PERTURBATION METHODS

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

Local Approximation Methods

- Use information about $f: R \to R$ only at a point, $x_0 \in R$, to construct an approximation valid near x_0
- Taylor Series Approximation

$$f(x) \doteq f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + \mathcal{O}(|x - x_0|^{n+1})$$
$$= p_n(x) + \mathcal{O}(|x - x_0|^{n+1})$$

- Power series: $\sum_{n=0}^{\infty} a_n z^n$
 - The radius of convergence is

$$r = \sup\{|z| : |\sum_{n=0}^{\infty} a_n z^n| < \infty\},$$

- $-\sum_{n=0}^{\infty} a_n z^n$ converges for all |z| < r and diverges for all |z| > r.
- Complex analysis
 - $-f:\Omega\subset C\to C$ on the complex plane C is analytic on Ω iff

$$\forall a \in \Omega \ \exists r, c_k \left(\forall \|z - a\| < r \left(f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k \right) \right)$$

- A singularity of f is any a s. t. f is analytic on $\Omega \{a\}$ but not on Ω .
- If f or any derivative of f has a singularity at $z \in C$, then the radius of convergence in C of $\sum_{n=0}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$, is bounded above by $||x_0-z||$.

_

- Example: $f(x) = x^{\alpha}$ where $0 < \alpha < 1$.
 - One singularity at x = 0
 - Radius of convergence for power series around x = 1 is 1.
 - Taylor series coefficients decline slowly:

$$a_k = \frac{1}{k!} \frac{d^k}{dx^k} (x^{\alpha})|_{x=1} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{1 \cdot 2 \cdots k}.$$

Table 6.1 (corrected): Taylor Series Approximation Errors for $x^{1/4}$ Taylor series error $x^{1/4}$

x	N:	5	10	20	50	
3.0		5(-1)	8(1)	3(3)	1(12)	1.3161
2.0		1(-2)	5(-3)	2(-3)	8(-4)	1.1892
1.8		4(-3)	5(-4)	2(-4)	9(-9)	1.1583
1.5		2(-4)	3(-6)	1(-9)	0(-12)	1.1067
1.2		1(-6)	2(-10)	0(-12)	0(-12)	1.0466
.80		2(-6)	3(-10)	0(-12)	0(-12)	.9457
.50		6(-4)	9(-6)	4(-9)	0(-12)	.8409
.25		1(-2)	1(-3)	4(-5)	3(-9)	.7071
.10		6(-2)	2(-2)	4(-3)	6(-5)	.5623
.05		1(-1)	5(-2)	2(-2)	2(-3)	.4729

Log-Linearization and General Nonlinear COV

• Implicit differentiation implies

$$\hat{x} = \frac{dx}{x} = -\frac{\varepsilon f_{\varepsilon}}{x f_x} \frac{d\varepsilon}{\varepsilon} = -\frac{\varepsilon f_{\varepsilon}}{x f_x} \varepsilon,$$

• Since $\hat{x} = d(\ln x)$, log-linearization implies log-linear approximation

$$\ln x - \ln x_0 \doteq -\frac{\varepsilon_0 f_{\varepsilon}(x_0, \varepsilon_0)}{x_0 f_x(x_0, \varepsilon_0)} (\ln \varepsilon - \ln \varepsilon_0). \tag{6.1.5}$$

- Generalization to nonlinear change of variables.
 - Take any monotonic $h(\cdot)$, and define x = h(X) and y = h(Y)
 - Use the identity

$$f(Y,X) = f(h^{-1}(h(Y)), h^{-1}(h(X))) = f(h^{-1}(y), h^{-1}(x)) \equiv g(y,x).$$

to generate expansions

$$y(x) \doteq y(x_0) + y'(x)(x - x_0) + \dots$$
$$Y(X) \doteq h^{-1} (y(h(X_0)) + y'(h(X_0))(h(X) - h(X_0)) + \dots)$$

 $-h(z) = \ln z$ is commonly used by economists, but others may be better globally

