.7)

— Intuition: if Ci(k) is tomorrow’s consumption policy function, then today’s policy, denoted by
Ci+1(k), must satisfy

u0(Ci+1(k)) = βu0(Ci(F (k)−Ci+1(k)))F
0(F (k)−Ci+1(k)). (16.4.9)

— In terms of F , time iteration is the iteration implicitly defined by
0 = F(Ci+1, Ci, Ci+1, Ci+1). (16.4.8)

• Convergence
— Monotonicity property of (16.4.9); that is, if C

0
i(k) > 0 and Ci(k) < Ci−1(k) then Ci+1(k) <

Ci(k) and Ci+1 is an increasing function.

— Monotonicity implies monotone convergence of (16.4.7)

— However, numerical implementations may introduce numerical error which violates monotonic-
ity.

27

Fixed-Point Iteration

• Fixed-point iteration applied to (16.4.3) implements the implicit iterative scheme
0 = F(Ci+1, Ci, Ci, Ci). (16.4.10)

• Ci+1 is easy to compute since at any k,

Ci+1(k)= (u
0)−1 (βu0(Ci(F (k)− Ci(k)))F

0(F (k)− Ci(k)))

≡ (Tfp(Ci))(k)
(16.4.11)

• Convergence is not guaranteed

28

Recursive Models with Nonlinear Equation Methods

• Use nonlinear equations and Chebyshev approximations to solve
0 = F(C,C,C,C). (16.4.10)

• No economic “intuition” or “story”; it just works!
• Approximate C with the linear representation

bC(k ; a) = nX
i=1

aiψi(k), (16.5.1)

— ψi(k) ≡ Ti−1
³
2 k−km
kM−km − 1

´
and n is the number of terms used.

— Domain D is [km, kM].

• Residual function
R(k ; a) = u0(bC(k ; a))− βu0(bC(F (k)− bC(k ; a); a))F 0(F (k)− bC(k ; a)). (16.5.2)

• Orthogonal collocation chooses kj and solves
R(kj ; a) = 0, j = 1, ..., n. (16.5.3)

29

• Multiple solutions
— Multiple solutions to first-order conditions exist

— Only one satisfies global stability

— If initial guess is close then one typically converges to correct answer

— Can sometimes avoid bad ones

∗ Specify steady state
∗ Pick functional form which cannot go bad
∗ Alter problem to penalize divergent paths

30

Coefficients of Solution

• Theoretical predictions
— Approximation theory says that the Chebyshev coefficients should fall rapidly ifC(k) is smooth.

— Orthogonal basis should imply that coefficients do not change as we increase n.

• Table 16.1 verifies these predictions.
Table 16.1: Chebyshev Coefficients for Consumption Function

k n = 2 n = 5 n = 9 n = 15

1 0.0589755899 0.0600095844 0.0600137797 0.0600137922
2 0.0281934398 0.0284278730 0.0284329464 0.0284329804
3 −0.0114191783 −0.0113529374 −0.0113529464
4 0.0007725731 0.0006990930 0.0006988353
5 −0.0001616767 −0.0001633928 −0.0001634209
6 0.0000427201 0.0000430853
7 −0.0000123570 −0.0000122160
8 0.0000042498 0.0000036367
9 −0.0000011464 −0.0000011212
10 0.0000003557
11 −0.0000001147
12 0.0000000370

Each entry is the coefficient of the k ’th Chebyshev polynomial (over the interval [.333, 1.667]) in the n-term approximation of the consumption

policy function in (4.3) for the case discussed in Section 4.2.

