PERTURBATION METHODS

Kenneth L. Judd
Hoover Institution and NBER

June 28, 2006

Local Approximation Methods

- Use information about $f: R \rightarrow R$ only at a point, $x_{0} \in R$, to construct an approximation valid near x_{0}
- Taylor Series Approximation

$$
\begin{aligned}
f(x) & \doteq f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\cdots+\frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}\left(x_{0}\right)+\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right) \\
& =p_{n}(x)+\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)
\end{aligned}
$$

- Power series: $\sum_{n=0}^{\infty} a_{n} z^{n}$
- The radius of convergence is

$$
r=\sup \left\{|z|:\left|\sum_{n=0}^{\infty} a_{n} z^{n}\right|<\infty\right\}
$$

$-\sum_{n=0}^{\infty} a_{n} z^{n}$ converges for all $|z|<r$ and diverges for all $|z|>r$.

- Complex analysis
$-f: \Omega \subset C \rightarrow C$ on the complex plane C is analytic on Ω iff

$$
\forall a \in \Omega \exists r, c_{k}\left(\forall\|z-a\|<r\left(f(z)=\sum_{k=0}^{\infty} c_{k}(z-a)^{k}\right)\right)
$$

- A singularity of f is any a s. t. f is analytic on $\Omega-\{a\}$ but not on Ω.
- If f or any derivative of f has a singularity at $z \in C$, then the radius of convergence in C of $\sum_{n=0}^{\infty} \frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}\left(x_{0}\right)$, is bounded above by $\left\|x_{0}-z\right\|$.
- Example: $f(x)=x^{\alpha}$ where $0<\alpha<1$.
- One singularity at $x=0$
- Radius of convergence for power series around $x=1$ is 1 .
- Taylor series coefficients decline slowly:

$$
a_{k}=\left.\frac{1}{k!} \frac{d^{k}}{d x^{k}}\left(x^{\alpha}\right)\right|_{x=1}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{1 \cdot 2 \cdots \cdot k}
$$

Table 6.1 (corrected): Taylor Series Approximation Errors for $x^{1 / 4}$

$$
\text { Taylor series error } \quad x^{1 / 4}
$$

x	$\mathrm{~N}:$	5	10	20	50
3.0	$5(-1)$	$8(1)$	$3(3)$	$1(12)$	1.3161
2.0	$1(-2)$	$5(-3)$	$2(-3)$	$8(-4)$	1.1892
1.8	$4(-3)$	$5(-4)$	$2(-4)$	$9(-9)$	1.1583
1.5	$2(-4)$	$3(-6)$	$1(-9)$	$0(-12)$	1.1067
1.2	$1(-6)$	$2(-10)$	$0(-12)$	$0(-12)$	1.0466
.80	$2(-6)$	$3(-10)$	$0(-12)$	$0(-12)$.9457
.50	$6(-4)$	$9(-6)$	$4(-9)$	$0(-12)$.8409
.25	$1(-2)$	$1(-3)$	$4(-5)$	$3(-9)$.7071
.10	$6(-2)$	$2(-2)$	$4(-3)$	$6(-5)$.5623
.05	$1(-1)$	$5(-2)$	$2(-2)$	$2(-3)$.4729

Log-Linearization and General Nonlinear COV

- Implicit differentiation implies

$$
\hat{x}=\frac{d x}{x}=-\frac{\varepsilon f_{\varepsilon}}{x f_{x}} \frac{d \varepsilon}{\varepsilon}=-\frac{\varepsilon f_{\varepsilon}}{x f_{x}} \varepsilon,
$$

- Since $\hat{x}=d(\ln x)$, log-linearization implies log-linear approximation

$$
\begin{equation*}
\ln x-\ln x_{0} \doteq-\frac{\varepsilon_{0} f_{\varepsilon}\left(x_{0}, \varepsilon_{0}\right)}{x_{0} f_{x}\left(x_{0}, \varepsilon_{0}\right)}\left(\ln \varepsilon-\ln \varepsilon_{0}\right) . \tag{6.1.5}
\end{equation*}
$$

- Generalization to nonlinear change of variables.
- Take any monotonic $h(\cdot)$, and define $x=h(X)$ and $y=h(Y)$
- Use the identity

$$
f(Y, X)=f\left(h^{-1}(h(Y)), h^{-1}(h(X))\right)=f\left(h^{-1}(y), h^{-1}(x)\right) \equiv g(y, x) .
$$

to generate expansions

$$
\begin{aligned}
y(x) & \doteq y\left(x_{0}\right)+y^{\prime}(x)\left(x-x_{0}\right)+\ldots \\
Y(X) & \doteq h^{-1}\left(y\left(h\left(X_{0}\right)\right)+y^{\prime}\left(h\left(X_{0}\right)\right)\left(h(X)-h\left(X_{0}\right)\right)+\ldots\right)
\end{aligned}
$$