Implicit Function Theorem

- Suppose $h: \mathbb{R}^n \to \mathbb{R}^m$ is defined in $H(x, h(x)) = 0, H: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, and $h(x_0) = y_0$.
 - Implicit differentiation shows

$$H_x(x, h(x)) + H_y(x, h(x))h_x(x) = 0$$

- At $x = x_0$, this implies

$$h_x(x_0) = -H_y(x_0, y_0)^{-1}H_x(x_0, y_0)$$

if $H_y(x_0, y_0)$ is nonsingular. More simply, we express this as

$$h_x^0 = -\left(H_y^0\right)^{-1} H_x^0$$

- Linear approximation for h(x) is

$$h^{L}(x) \doteq h(x_0) + h_x(x_0)(x - x_0)$$

• To check on quality, we compute

$$E = \hat{H}(x, h^L(x))$$

where \hat{H} is a unit free equivalent of H. If $E < \varepsilon$, then we have an ε -solution.

- ullet If $h^L(y)$ is not satisfactory, compute higher-order terms by repeated differentiation.
 - $-D_{xx}H(x,h(x))=0$ implies

$$H_{xx} + 2H_{xy}h_x + H_{yy}h_xh_x + H_yh_{xx} = 0$$

- At $x = x_0$, this implies

$$h_{xx}^{0} = -\left(H_{y}^{0}\right)^{-1} \left(H_{xx}^{0} + 2H_{xy}^{0}h_{x}^{0} + H_{yy}^{0}h_{x}^{0}h_{x}^{0}\right)$$

- Construct the quadratic approximation

$$h^{Q}(x) \doteq h(x_0) + h_x^{Q}(x - x_0) + \frac{1}{2}(x - x_0)^{\top} h_{xx}^{Q}(x - x_0)$$

and check its quality by computing $E = H(x, h^Q(x))$.

~

Regular Perturbation: The Basic Idea

- Suppose x is an endogenous variable, ε a parameter
 - Want to find $x(\varepsilon)$ such that $f(x(\varepsilon), \varepsilon) = 0$
 - Suppose x(0) known.
- Use Implicit Function Theorem
 - Apply implicit differentiation:

$$f_x(x(\varepsilon), \varepsilon)x'(\varepsilon) + f_{\varepsilon}(x(\varepsilon), \varepsilon) = 0$$
(13.1.5)

- At $\varepsilon = 0$, x(0) is known and (13.1.5) is linear in x'(0) with solution

$$x'(0) = -f_x(x(0), 0)^{-1} f_{\varepsilon}(x(0), 0)$$

- Well-defined only if $f_x \neq 0$, a condition which can be checked at x = x(0).
- The linear approximation of $x(\varepsilon)$ for ε near zero is

$$x(\varepsilon) \doteq x^{L}(\varepsilon) \equiv x(0) - f_x(x(0), 0)^{-1} f_{\varepsilon}(x(0), 0) \varepsilon \tag{13.1.6}$$

_

- Can continue for higher-order derivatives of $x(\varepsilon)$.
 - Differentiate (13.1.5) w.r.t. ε

$$f_x x'' + f_{xx}(x')^2 + 2f_{x\varepsilon} x' + f_{\varepsilon\varepsilon} = 0$$
 (13.1.7)

– At $\varepsilon = 0$, (13.1.7) implies that

$$x''(0) = -f_x(x(0), 0)^{-1} \left(f_{xx}(x(0), 0) (x'(0))^2 + 2f_{x\varepsilon}(x(0), 0) x'(0) + f_{\varepsilon\varepsilon}(x(0), 0) \right)$$

- Quadratic approximation is

$$x(\varepsilon) \doteq x^{Q}(\varepsilon) \equiv x(0) + \varepsilon x'(0) + \frac{1}{2}\varepsilon^{2}x''(0)$$
 (13.1.8)

~

• General Perturbation Strategy

- Find special (likely degenerate, uninteresting) case where one knows solution
 - * General relativity theory: begin with case of a universe with zero mass: ε is mass of universe
 - * Quantum mechanics: begin with case where electrons do not repel each other: ε is force of repulsion
 - * Business cycle analysis: begin with case where there are no shocks: ε is measure of exogenous shocks
- Use local approximation theory to compute nearby cases
 - * Standard implicit function may be applicable
 - * Sometimes standard implicit function theorem will not apply; use appropriate bifurcation or singularity method.
- Check to see if solution is good for problem of interest
 - * Use unit-free formulation of problem
 - * Go to higher-order terms until error is reduced to acceptable level
 - * Always check solution for range of validity