31

Errors in Consumption Policy Function

• “Truth” computed by a 1,000,000 state discrete approximation
• “True solution” also has some error because of discretization
• Table 16.2 displays difference between approximations and “truth”

Table 16.2: Policy Function Errors
k y c n = 20 n = 10 n = 7 n = 4 n = 2

0.5 0.1253211 0.1010611 1(-7) 5(-7) 5(-7) 2(-7) 5(-5)
0.6 0.1331736 0.1132936 2(-6) 1(-7) 1(-7) 2(-6) 8(-5)
0.7 0.1401954 0.1250054 2(-6) 3(-7) 3(-7) 1(-6) 2(-4)
0.8 0.1465765 0.1362965 1(-6) 4(-7) 4(-7) 4(-6) 2(-4)
0.9 0.1524457 0.1472357 1(-6) 3(-7) 3(-7) 5(-6) 2(-4)
1.0 0.1578947 0.1578947 4(-6) 0(-7) 1(-7) 2(-6) 1(-4)
1.1 0.1629916 0.1683016 4(-6) 2(-7) 2(-7) 1(-6) 9(-5)
1.2 0.1677882 0.1784982 3(-6) 2(-7) 2(-7) 4(-6) 7(-6)
1.3 0.1723252 0.1884952 7(-7) 4(-7) 4(-7) 3(-6) 9(-5)

32

Stochastic Dynamic General Equilibrium

• Canonical RBC Model

max
ct

E

(∞X
t=1

βtu(ct)

)
kt+1 = θtf(kt)− ct

ln θt+1 = ρ ln θt + εt

• Euler equation
u0(ct) = βE{u0(ct+1)θt+1f 0(kt+1)|θt}

— Consumption is determined by recursive function

ct = C(kt, θt)

— C(k, θ) satisfies functional equation

0 = u0(C(k, θ))− βE
n
u0
³
C
³
θf(k)−C(k, θ), θ̃

´´
θ̃f 0(θf(k)−C(k, θ)) | θ

o
• Transform Euler equation into the more linear form

0 = C(k, θ)− (u0)−1
³
βE

n
u0
³
C(θf(k)− C(k, θ), θ̃)

´
×θ̃f 0 (θf(k)−C(k, θ)) | θ

o´
≡ N (C)(k, θ)

but this rewriting is not essential

33

• Approximate policy function

bC(k, θ; a)= nkX
i=1

nθX
j=1

aijψij(k, θ)

ψij(k, θ)≡Ti−1
µ
2
k − km
kM − km

− 1
¶
Tj−1

µ
2
θ − θm
θM − θm

− 1
¶

• Define integrand of expectations
I(k, θ, a, z) = u0

³ bC ³θf(k)− bC(k, θ; a), eσzθρ, a´´× eσzθρf 0
³
θf(k)− bC(k, θ; a)´π−12

• N
³ bC (·, ·; a)´ (k, θ) becomes

bC(k, θ; a)− (u0)−1Ãβ Z ∞
−∞

I(k, θ; a, z)
e−z

2/2

√
2π

dz

!
• Use Gauss-Hermite quadrature over z:Z ∞

−∞
I(k, θ, a, z)

e−z
2/2

√
2

dz
.
=

mzX
j=1

I
³
k, θ, a,

√
2zj
´
ωj

where ωj, zj are Gauss-Hermite quadrature weights and points.

• The computable residual function is

R(k, θ; a) = bC(k, θ; a)− (u0)−1
⎛⎝β

mzX
j=1

I
³
k, θ, a,

√
2zj
´
wj

⎞⎠ ≡ bN ³ bC(·, ·; a)´ (k, θ).
34

• Fitting Criteria:
— Collocation:

∗ Choose nk capital stocks, {ki}nki=1, and nθ productivity levels, {θi}nθj=1
∗ Find a such that

R(ki, θj; a) = 0, i = 1, · · · , nk, j = 1, · · · , nθ
— Galerkin:

∗ Compute the nknθ projections with Chebyshev weightw (k, θ) adapted to [km, kM]×[θm, θM]