$-h(z)=\ln z$ is commonly used by economists, but others may be better globally

Implicit Function Theorem

- Suppose $h: R^{n} \rightarrow R^{m}$ is defined in $H(x, h(x))=0, H: R^{n} \times R^{m} \rightarrow R^{m}$, and $h\left(x_{0}\right)=y_{0}$.
- Implicit differentiation shows

$$
H_{x}(x, h(x))+H_{y}(x, h(x)) h_{x}(x)=0
$$

- At $x=x_{0}$, this implies

$$
h_{x}\left(x_{0}\right)=-H_{y}\left(x_{0}, y_{0}\right)^{-1} H_{x}\left(x_{0}, y_{0}\right)
$$

if $H_{y}\left(x_{0}, y_{0}\right)$ is nonsingular. More simply, we express this as

$$
h_{x}^{0}=-\left(H_{y}^{0}\right)^{-1} H_{x}^{0}
$$

- Linear approximation for $h(x)$ is

$$
h^{L}(x) \doteq h\left(x_{0}\right)+h_{x}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- To check on quality, we compute

$$
E=\hat{H}\left(x, h^{L}(x)\right)
$$

where \hat{H} is a unit free equivalent of H. If $E<\varepsilon$, then we have an ε-solution.

- If $h^{L}(y)$ is not satisfactory, compute higher-order terms by repeated differentiation.
- $D_{x x} H(x, h(x))=0$ implies

$$
H_{x x}+2 H_{x y} h_{x}+H_{y y} h_{x} h_{x}+H_{y} h_{x x}=0
$$

- At $x=x_{0}$, this implies

$$
h_{x x}^{0}=-\left(H_{y}^{0}\right)^{-1}\left(H_{x x}^{0}+2 H_{x y}^{0} h_{x}^{0}+H_{y y}^{0} h_{x}^{0} h_{x}^{0}\right)
$$

- Construct the quadratic approximation

$$
h^{Q}(x) \doteq h\left(x_{0}\right)+h_{x}^{0}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{\top} h_{x x}^{0}\left(x-x_{0}\right)
$$

and check its quality by computing $E=H\left(x, h^{Q}(x)\right)$.

Regular Perturbation: The Basic Idea

- Suppose x is an endogenous variable, ε a parameter
- Want to find $x(\varepsilon)$ such that $f(x(\varepsilon), \varepsilon)=0$
- Suppose $x(0)$ known.
- Use Implicit Function Theorem
- Apply implicit differentiation:

$$
\begin{equation*}
f_{x}(x(\varepsilon), \varepsilon) x^{\prime}(\varepsilon)+f_{\varepsilon}(x(\varepsilon), \varepsilon)=0 \tag{13.1.5}
\end{equation*}
$$

- At $\varepsilon=0, x(0)$ is known and (13.1.5) is linear in $x^{\prime}(0)$ with solution

$$
x^{\prime}(0)=-f_{x}(x(0), 0)^{-1} f_{\varepsilon}(x(0), 0)
$$

- Well-defined only if $f_{x} \neq 0$, a condition which can be checked at $x=x(0)$.
- The linear approximation of $x(\varepsilon)$ for ε near zero is

$$
\begin{equation*}
x(\varepsilon) \doteq x^{L}(\varepsilon) \equiv x(0)-f_{x}(x(0), 0)^{-1} f_{\varepsilon}(x(0), 0) \varepsilon \tag{13.1.6}
\end{equation*}
$$

- Can continue for higher-order derivatives of $x(\varepsilon)$.
- Differentiate (13.1.5) w.r.t. ε

$$
\begin{equation*}
f_{x} x^{\prime \prime}+f_{x x}\left(x^{\prime}\right)^{2}+2 f_{x \varepsilon} x^{\prime}+f_{\varepsilon \varepsilon}=0 \tag{13.1.7}
\end{equation*}
$$

- At $\varepsilon=0$, (13.1.7) implies that

$$
\begin{aligned}
x^{\prime \prime}(0)= & -f_{x}(x(0), 0)^{-1}\left(f_{x x}(x(0), 0)\left(x^{\prime}(0)\right)^{2}\right. \\
& \left.+2 f_{x \varepsilon}(x(0), 0) x^{\prime}(0)+f_{\varepsilon \varepsilon}(x(0), 0)\right)
\end{aligned}
$$

- Quadratic approximation is

$$
\begin{equation*}
x(\varepsilon) \doteq x^{Q}(\varepsilon) \equiv x(0)+\varepsilon x^{\prime}(0)+\frac{1}{2} \varepsilon^{2} x^{\prime \prime}(0) \tag{13.1.8}
\end{equation*}
$$