Single-Sector, Deterministic Growth - canonical problem

• Consider dynamic programming problem

$$\max_{c(t)} \int_{0}^{\infty} e^{-\rho t} u(c) dt$$
$$\dot{k} = f(k) - c$$

- Ad-Hoc Method: Convert to a wrong LQ problem
 - McGrattan, JBES (1990)
 - * Replace u(c) and f(k) with approximations around c^* and k^*
 - * Solve linear-quadratic problem

$$\max_{c} \int_{0}^{\infty} e^{-\rho t} \left(u(c^{*}) + u'(c^{*})(c - c^{*}) + \frac{1}{2}u''(c^{*})(c - c^{*})^{2} \right) dt$$

s.t. $\dot{k} = f(k^{*}) + f'(k^{*})(k^{*} - k) - c$

* Resulting approximate policy function is

$$C^{McG}(k) = f(k^*) + \rho(k - k^*) \neq C(k^*) + C'(k^*)(k - k^*)$$

* Local approximate law of motion is k = 0; add noise to get

$$dk = 0 \cdot dt + dz$$

- * Approximation is random walk when theory says solution is stationary
- Fallacy of McGrattan noted in Judd (1986, 1988); point repeated in Benigno-Woodford (2004).

ullet Kydland-Prescott

- Restate problem so that \dot{k} is linear function of state and controls
- Replace u(c) with quadratic approximation
- Note 1: such transformation may not be easy
- Note 2: special case of Magill (JET 1977).

• Lesson

- Kydland-Prescott, McGrattan provide no mathematical basis for method
- Formal calculations based on appropriate IFT should be used.
- Beware of ad hoc methods based on an intuitive story!

. .

Perturbation Method for Dynamic Programming

- Formalize problem as a system of functional equations
 - Bellman equation:

$$\rho V(k) = \max_{c} \ u(c) + V'(k)(f(k) - c) \tag{1}$$

-C(k): policy function defined by

$$0 = u'(C(k)) - V'(k)$$

$$\rho V(k) = u(C(k)) + V'(k)(f(k) - C(k))$$
(2)

- Apply envelope theorem to (1) to get

$$\rho V'(k) = V''(k)(f(k) - C(k)) + V'(k)f'(k) \tag{1_k}$$

- Steady-state equations

$$c^* = f(k^*) \qquad \rho V(k^*) = u(c^*) + V'(k^*)(f(k^*) - c^*)$$

$$0 = u'(c^*) - V'(k^*) \quad \rho V'(k) = V''(k)(f(k^*) - c^*) + V'(k)f'(k)$$

- Steady State: We know k^* , $V(k^*)$, $C(k^*)$, $f'(k^*)$, $V'(k^*)$:

$$\rho = f'(k^*), \quad C(k^*) = f(k^*), \quad V(k^*) = \rho^{-1}u(c^*), \quad V'(k^*) = u'(c^*)$$

- Want Taylor expansion:

$$C(k) \doteq C(k^*) + C'(k^*)(k - k^*) + C''(k^*)(k - k^*)^2/2 + \dots$$
$$V(k) \doteq V(k^*) + V'(k^*)(k - k^*) + V''(k^*)(k - k^*)^2/2 + \dots$$

- Linear approximation around a steady state
 - Differentiate $(1_k, 2)$ w.r.t. k:

$$\rho V'' = V'''(f - C) + V''(f' - C') + V''f' + V'f''$$
(1_{kk})

$$0 = u''C' - V'' \tag{2k}$$

- At the steady state

$$0 = -V''(k^*)C'(k^*) + V''(k^*)f'(k^*) + V'(k^*)f''(k^*)$$

$$(1_k^*)$$

- Substituting (2_k) into (1_k^*) yields

$$0 = -u''(C')^2 + u''C'f' + V'f''$$

- Two solutions

$$C'(k^*) = \frac{\rho}{2} \left(1 \pm \sqrt{1 + \frac{4u'(C(k^*))f''(k^*)}{u''(C'(k^*))f'(k^*)f'(k^*)}} \right)$$