Pij(a) ≡
Z kM

km

Z θM

θm

R(k, θ; a)ψij(k, θ)w (k, θ) dθdk

∗ Approximate projections by Gauss-Chebyshev quadrature

P̂ij(a) ≡
mkX
k=1

mθX
θ=1

R(ki, θj; a)ψij(k k
, θ

θ
),

where

k
θ
=km +

1

2
(kM − km)

³
z
mk

k
+ 1
´
, k = 1, . . . ,mk

θ
θ
=θm +

1

2
(θM − θm)

³
z
mθ

θ
+ 1
´
, θ = 1, . . . ,mθ

zn≡cos
µ
(2i− 1)π
2n

¶
, = 1, . . . , n

∗ Coefficients, a, are fixed by the system (solved by Newton’s method)
P̂ij(a) = 0, i = 1, · · · , nk, j = 1, · · · , nθ

35

• Bounded Rationality Accuracy Measure
— Consider the computable Euler equation error

E(k, θ) =
bN (bC(·, ·; a))(k, θ)bC(k, θ; a)

where bN uses some integration formula for E{·}; need not be the same as used in computing
R(k, θ;a). In fact, should use better one.

— Define the Lp, 1 ≤ p <∞, bounded rationality accuracy to be
log10 k E(k) kp

• Verify solution: Accept solution to projection equations, a, only if it passes tests
— Check stability

∗ For example, there should be positive savings at low k, high θ

∗ Could simulate capital stock process implied by bC(k, θ; a) to see if it has a stationary
distribution

— Check Euler equation errors

∗ E(k, θ) should be moderate for most (k, θ) points in [km, kM]× [θm, θM]
∗ E(k, θ) should be small for most (k, θ) points frequently visited

— If bC(k, θ; a) does not pass these tests, go back and use higher values for nk and nθ, and
increasemk,and mθ

36

• Numerical Results
— Basis: Chebyshev polynomials

— Initial guess: Linear rule through deterministic steady state and zero.

— k ∈ [.333, 2.000]
— Method: Collocation and Galerkin.

— Newton’s method solved projection equations, Pi(a) = 0, for a.

— Machine: Compaq 386/20 (old, but relative speeds are still valid)

— Speed: Stochastic case: under two minutes for a 60 parameter fit.

— Errors: 2% for 6 parameter fit, .1% for 60 parameter fit — about a penny loss per $10,000 dollar
expenditure

— Orth. poly. + orthog. collocation + Gaussian quad. + Newton outperforms naive methods by
factor of 10 or greater; exceeded Monte Carlo methods by factor of 100+.

— bC(k, θ; a) is an ε-equilibrium with small ε — a bounded rationality interpretation.

37

Table 17.1: log10 Euler Equation Errors
k E k∞ k E k1 k E k∞ k E k1

γ ρ σ (2, 2, 2, 2)∗ (4, 3, 4, 3)

−15.00 0.80 0.01 −2.13 −2.80 −3.00 −3.83
−15.00 0.80 0.04 −1.89 −2.54 −2.44 −2.87
−15.00 0.30 0.04 −2.13 −2.80 −2.97 −3.83
− 0.10 0.80 0.04 0.01 −1.19 −1.48 −2.22
− 0.10 0.30 0.04 0.18 −1.22 −1.63 −2.65

(7, 5, 7, 5) (7, 5, 20, 12)

−15.00 0.80 0.01 −4.28 −5.19 −4.43 −5.18
−15.00 0.80 0.04 −3.36 −4.00 −3.30 −3.95
−15.00 0.30 0.04 −4.24 −5.19 −4.38 −5.18
− 0.10 0.80 0.04 −2.50 −3.22 −2.60 −3.17
− 0.10 0.30 0.04 −3.43 −4.37 −3.49 −4.39

(10, 6, 10, 6) (10, 6, 25, 15)