- General Perturbation Strategy
- Find special (likely degenerate, uninteresting) case where one knows solution
* General relativity theory: begin with case of a universe with zero mass: ε is mass of universe
* Quantum mechanics: begin with case where electrons do not repel each other: ε is force of repulsion
* Business cycle analysis: begin with case where there are no shocks: ε is measure of exogenous shocks
- Use local approximation theory to compute nearby cases
* Standard implicit function may be applicable
* Sometimes standard implicit function theorem will not apply; use appropriate bifurcation or singularity method.
- Check to see if solution is good for problem of interest
* Use unit-free formulation of problem
* Go to higher-order terms until error is reduced to acceptable level
* Always check solution for range of validity

Single-Sector, Deterministic Growth - canonical problem

- Consider dynamic programming problem

$$
\begin{gathered}
\max _{c(t)} \int_{0}^{\infty} e^{-\rho t} u(c) d t \\
\dot{k}=f(k)-c
\end{gathered}
$$

- Ad-Hoc Method: Convert to a wrong LQ problem
- McGrattan, JBES (1990)
* Replace $u(c)$ and $f(k)$ with approximations around c^{*} and k^{*}
* Solve linear-quadratic problem

$$
\begin{aligned}
& \max _{c} \int_{0}^{\infty} e^{-\rho t}\left(u\left(c^{*}\right)+u^{\prime}\left(c^{*}\right)\left(c-c^{*}\right)+\frac{1}{2} u^{\prime \prime}\left(c^{*}\right)\left(c-c^{*}\right)^{2}\right) d t \\
& \text { s.t. } \dot{k}=f\left(k^{*}\right)+f^{\prime}\left(k^{*}\right)\left(k^{*}-k\right)-c
\end{aligned}
$$

* Resulting approximate policy function is

$$
C^{M c G}(k)=f\left(k^{*}\right)+\rho\left(k-k^{*}\right) \neq C\left(k^{*}\right)+C^{\prime}\left(k^{*}\right)\left(k-k^{*}\right)
$$

* Local approximate law of motion is $\dot{k}=0$; add noise to get

$$
d k=0 \cdot d t+d z
$$

* Approximation is random walk when theory says solution is stationary
- Fallacy of McGrattan noted in Judd (1986, 1988); point repeated in Benigno-Woodford (2004).
- Kydland-Prescott
- Restate problem so that \dot{k} is linear function of state and controls
- Replace $u(c)$ with quadratic approximation
- Note 1: such transformation may not be easy
- Note 2: special case of Magill (JET 1977).
- Lesson
- Kydland-Prescott, McGrattan provide no mathematical basis for method
- Formal calculations based on appropriate IFT should be used.
- Beware of ad hoc methods based on an intuitive story!

Perturbation Method for Dynamic Programming

- Formalize problem as a system of functional equations
- Bellman equation:

$$
\begin{equation*}
\rho V(k)=\max _{c} u(c)+V^{\prime}(k)(f(k)-c) \tag{1}
\end{equation*}
$$

$-C(k)$: policy function defined by

$$
\begin{align*}
0 & =u^{\prime}(C(k))-V^{\prime}(k) \tag{2}\\
\rho V(k) & =u(C(k))+V^{\prime}(k)(f(k)-C(k))
\end{align*}
$$

- Apply envelope theorem to (1) to get

$$
\begin{equation*}
\rho V^{\prime}(k)=V^{\prime \prime}(k)(f(k)-C(k))+V^{\prime}(k) f^{\prime}(k) \tag{k}
\end{equation*}
$$

- Steady-state equations

$$
\begin{array}{ll}
c^{*}=f\left(k^{*}\right) & \rho V\left(k^{*}\right)=u\left(c^{*}\right)+V^{\prime}\left(k^{*}\right)\left(f\left(k^{*}\right)-c^{*}\right) \\
0=u^{\prime}\left(c^{*}\right)-V^{\prime}\left(k^{*}\right) & \rho V^{\prime}(k)=V^{\prime \prime}(k)\left(f\left(k^{*}\right)-c^{*}\right)+V^{\prime}(k) f^{\prime}(k)
\end{array}
$$

- Steady State: We know $k^{*}, V\left(k^{*}\right), C\left(k^{*}\right), f^{\prime}\left(k^{*}\right), V^{\prime}\left(k^{*}\right)$:

$$
\rho=f^{\prime}\left(k^{*}\right), \quad C\left(k^{*}\right)=f\left(k^{*}\right), \quad V\left(k^{*}\right)=\rho^{-1} u\left(c^{*}\right), \quad V^{\prime}\left(k^{*}\right)=u^{\prime}\left(c^{*}\right)
$$