- However, we know $C'(k^*) > 0$; hence, take positive solution

. ~

- Higher-Order Expansions
 - Conventional perception in macroeconomics: "perturbation methods of order higher than one are considerably more complicated than the traditional linear-quadratic case ..." Marcet (1994, p. 111)
 - Mathematics literature: No problem (See, e.g., Bensoussan, Fleming, Souganides, etc.)
- Compute $C''(k^*)$ and $V'''(k^*)$.
 - Differentiate $(1_{kk}, 2_k)$:

$$\rho V''' = V''''(f - C) + 2V'''(f' - C') + V''(f'' - C'')$$

$$+V'''f' + 2V''f'' + V'f'''$$
(1_{kkk})

$$0 = u'''(C')^2 + u''C'' - V'''$$
(2_{kk})

– At k^* , (1_{kkk}) reduces to

$$0 = 2V'''(f' - C') + 3V''f'' - V''C'' + V'f'''$$

$$(1^*_{kkk})$$

- Equations $(1_{kkk}^*, 2_{kk}^*)$ are *LINEAR* in unknowns $C''(k^*)$ and $V'''(k^*)$:

$$\begin{pmatrix} u'' & -1 \\ V'' - 2(f' - C') \end{pmatrix} \begin{pmatrix} C'' \\ V''' \end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

- Unique solution since determinant -2u''(f'-C')+V''<0.

- Compute $C^{(n)}(k^*)$ and $V^{(n+1)}(k^*)$.
 - Linear system for order n is, for some A_1 and A_2 ,

$$\begin{pmatrix} u'' & -1 \\ V'' - n(f' - C') \end{pmatrix} \begin{pmatrix} C^{(n)} \\ V^{(n+1)} \end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

- Higher-order terms are produced by solving linear systems
- The linear system is always determinate since -nu''(f'-C')+V''<0

• Conclusion:

- Computing first-order terms involves solving quadratic equations
- Computing higher-order terms involves solving linear equations
- Computing higher-order terms is easier than computing the linear term.

Accuracy Measure

Consider the one-period relative Euler equation error:

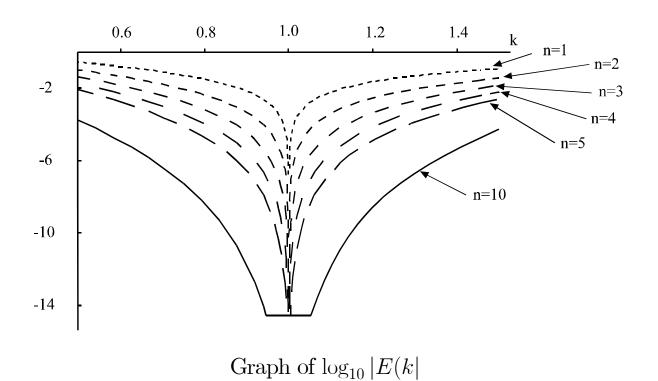
$$E(k) = 1 - \frac{V'(k)}{u'(C(k))}$$

- Equilibrium requires it to be zero.
- E(k) is measure of optimization error
 - -1 is unacceptably large
 - Values such as .00001 is a limit for people.
 - -E(k) is unit-free.
- Define the L^p , $1 \leq p < \infty$, bounded rationality accuracy to be

$$\log_{10} \parallel E(k) \parallel_p$$

• The L^{∞} error is the maximum value of E(k).

Global Quality of Asymptotic Approximations



- \bullet Linear approximation is very poor even for k close to steady state
- Order 2 is better but still not acceptable for even k = .9, 1.1
- Order 10 is excellent for $k \in [.6, 1.4]$

Stochastic, Discrete-Time Growth

$$\max_{c_t} E\left\{\sum_{t=0}^{\infty} \beta^t u(c_t)\right\}$$
s.t. $k_{t+1} = (1 + \varepsilon z)F(k_t - c_t)$ (13.7.19)

• New state variable:

- $-k_t$ is capital stock at the beginning of period t
- consumption comes out of k
- the remaining capital, $k_t c_t$, is used in production
- resulting output is $(1 + \varepsilon z)F(k_t c_t) = k_{t+1}$
- perturbation parameter is ε , the standard deviation, not the variance.
- Do deterministic perturbation analysis.
 - Solution when $\varepsilon = 0$ is C(k) solving

$$u'(C(k)) = \beta u'(C(F(k - C(k)))) F'(k - C(k)).$$
(13.7.20)

- At the steady state, k^* , $F(k^* C(k^*)) = k^*$, and $1 = \beta F'(k^* C(k^*))$
- Derivative of (13.7.20) with respect to k implies

$$u''(C(k)) C'(k) = \beta u''(C(F(k - C(k)))) C'(F(k - C(k)))$$

$$\times F'(k - C(k))[1 - C'(k)] F'(k - C(k))$$

$$+\beta u'(C(F(k - C(k)))) F''(k - C(k)) [1 - C'(k)]$$
(13.7.21)

. ~

- At $k = k^*$, (13.7.21) reduces to (drop all arguments)

$$u''C' = \beta u''C'F'[1 - C']F' + \beta u'F''[1 - C']. \tag{13.7.22}$$

with stable solution

$$C' = \frac{1}{2} \left(1 - \beta - \beta^2 \frac{u'}{u''} F'' + \sqrt{\left(1 - \beta - \beta^2 \frac{u'}{u''} F'' \right)^2 + 4 \frac{u'}{u''} \beta^2 F''} \right)$$

- Take another derivative of (13.7.21) and set $k = k^*$ to find

$$u''C'' + u'''C'C' = \beta u''' (C'F'(1 - C'))^{2} F' + \beta u''C'' (F'(1 - C'))^{2} F' + 2\beta u''C'F'(1 - C')^{2} F'' + \beta u'F'''(1 - C')^{2} + \beta u'F''(-C''),$$

which is a linear equation in the unknown $C''(k^*)$.

. .

- Stochastic problem:
 - Euler equation is

$$u'(C(k)) = \beta E \left\{ u'(g(\varepsilon, k, z)) \mid R(\varepsilon, k, z) \right\}, \tag{13.7.23}$$

where

$$g(\varepsilon, k, z) \equiv C((1 + \varepsilon z)F(k - C(k))),$$

$$R(\varepsilon, k, z) \equiv (1 + \varepsilon z)F'(k - C(k)).$$
(13.7.24)

- Compute C_{ε}
 - * Differentiate (13.7.24) with respect to ε yields (we drop arguments of F and C)

$$g_{\varepsilon} = C_{\varepsilon} + C' \left(zF - (1 + \varepsilon z)F'C_{\varepsilon} \right),$$

$$g_{\varepsilon\varepsilon} = C_{\varepsilon\varepsilon} + 2C'_{\varepsilon} \left(zF - (1 + \varepsilon z)F'C_{\varepsilon} \right) + C'' \left(zF - (1 + \varepsilon z)F'C_{\varepsilon} \right)^{2},$$

$$+ C' \left(-zF'C_{\varepsilon} 2 + (1 + \varepsilon z)F''C_{\varepsilon}^{2} - (1 + \varepsilon z)F'C_{\varepsilon\varepsilon} \right).$$

$$(13.7.25)$$

* At $\varepsilon = 0$, (13.7.25) implies that

$$g_{\varepsilon} = C_{\varepsilon} + C'(zF - F'C_{\varepsilon}),$$

$$g_{\varepsilon\varepsilon} = C_{\varepsilon\varepsilon} + 2C'_{\varepsilon}(zF - F'C_{\varepsilon}) + C''(zF - F'C_{\varepsilon})^{2},$$

$$+C'(-2zF'C_{\varepsilon} + F''C_{\varepsilon}^{2} - F'C_{\varepsilon\varepsilon}).$$

$$(13.7.26)$$

- -

* Differentiate (13.7.23) with respect to ε

$$u''C_{\varepsilon} = \beta E \left\{ u''g_{\varepsilon}(1+\varepsilon z)F' + u'F'z - u'(1+\varepsilon z)F''C_{\varepsilon} \right\}$$
(13.7.27)