−15.00 0.80 0.01 −5.48 −6.43 −5.61 −6.42
−15.00 0.80 0.04 −3.81 −4.38 −3.88 −4.37
−15.00 0.30 0.04 −5.45 −6.43 −5.57 −6.42
−0.10 0.80 0.04 −2.99 −3.68 −3.09 −3.64
−0.10 0.30 0.04 −5.17 −6.12 −5.23 −6.14
∗(nk, nθ, mk, mθ)

38

Table 17.2: Alternative Implementations
nk = 7, nθ = 5,mk = 7,mθ = 5

γ ρ σ Ga Pb Uc UPd

errore time error time error time error time
−15 .8 .04 −3.18 1:15 −2.13 :40 −3.06 1:05 −2.19 :44

.3 .01 −4.35 :11 −4.35 :52 −4.07 :08 −4.07 1:47
−.9 .8 .04 −3.43 :05 −3.43 :19 −3.42 :08 −3.42 :39

.3 .01 −4.03 :07 −4.03 :30 −3.76 :07 −3.76 1:10

nk = 10, nθ = 6,mk = 25,mθ = 15

−15 .8 .04 −3.87 4:20 −3.90 24:44 −3.90 3:41 −3.36 42:15
.3 .01 −5.68 2:19 −5.14 11:31 −5.49 2:14 −5.30 8:06

−.9 .8 .04 −4.00 1:31 −4.00 5:17 −4.01 1:31 −4.01 5:02
.3 .01 −5.40 1:23 −4.63 7:13 −5.25 1:20 −5.13 6:01

aChebyshev polynomial basis, Chebyshev zeroes used in evaluating fit
bOrdinary polynomial basis, Chebyshev zeroes used in evaluating fit
cChebyshev polynomial basis, uniform grid points
dOrdinary polynomial basis, uniform grid points
eerror measure is k E(k) k∞

39

Table 17.3: Tensor Product vs. Complete Polynomialsa

Tensor Product Complete Polynomials
γ ρ σ n = 3 n = 6 n = 10 n = 3 n = 6 n = 10

−15.0 .8 .04 −2.34b −3.26 −3.48 −1.89 −3.10 −4.06
:01c :13 14:21 :03 :07 1:09

−.9 .3 .10 −2.19 −3.60 −5.27 −2.14 −3.55 −5.22
:01 :08 1:21 :01 :05 :32

−.1 .3 .01 −1.00 −2.84 −5.21 −0.99 −2.83 −5.17
:01 :08 1:24 :01 :05 :35

b log10 k E k∞; c Computation time expressed in minutes :seconds.
• Tensor product cases used orthogonal collocation with nk = nθ = mk = mθ = n to identify
the n2 free parameters. Complete polynomial cases used Galerkin projections to identify the
1 + n+ n(n + 1)/2 free parameters..

• General Observations:
— Tensor product of degree n takes more time, but achieves higher accuracy

— For a specific level of accuracy, complete polynomial method is faster

40

Fixed-Point Iteration

• Gaussian Quadrature Implementation
— In fixed-point iteration we execute the iteration

Ci+1(k, θ)= (u
0)−1

¡
β E

©
u0
¡
Ci(k

+, θ+)
¢
Fk

¡
k+, θ+

¢ | θª¢ ,
k+ ≡ F (k, θ)− Ci(k, θ),

θ+ ∼ N(ρ ln θ, σ2).

(3)

— Note that this is a simple rewriting of Euler equation.

— Strategy: compute the right hand side for several (k, θ) choices and interpolate to get new C.

— RHS of (3) is tomorrow’s return on saving one more dollar today conditional on today’s (k, θ)
and if c = C(k, θ) at all times.

— RHS of (3) is integral over θ+.

∗ Since integrand is smooth and Gaussian, use four- or five-point Gauss-Hermite rule is ade-
quate.

∗ Therefore, to compute the, say, quadratic, solution to this problem, one need only examine
a handful of k and θ values. This results in a very rapid way to compute an iterate.