- Want Taylor expansion:

$$
\begin{aligned}
& C(k) \doteq C\left(k^{*}\right)+C^{\prime}\left(k^{*}\right)\left(k-k^{*}\right)+C^{\prime \prime}\left(k^{*}\right)\left(k-k^{*}\right)^{2} / 2+\ldots \\
& V(k) \doteq V\left(k^{*}\right)+V^{\prime}\left(k^{*}\right)\left(k-k^{*}\right)+V^{\prime \prime}\left(k^{*}\right)\left(k-k^{*}\right)^{2} / 2+\ldots
\end{aligned}
$$

- Linear approximation around a steady state
- Differentiate $\left(1_{k}, 2\right)$ w.r.t. k :

$$
\begin{align*}
\rho V^{\prime \prime} & =V^{\prime \prime \prime}(f-C)+V^{\prime \prime}\left(f^{\prime}-C^{\prime}\right)+V^{\prime \prime} f^{\prime}+V^{\prime} f^{\prime \prime} \tag{kk}\\
0 & =u^{\prime \prime} C^{\prime}-V^{\prime \prime} \tag{k}
\end{align*}
$$

- At the steady state

$$
\begin{equation*}
0=-V^{\prime \prime}\left(k^{*}\right) C^{\prime}\left(k^{*}\right)+V^{\prime \prime}\left(k^{*}\right) f^{\prime}\left(k^{*}\right)+V^{\prime}\left(k^{*}\right) f^{\prime \prime}\left(k^{*}\right) \tag{k}
\end{equation*}
$$

- Substituting $\left(2_{k}\right)$ into $\left(1_{k}^{*}\right)$ yields

$$
0=-u^{\prime \prime}\left(C^{\prime}\right)^{2}+u^{\prime \prime} C^{\prime} f^{\prime}+V^{\prime} f^{\prime \prime}
$$

- Two solutions

$$
C^{\prime}\left(k^{*}\right)=\frac{\rho}{2}\left(1 \pm \sqrt{1+\frac{4 u^{\prime}\left(C\left(k^{*}\right)\right) f^{\prime \prime}\left(k^{*}\right)}{u^{\prime \prime}\left(C^{\prime}\left(k^{*}\right)\right) f^{\prime}\left(k^{*}\right) f^{\prime}\left(k^{*}\right)}}\right)
$$

- However, we know $C^{\prime}\left(k^{*}\right)>0$; hence, take positive solution
- Higher-Order Expansions
- Conventional perception in macroeconomics: "perturbation methods of order higher than one are considerably more complicated than the traditional linear-quadratic case ..." - Marcet (1994, p. 111)
- Mathematics literature: No problem (See, e.g., Bensoussan, Fleming, Souganides, etc.)
- Compute $C^{\prime \prime}\left(k^{*}\right)$ and $V^{\prime \prime \prime}\left(k^{*}\right)$.
- Differentiate $\left(1_{k k}, 2_{k}\right)$:

$$
\begin{align*}
\rho V^{\prime \prime \prime}= & V^{\prime \prime \prime \prime}(f-C)+2 V^{\prime \prime \prime}\left(f^{\prime}-C^{\prime}\right)+V^{\prime \prime}\left(f^{\prime \prime}-C^{\prime \prime}\right) \tag{kkk}\\
& +V^{\prime \prime \prime} f^{\prime}+2 V^{\prime \prime} f^{\prime \prime}+V^{\prime} f^{\prime \prime \prime} \\
0= & u^{\prime \prime \prime}\left(C^{\prime}\right)^{2}+u^{\prime \prime} C^{\prime \prime}-V^{\prime \prime \prime} \tag{kk}
\end{align*}
$$

- At $k^{*},\left(1_{k k k}\right)$ reduces to

$$
\begin{equation*}
0=2 V^{\prime \prime \prime}\left(f^{\prime}-C^{\prime}\right)+3 V^{\prime \prime} f^{\prime \prime}-V^{\prime \prime} C^{\prime \prime}+V^{\prime} f^{\prime \prime \prime} \tag{kkk}
\end{equation*}
$$

- Equations $\left(1_{k k k}^{*}, 2_{k k}^{*}\right)$ are LINEAR in unknowns $C^{\prime \prime}\left(k^{*}\right)$ and $V^{\prime \prime \prime}\left(k^{*}\right)$:

$$
\left(\begin{array}{cc}
u^{\prime \prime} & -1 \\
V^{\prime \prime}-2\left(f^{\prime}-C^{\prime}\right)
\end{array}\right)\binom{C^{\prime \prime}}{V^{\prime \prime \prime}}=\binom{A_{1}}{A_{2}}
$$