$$u'''C_{\varepsilon}^{2} + u''C_{\varepsilon\varepsilon} = \beta E\{u'''g_{\varepsilon}^{2}(1+\varepsilon z)F' + 2u''g_{\varepsilon}F'z$$

$$-2u''g_{\varepsilon}(1+\varepsilon z)F''C_{\varepsilon} + u''g_{\varepsilon\varepsilon}(1+\varepsilon z)F'$$

$$-2u'zF''C_{\varepsilon} + u'(1+\varepsilon z)F'''C_{\varepsilon}^{2} - u'(1+\varepsilon z)F''C_{\varepsilon\varepsilon}\}$$

$$(13.7.28)$$

* Since $E\{z\} = 0$, (13.7.27) says that $C_{\varepsilon} = 0$, which in turn implies that

$$g_{\varepsilon} = C'zF,$$

 $g_{\varepsilon\varepsilon} = C_{\varepsilon\varepsilon} + 2C'_{\varepsilon}zF + C''(zF)^2 - C'F'C_{\varepsilon\varepsilon}.$

- Compute $C_{\varepsilon\varepsilon}$
 - * Second-order terms in (13.7.28), we find that at $\varepsilon = 0$,

$$u'''C_{\varepsilon}^{2} + u''C_{\varepsilon\varepsilon} = \beta E \left\{ u'''g_{\varepsilon}^{2} F' + 2u''g_{\varepsilon} F' z - 2u''g_{\varepsilon} F''C_{\varepsilon} + u''g_{\varepsilon\varepsilon} F' - 2u' z F''C_{\varepsilon} + u'F'''C_{\varepsilon}^{2} - u'F''C_{\varepsilon\varepsilon} \right\}$$

* Using the normalization $E\{z^2\}=1$, we find that

$$u''C_{\varepsilon\varepsilon} = \beta \left[u'''C'F^2F' + 2u''C'FF' + u''(C_{\varepsilon\varepsilon} + C''F^2 - C'F'C_{\varepsilon\varepsilon})F' - u'F''C_{\varepsilon\varepsilon} \right]$$

* Solving for $C_{\varepsilon\varepsilon}$ yields

$$C_{\varepsilon\varepsilon} = \frac{u''' \, C'C'F^2 + 2u''C'F + u''C''F^2}{u''C'F' + \beta u'F''}$$

• This exercise demonstrates that perturbation methods can also be applied to the discrete-time stochastic growth model.

_ .

Bifurcation Methods

- Suppose $H(h(\varepsilon), \varepsilon) = 0$ but H(x, 0) = 0 for all x.
 - IFT says

$$h'(0) = -\frac{H_{\varepsilon}(x_0, 0)}{H_x(x_0, 0)}$$

- -H(x,0) = 0 implies $H_x(x_0,0) = 0$, and h'(0) has the form 0/0 at $x = x_0$.
- l'Hospital's rule implies, if which is well-defined if $H_{\varepsilon x}(x_0,0) \neq 0$,

$$h'(0) = -\frac{H_{\varepsilon\varepsilon}(x_0, 0)}{H_{\varepsilon x}(x_0, 0)}.$$

- -

Example: Portfolio Choices for Small Risks

- Simple asset demand model:
 - safe asset yields R per dollar invested and risky asset yields Z per dollar invested
 - If final value is $Y = W((1 \omega)R + \omega Z)$, then portfolio problem is

$$\max_{\omega} E\{u(Y)\}$$

- Small Risk Analysis
 - Parameterize cases

$$Z = R + \varepsilon z + \varepsilon^2 \pi \tag{1}$$

- Compute $\omega(\varepsilon) \doteq \omega(0) + \varepsilon \omega'(0) + \frac{\varepsilon^2}{2} \omega''(0)$ around the deterministic case of $\varepsilon = 0$.
- Failure of IFT: at $\varepsilon = 0$, Z = R, and $\omega(\varepsilon)$ is indeterminate, but we know that $\omega(\varepsilon)$ is unique for $\varepsilon \neq 0$