∗ May converge slowly if at all; use extrapolation or dampening.
— This is essentially Miranda-Helmburger (AER, 1988)

41

Examples: Multiagent Dynamic General Equilibrium

• Model:
— n types of agents, utility functions, ui(c), i = 1, 2, ..., n,

— Common discount factor β.

— Equity is the only asset

— ci = Ci(k), wealth distribution is k = (k1, k2, ..., kn)

• Approximate ci = bCi(k, θ; a).

• Euler equation for type i = 1, 2, ..., n
Ri(k, θ, C) = u0i(Ci(k, θ))− β E {u0(Ci(Y (k, θ)−C(k, θ), θ̃))

×Fk(Y (k, θ)−C(k, θ), θ̃) | θ}
where

Yi(k, θ)=kiF1(k, θ) + w(k, θ), i = 1, .., n

w(k, θ)=F (k, θ)− kF1(k, θ)

k≡
X
i

ki.

42

• Approximate residual function for agents of type i = 1, 2, ..., nbRi(k, θ, bC(·; a)) = bCi(k, θ; a)− (u0i)−1
³
β bE n

u0i (c
+)Fk

³
k+. , θ̃

´
| θ
o´

c+i ≡ bCi(y
+, θ̃;a)

k+ ≡ Y (k, θ; a)− bC(k, θ; a)
where bE is a numerical approximation of the integral. Use product Gaussian quadrature

• Identifying projections are

Pij(a) ≡
Z θM

θm

Z kM

km

· · ·
Z kM

km

bRi(k, θ, bC(·; a))ψj(k, θ)w(k, θ) dk1 · · · dkndθ

where i = 1, ..., n, and j = 1, ...,m.

• Let bP (a) denote a numerical integration approximation of P (a); we will use product Gaussian
quadrature

• Solution chooses a so that bP (a) = 0.

43

Representation: Tensor vs. Complete Polynomials

• Tensor method:

bCi(k, θ; a) =

nkX
j1=0

· · ·
nkX

jn=0

nθX
=0

aij1...jn ϕi1
(k1) · · ·ϕin(kn) ψ (θ), i = 1, ..., n

where ϕi(kj) (ψ (θ)) is a degree i− 1 (− 1)polynomial in kj (θ) from some orthogonal family.
• Complete polynomial method

Ci(k, θ; a) =
X

0≤j1+···+jn+ ≤d
0≤ji, ≤d

aij1...jn ϕj1
(k1) . . . ϕjn(kn) ψ (θ)

• Number of unknown coefficients are far smaller in complete poly case, but not as flexible.

44

Solution Methods

• Successive Approximation: at grid of (k, θ) points (e.g., Chebyshev zeroes) and given iteration j

for a (denoted aj), bCi(k, θ; a
j), generate data

bCi(k, θ; a
j+1) = (u0)−1

³
β bE n

u0
³ bCi

³
Y (k, θ)− bCi(k, θ;a), θ̃; a

´´
×Fk

³
Y (k, θ)− bCi(k, θ; a

j), θ̃
´
| θ
o (4)

and set coefficients aj+1 through interpolation or regression

• Time Iteration: same procedure except not generate data for bCi(k, θ; a
j+1) by solving

bCi(k, θ; a
j+1) = (u0)−1

³
β bE n

u0
³ bCi

³
Y (k, θ)− bCi(k, θ; a

j+1), θ̃; aj
´´

×Fk

³
Y (k, θ)− bCi(k, θ; a

j+1), θ̃
´
| θ
o (5)

• Newton’s Method: just solve nonlinear equations bP (a) = 0

45

Table 5: Time and Accuracy Comparisons

.

num. Newt’s Method Succ.Approx:
agents γ deg basis coef’s time acc’cy time accuracy