- Unique solution since determinant $-2 u^{\prime \prime}\left(f^{\prime}-C^{\prime}\right)+V^{\prime \prime}<0$.
- Compute $C^{(n)}\left(k^{*}\right)$ and $V^{(n+1)}\left(k^{*}\right)$.
- Linear system for order n is, for some A_{1} and A_{2},

$$
\left(\begin{array}{cc}
u^{\prime \prime} & -1 \\
V^{\prime \prime}-n\left(f^{\prime}-C^{\prime}\right)
\end{array}\right)\binom{C^{(n)}}{V^{(n+1)}}=\binom{A_{1}}{A_{2}}
$$

- Higher-order terms are produced by solving linear systems
- The linear system is always determinate since $-n u^{\prime \prime}\left(f^{\prime}-C^{\prime}\right)+V^{\prime \prime}<0$
- Conclusion:
- Computing first-order terms involves solving quadratic equations
- Computing higher-order terms involves solving linear equations
- Computing higher-order terms is easier than computing the linear term.

Accuracy Measure

Consider the one-period relative Euler equation error:

$$
E(k)=1-\frac{V^{\prime}(k)}{u^{\prime}(C(k))}
$$

- Equilibrium requires it to be zero.
- $E(k)$ is measure of optimization error
-1 is unacceptably large
- Values such as .00001 is a limit for people.
$-E(k)$ is unit-free.
- Define the $L^{p}, 1 \leq p<\infty$, bounded rationality accuracy to be

$$
\log _{10}\|E(k)\|_{p}
$$

- The L^{∞} error is the maximum value of $E(k)$.

Global Quality of Asymptotic Approximations

- Linear approximation is very poor even for k close to steady state
- Order 2 is better but still not acceptable for even $k=.9,1.1$
- Order 10 is excellent for $k \in[.6,1.4]$

Stochastic, Discrete-Time Growth

$$
\begin{array}{ll}
\max _{c t} & E\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right\} \tag{13.7.19}\\
\text { s.t. } & k_{t+1}=(1+\varepsilon z) F\left(k_{t}-c_{t}\right)
\end{array}
$$

- New state variable:
- k_{t} is capital stock at the beginning of period t
- consumption comes out of k
- the remaining capital, $k_{t}-c_{t}$, is used in production
- resulting output is $(1+\varepsilon z) F\left(k_{t}-c_{t}\right)=k_{t+1}$
- perturbation parameter is ε, the standard deviation, not the variance.
- Do deterministic perturbation analysis.
- Solution when $\varepsilon=0$ is $C(k)$ solving

$$
\begin{equation*}
u^{\prime}(C(k))=\beta u^{\prime}(C(F(k-C(k)))) F^{\prime}(k-C(k)) . \tag{13.7.20}
\end{equation*}
$$

- At the steady state, $k^{*}, F\left(k^{*}-C\left(k^{*}\right)\right)=k^{*}$, and $1=\beta F^{\prime}\left(k^{*}-C\left(k^{*}\right)\right)$
- Derivative of (13.7.20) with respect to k implies

$$
\begin{align*}
u^{\prime \prime}(C(k)) C^{\prime}(k) & =\beta u^{\prime \prime}(C(F(k-C(k)))) C^{\prime}(F(k-C(k))) \\
& \times F^{\prime}(k-C(k))\left[1-C^{\prime}(k)\right] F^{\prime}(k-C(k)) \tag{13.7.21}\\
& +\beta u^{\prime}(C(F(k-C(k)))) F^{\prime \prime}(k-C(k))\left[1-C^{\prime}(k)\right]
\end{align*}
$$

- At $k=k^{*}$, (13.7.21) reduces to (drop all arguments)

$$
\begin{equation*}
u^{\prime \prime} C^{\prime}=\beta u^{\prime \prime} C^{\prime} F^{\prime}\left[1-C^{\prime}\right] F^{\prime}+\beta u^{\prime} F^{\prime \prime}\left[1-C^{\prime}\right] . \tag{13.7.22}
\end{equation*}
$$

with stable solution

$$
C^{\prime}=\frac{1}{2}\left(1-\beta-\beta^{2} \frac{u^{\prime}}{u^{\prime \prime}} F^{\prime \prime}+\sqrt{\left(1-\beta-\beta^{2} \frac{u^{\prime}}{u^{\prime \prime}} F^{\prime \prime}\right)^{2}+4 \frac{u^{\prime}}{u^{\prime \prime}} \beta^{2} F^{\prime \prime}}\right)
$$

- Take another derivative of (13.7.21) and set $k=k^{*}$ to find

$$
\begin{aligned}
u^{\prime \prime} C^{\prime \prime}+u^{\prime \prime \prime} C^{\prime} C^{\prime}= & \beta u^{\prime \prime \prime}\left(C^{\prime} F^{\prime}\left(1-C^{\prime}\right)\right)^{2} F^{\prime}+\beta u^{\prime \prime} C^{\prime \prime}\left(F^{\prime}\left(1-C^{\prime}\right)\right)^{2} F^{\prime} \\
& +2 \beta u^{\prime \prime} C^{\prime} F^{\prime}\left(1-C^{\prime}\right)^{2} F^{\prime \prime}+\beta u^{\prime} F^{\prime \prime \prime}\left(1-C^{\prime}\right)^{2} \\
& +\beta u^{\prime} F^{\prime \prime}\left(-C^{\prime \prime}\right),
\end{aligned}
$$

which is a linear equation in the unknown $C^{\prime \prime}\left(k^{*}\right)$.