- ~

• Bifurcation analysis

– The first-order condition for ω

$$0 = E\{u'\left(WR + \omega W(\varepsilon z + \varepsilon^2 \pi)\right)(z + \varepsilon \pi)\} \equiv G(\omega, \varepsilon)$$
(2)

$$0 = G(\omega, 0), \quad \forall \omega. \tag{3}$$

– Solve for $\omega(\varepsilon) \doteq \omega(0) + \varepsilon \omega'(0) + \frac{\varepsilon^2}{2} \omega''(0)$. Implicit differentiation implies

$$0 = G_{\omega}\omega' + G_{\varepsilon} \tag{4}$$

$$G_{\varepsilon} = E\{u''(Y)W(\omega z + 2\omega \varepsilon \pi)W(z + \varepsilon \pi) + u'(Y)\pi\}$$
(5)

$$G_{\omega} = E\{u''(Y)(z + \varepsilon \pi)^2 \varepsilon\} \tag{6}$$

- At $\varepsilon = 0$, $G(\omega, 0) = G_{\omega}(\omega, 0) = 0$ for all ω .
- No point $(\omega, 0)$ for application of IFT to (3) to solve for $\omega'(0)$.

. .

- We want $\omega_0 = \lim_{\varepsilon \to 0} \omega(\varepsilon)$.
 - Bifurcation theorem keys on ω_0 satisfying

$$0 = G_{\varepsilon}(\omega_0, 0)$$

$$= u''(RW)\omega_0 \sigma_z^2 W + u'(RW)\pi$$
(7)

which implies

$$\omega_0 = -\frac{\pi}{\sigma_z^2} \frac{u'(WR)}{Wu''(WR)} \tag{8}$$

- (8) is asymptotic portfolio rule
 - * same as mean-variance rule
 - * ω_0 is product of risk tolerance and the risk premium per unit variance.
 - * ω_0 is the limiting portfolio share as the variance vanishes.
 - * ω_0 is not first-order approximation.

- To calculate $\omega'(0)$:
 - differentiate (2.4) with respect to ε

$$0 = G_{\omega\omega}\omega'\omega' + 2G_{\omega\varepsilon}\omega' + G_{\omega}\omega'' + G_{\varepsilon\varepsilon}$$
(9)

where (without loss of generality, we assume W=1)

$$G_{\varepsilon\varepsilon} = E\{u'''(Y)(\omega z + 2\omega\varepsilon\pi)^{2}(z + \varepsilon\pi) + u''(Y)2\omega\pi(z + \varepsilon\pi) + 2u''(Y)(\omega z + 2\omega\varepsilon\pi)\pi\}$$

$$G_{\omega\omega} = E\{u'''(Y)(z + \varepsilon\pi)^{3}\varepsilon\}$$

$$G_{\omega\varepsilon} = E\{u'''(Y)(\omega z + 2\omega\varepsilon\pi)(z + \varepsilon\pi)^{2}\varepsilon + u''(Y)(z + \varepsilon\pi)2\pi\varepsilon + u''(Y)(z + \varepsilon\pi)^{2}\}$$

 $- At \varepsilon = 0,$

$$G_{\varepsilon\varepsilon} = u'''(R)\omega_0^2 E\{z^3\}$$
 $G_{\omega\omega} = 0$
 $G_{\omega\varepsilon} = u''(R)E\{z^2\} \neq 0$ $G_{\varepsilon\varepsilon\varepsilon} \neq 0$

- Therefore,

$$\omega' = -\frac{1}{2} \frac{u'''(R)}{u''(R)} \frac{E\{z^3\}}{E\{z^2\}} \omega_0^2.$$
(10)

- Equation (10) is a simple formula.
 - * $\omega'(0)$ proportional to u'''/u''
 - * $\omega'(0)$ proportional to ratio of skewness to variance.
 - * If u is quadratic or z is symmetric, ω does not change to a first order.
- We could continue this and compute more derivatives of $\omega(\varepsilon)$ as long as u is sufficiently differentiable.

- -

- ullet Other applications see Judd and Guu (ET, 2001)
 - Equilibrium: add other agents, make π endogenous
 - Add assets
 - Produce a mean-variance-skewness-kurtosis-etc. theory of asset markets
 - More intuitive approach to market incompleteness then counting states and assets

_ _