1 -2 1 t 4 :0.05 -2.7 :0.2 -2.7
c 3 :0.06 -2.6 :0.4 -2.6

2 t 9 :0.22 -3.4 :01 -3.4
c 6 :0.17 -3.3 :01 -3.3

3 t 16 :0.71 -4.1 :01 -4.1
c 10 :0.49 -4.0 :02 -4.0

4 t 25 :02 -4.8 :02 -4.9
c 30 :0.99 -4.7 :03 -4.6

2 -1 1 t 16 :0.66 -3.1 :01 -3.1
-2 c 6 :0.38 -2.7 :01 -2.7

2 t 54 :07 -4.1 :08 -4.1
c 20 :02 -3.4 :06 -3.4

3 t 128 1:22 -5.0 :33 -4.5
c 40 :11 -4.1 :21 -4.1

4 t 250 12:34 -5.9 1:48 -4.5
c 70 :45 -4.8 :56 -4.7

Note: “inf” means infeasible. “h hrs n : m.l” means “h hours n minutes, m.l seconds”.

46

Table 5: Time and Accuracy Comparisons (Continued)
num Newt’s Method: Succ. Approx.:

agents γ deg basis coef’s time accuracy time accuracy
3 -1 1 t 48 :07 -3.4 :07 -3.4
-2 c 15 1.48 -2.8 :05 -2.8
-3 2 t 243 7:07 -4.6 2:11 -4.5

c 63 :21 -3.6 :36 -3.6
3 t 768 inf inf 19:57 -4.6

c 105 4:05 -4.3 3:09 -4.3
4 -.5 1 t 128 1:09 -3.5 :33 -3.5
-1 c 24 :5.10 -2.9 :13 -2.9
-2 2 t 972 inf inf 24:57 -4.6
-3 c 84 2:47 -3.7 3:04 -3.7

3 t 4096 inf inf 7 hr 13 -4.6
c 224 52:11 -4.4 26:01 -4.4

5 -.5 1 t 320 8:52 -3.6 2:48 -3.6
-1 c 35 :17.90 -3.0 :38 -3.0
-2 2 t 3645 inf inf 5 hr 16 -4.6
-3 c 140 12:18 -3.8 10:18 -3.8
-4 3 t 20,480 inf inf inf inf

c 420 13 hr -4.5 3 hr 27 -4.5

Note: “inf” means infeasible. “h hrs n : m.l” means “h hours n minutes, m.l seconds”.

47

Table 7: Final Comparisons

Solution Advan- Disad-
Method: Basis: Method: tages: vantages:

Taylor Complete Eigenvalues, Fast Local
Series linear eq’ns validity

Projection Tensor or Newton Quadratic Infeasible
methods complete conv. for large

problems

Tensor or Successive Easy possible
complete approx. Iterations nonconv.

48

Summary of Projection Method

• Can be used for problems with unknown functions
• Uses approximation ideas
• Utilizes standard optimization and nonlinear equation solving software
• Can exploit a priori information about problem
• Flexible: users choose from a variety of approximation, integration, and nonlinear equation-solving
methods

Table 17.4: Projection Method Menu
Approximation Integration Projections Equation Solver
Piecewise Linear Newton-Cotes Galerkin Newton

Polynomials Gaussian Rules Collocation Powell
Splines Monte Carlo M. of Moments Fixed-pt. iteration

Neural Networks Quasi-M.C. Subdomain Time iteration
Rational Functions Monomial Rules Homotopy
Problem Specific Asymptotics

49

• Unifies literature: Previous work can be classified and compared
Choices

Authors Approximation Integration Sol’n Method
Gustafson(1959) piecewise linear Newt.-Cotes S.A.-time it.
Wright-W.(1982,4) poly. (of cond. exp.) Newt.-Cotes S.A.-time it.
Miranda-H.(1986) polynomials Newt.-Cotes S.A.-learning
Coleman(1990) finite element Gaussian S.A.-time it.
den Haan-M.(1990) poly. (of cond. exp.) Sim. M.C. S.A.-learning
Judd(1992) orthogonal poly. Gaussian Newton

50