- Stochastic problem:
- Euler equation is

$$
\begin{equation*}
u^{\prime}(C(k))=\beta E\left\{u^{\prime}(g(\varepsilon, k, z)) R(\varepsilon, k, z)\right\} \tag{13.7.23}
\end{equation*}
$$

where

$$
\begin{align*}
& g(\varepsilon, k, z) \equiv C((1+\varepsilon z) F(k-C(k))) \tag{13.7.24}\\
& R(\varepsilon, k, z) \equiv(1+\varepsilon z) F^{\prime}(k-C(k))
\end{align*}
$$

- Compute C_{ε}
* Differentiate (13.7.24) with respect to ε yields (we drop arguments of F and C)

$$
\begin{align*}
g_{\varepsilon}= & C_{\varepsilon}+C^{\prime}\left(z F-(1+\varepsilon z) F^{\prime} C_{\varepsilon}\right), \tag{13.7.25}\\
g_{\varepsilon \varepsilon}= & C_{\varepsilon \varepsilon}+2 C_{\varepsilon}^{\prime}\left(z F-(1+\varepsilon z) F^{\prime} C_{\varepsilon}\right)+C^{\prime \prime}\left(z F-(1+\varepsilon z) F^{\prime} C_{\varepsilon}\right)^{2}, \\
& +C^{\prime}\left(-z F^{\prime} C_{\varepsilon} 2+(1+\varepsilon z) F^{\prime \prime} C_{\varepsilon}^{2}-(1+\varepsilon z) F^{\prime} C_{\varepsilon \varepsilon}\right)
\end{align*}
$$

* At $\varepsilon=0,(13.7 .25)$ implies that

$$
\begin{align*}
g_{\varepsilon}= & C_{\varepsilon}+C^{\prime}\left(z F-F^{\prime} C_{\varepsilon}\right) \tag{13.7.26}\\
g_{\varepsilon \varepsilon}= & C_{\varepsilon \varepsilon}+2 C_{\varepsilon}^{\prime}\left(z F-F^{\prime} C_{\varepsilon}\right)+C^{\prime \prime}\left(z F-F^{\prime} C_{\varepsilon}\right)^{2} \\
& +C^{\prime}\left(-2 z F^{\prime} C_{\varepsilon}+F^{\prime \prime} C_{\varepsilon}^{2}-F^{\prime} C_{\varepsilon \varepsilon}\right)
\end{align*}
$$

* Differentiate (13.7.23) with respect to ε

$$
\begin{align*}
& u^{\prime \prime} C_{\varepsilon}=\beta E\left\{u^{\prime \prime} g_{\varepsilon}(1+\varepsilon z) F^{\prime}+u^{\prime} F^{\prime} z-u^{\prime}(1+\varepsilon z) F^{\prime \prime} C_{\varepsilon}\right\} \tag{13.7.27}\\
& u^{\prime \prime \prime} C_{\varepsilon}^{2}+u^{\prime \prime} C_{\varepsilon \varepsilon}=\beta E\left\{u^{\prime \prime \prime} g_{\varepsilon}^{2}(1+\varepsilon z) F^{\prime}+2 u^{\prime \prime} g_{\varepsilon} F^{\prime} z\right. \tag{13.7.28}\\
& \quad-2 u^{\prime \prime} g_{\varepsilon}(1+\varepsilon z) F^{\prime \prime} C_{\varepsilon}+u^{\prime \prime} g_{\varepsilon \varepsilon}(1+\varepsilon z) F^{\prime} \\
& \left.\quad-2 u^{\prime} z F^{\prime \prime} C_{\varepsilon}+u^{\prime}(1+\varepsilon z) F^{\prime \prime \prime} C_{\varepsilon}^{2}-u^{\prime}(1+\varepsilon z) F^{\prime \prime} C_{\varepsilon \varepsilon}\right\}
\end{align*}
$$

* Since $E\{z\}=0,(13.7 .27)$ says that $C_{\varepsilon}=0$, which in turn implies that

$$
\begin{aligned}
g_{\varepsilon} & =C^{\prime} z F \\
g_{\varepsilon \varepsilon} & =C_{\varepsilon \varepsilon}+2 C_{\varepsilon}^{\prime} z F+C^{\prime \prime}(z F)^{2}-C^{\prime} F^{\prime} C_{\varepsilon \varepsilon}
\end{aligned}
$$

- Compute $C_{\varepsilon \varepsilon}$
* Second-order terms in (13.7.28), we find that at $\varepsilon=0$,

$$
\begin{aligned}
u^{\prime \prime \prime} C_{\varepsilon}^{2}+u^{\prime \prime} C_{\varepsilon \varepsilon}= & \beta E\left\{u^{\prime \prime \prime} g_{\varepsilon}^{2} F^{\prime}+2 u^{\prime \prime} g_{\varepsilon} F^{\prime} z-2 u^{\prime \prime} g_{\varepsilon} F^{\prime \prime} C_{\varepsilon}\right. \\
& \left.+u^{\prime \prime} g_{\varepsilon \varepsilon} F^{\prime}-2 u^{\prime} z F^{\prime \prime} C_{\varepsilon}+u^{\prime} F^{\prime \prime \prime} C_{\varepsilon}^{2}-u^{\prime} F^{\prime \prime} C_{\varepsilon \varepsilon}\right\}
\end{aligned}
$$

* Using the normalization $E\left\{z^{2}\right\}=1$, we find that

$$
u^{\prime \prime} C_{\varepsilon \varepsilon}=\beta\left[u^{\prime \prime \prime} C^{\prime} C^{\prime} F^{2} F^{\prime}+2 u^{\prime \prime} C^{\prime} F F^{\prime}+u^{\prime \prime}\left(C_{\varepsilon \varepsilon}+C^{\prime \prime} F^{2}-C^{\prime} F^{\prime} C_{\varepsilon \varepsilon}\right) F^{\prime}-u^{\prime} F^{\prime \prime} C_{\varepsilon \varepsilon}\right]
$$

* Solving for $C_{\varepsilon \varepsilon}$ yields

$$
C_{\varepsilon \varepsilon}=\frac{u^{\prime \prime \prime} C^{\prime} C^{\prime} F^{2}+2 u^{\prime \prime} C^{\prime} F+u^{\prime \prime} C^{\prime \prime} F^{2}}{u^{\prime \prime} C^{\prime} F^{\prime}+\beta u^{\prime} F^{\prime \prime}}
$$

- This exercise demonstrates that perturbation methods can also be applied to the discrete-time stochastic growth model.

Bifurcation Methods

- Suppose $H(h(\varepsilon), \varepsilon)=0$ but $H(x, 0)=0$ for all x.
- IFT says

$$
h^{\prime}(0)=-\frac{H_{\varepsilon}\left(x_{0}, 0\right)}{H_{x}\left(x_{0}, 0\right)}
$$

$-H(x, 0)=0$ implies $H_{x}\left(x_{0}, 0\right)=0$, and $h^{\prime}(0)$ has the form $0 / 0$ at $x=x_{0}$.

- l'Hospital's rule implies, if which is well-defined if $H_{\varepsilon x}\left(x_{0}, 0\right) \neq 0$,

$$
h^{\prime}(0)=-\frac{H_{\varepsilon \varepsilon}\left(x_{0}, 0\right)}{H_{\varepsilon x}\left(x_{0}, 0\right)}
$$

Example: Portfolio Choices for Small Risks

- Simple asset demand model:
- safe asset yields R per dollar invested and risky asset yields Z per dollar invested
- If final value is $Y=W((1-\omega) R+\omega Z)$, then portfolio problem is

$$
\max _{\omega} E\{u(Y)\}
$$

- Small Risk Analysis
- Parameterize cases

$$
\begin{equation*}
Z=R+\varepsilon z+\varepsilon^{2} \pi \tag{1}
\end{equation*}
$$

- Compute $\omega(\varepsilon) \doteq \omega(0)+\varepsilon \omega^{\prime}(0)+\frac{\varepsilon^{2}}{2} \omega^{\prime \prime}(0)$.around the deterministic case of $\varepsilon=0$.
- Failure of IFT: at $\varepsilon=0, Z=R$, and $\omega(\varepsilon)$ is indeterminate, but we know that $\omega(\varepsilon)$ is unique for $\varepsilon \neq 0$
- Bifurcation analysis
- The first-order condition for ω

$$
\begin{gather*}
0=E\left\{u^{\prime}\left(W R+\omega W\left(\varepsilon z+\varepsilon^{2} \pi\right)\right)(z+\varepsilon \pi)\right\} \equiv G(\omega, \varepsilon) \tag{2}\\
0=G(\omega, 0), \quad \forall \omega . \tag{3}
\end{gather*}
$$

- Solve for $\omega(\varepsilon) \doteq \omega(0)+\varepsilon \omega^{\prime}(0)+\frac{\varepsilon^{2}}{2} \omega^{\prime \prime}(0)$. Implicit differentiation implies

$$
\begin{gather*}
0=G_{\omega} \omega^{\prime}+G_{\varepsilon} \tag{4}\\
G_{\varepsilon}=E\left\{u^{\prime \prime}(Y) W(\omega z+2 \omega \varepsilon \pi) W(z+\varepsilon \pi)+u^{\prime}(Y) \pi\right\} \tag{5}\\
G_{\omega}=E\left\{u^{\prime \prime}(Y)(z+\varepsilon \pi)^{2} \varepsilon\right\} \tag{6}
\end{gather*}
$$

- At $\varepsilon=0, G(\omega, 0)=G_{\omega}(\omega, 0)=0$ for all ω.
- No point $(\omega, 0)$ for application of IFT to (3) to solve for $\omega^{\prime}(0)$.
- We want $\omega_{0}=\lim _{\varepsilon \rightarrow 0} \omega(\varepsilon)$.
- Bifurcation theorem keys on ω_{0} satisfying

$$
\begin{align*}
0 & =G_{\varepsilon}\left(\omega_{0}, 0\right) \\
& =u^{\prime \prime}(R W) \omega_{0} \sigma_{z}^{2} W+u^{\prime}(R W) \pi \tag{7}
\end{align*}
$$

which implies

$$
\begin{equation*}
\omega_{0}=-\frac{\pi}{\sigma_{z}^{2}} \frac{u^{\prime}(W R)}{W u^{\prime \prime}(W R)} \tag{8}
\end{equation*}
$$

- (8) is asymptotic portfolio rule
* same as mean-variance rule
* ω_{0} is product of risk tolerance and the risk premium per unit variance.
* ω_{0} is the limiting portfolio share as the variance vanishes.
* ω_{0} is not first-order approximation.
- To calculate $\omega^{\prime}(0)$:
- differentiate (2.4) with respect to ε

$$
\begin{equation*}
0=G_{\omega \omega} \omega^{\prime} \omega^{\prime}+2 G_{\omega \varepsilon} \omega^{\prime}+G_{\omega} \omega^{\prime \prime}+G_{\varepsilon \varepsilon} \tag{9}
\end{equation*}
$$

where (without loss of generality, we assume $W=1$)

$$
\begin{aligned}
G_{\varepsilon \varepsilon}= & E\left\{u^{\prime \prime \prime}(Y)(\omega z+2 \omega \varepsilon \pi)^{2}(z+\varepsilon \pi)+u^{\prime \prime}(Y) 2 \omega \pi(z+\varepsilon \pi)\right. \\
& \left.+2 u^{\prime \prime}(Y)(\omega z+2 \omega \varepsilon \pi) \pi\right\} \\
G_{\omega \omega}= & E\left\{u^{\prime \prime \prime}(Y)(z+\varepsilon \pi)^{3} \varepsilon\right\} \\
G_{\omega \varepsilon}= & E\left\{u^{\prime \prime \prime}(Y)(\omega z+2 \omega \varepsilon \pi)(z+\varepsilon \pi)^{2} \varepsilon+u^{\prime \prime}(Y)(z+\varepsilon \pi) 2 \pi \varepsilon\right. \\
& \left.+u^{\prime \prime}(Y)(z+\varepsilon \pi)^{2}\right\}
\end{aligned}
$$

- At $\varepsilon=0$,

$$
\begin{array}{ll}
G_{\varepsilon \varepsilon}=u^{\prime \prime \prime}(R) \omega_{0}^{2} E\left\{z^{3}\right\} & G_{\omega \omega}=0 \\
G_{\omega \varepsilon}=u^{\prime \prime}(R) E\left\{z^{2}\right\} \neq 0 & G_{\varepsilon \varepsilon \varepsilon} \neq 0
\end{array}
$$

- Therefore,

$$
\begin{equation*}
\omega^{\prime}=-\frac{1}{2} \frac{u^{\prime \prime \prime}(R)}{u^{\prime \prime}(R)} \frac{E\left\{z^{3}\right\}}{E\left\{z^{2}\right\}} \omega_{0}^{2} . \tag{10}
\end{equation*}
$$

- Equation (10) is a simple formula.
* $\omega^{\prime}(0)$ proportional to $u^{\prime \prime \prime} / u^{\prime \prime}$
* $\omega^{\prime}(0)$ proportional to ratio of skewness to variance.
* If u is quadratic or z is symmetric, ω does not change to a first order.
- We could continue this and compute more derivatives of $\omega(\varepsilon)$ as long as u is sufficiently differentiable.
- Other applications - see Judd and Guu (ET, 2001)
- Equilibrium: add other agents, make π endogenous
- Add assets
- Produce a mean-variance-skewness-kurtosis-etc. theory of asset markets
- More intuitive approach to market incompleteness then counting states and assets

