Solving Dynamic Games with Newton's Method

Michael C. Ferris University of Wisconsin

Kenneth L. Judd Hoover Institution

Karl Schmedders Kellogg School of Management

2006 Institute on Computational Economics Argonne National Laboratory July 21, 2006

Motivation

Stochastic, finite-state dynamic games have many applications in economics

Arise frequently in imperfect competition models

- Merger analysis (Gowrisankaran, 1999)
- Learning by doing (Benkard, 2000)
- Collusion (Fershtman and Pakes, 2000, de Roos, 2004)
- Capacity games (Besanko and Doraszelski, 2004)
- Advertising (Doraszelski and Markovich, 2005)

Solving Interesting Models

Numerical methods needed for solving non-trivial models

- Pakes and McGuire (1994, 2001)
- Doraszelski and Judd (2005)

Problem: Computational costs restrict applications

Our paper: We propose a simple method for solving large models

Overview of this Talk

- Description of general discrete-time stochastic games
- Basic idea of existing methods
- Newton method
- Application: Two-firm example with investment and production
- Conclusion: It is feasible to solve large games

Discrete-Time Dynamic Game

Stochastic discrete-time dynamic game (for two players)

State variables

- Represent production capacity, efficiency, experience, etc.
- State of firm i at time t is ω_t^i
- State of game is $\omega_t = (\omega_t^1, \omega_t^2) \in \Omega$

Actions

- Represent output, price decision, investments, etc.
- Firm *i*'s action at time t is $x_t^i \ge 0$
- Collection of actions at t is $x_t = (x_t^1, x_t^2)$

Discrete-Time Dynamic Game II

Stochastic process of state-to-state transitions

- Represents uncertainty about investment success, depreciation, etc.
- Transition probabilities

$$\Pr(\omega_{t+1} = \xi | \omega_t, x) = \Pr^1(\omega_{t+1}^1 = \xi^1 | \omega_t^1, x_t^1) \cdot \Pr^2(\omega_{t+1}^2 = \xi^2 | \omega_t^2, x_t^2).$$

– Independent transitions, each firm controls its state

Payoffs

- Represent net profits from current sales, investment expenditures, etc.
- Firm *i* receives $\pi^i(x_t, \omega_t)$ at time *t*

Discrete-Time Dynamic Game III

Objective functions

- Represent total profit over an infinite horizon

$$E\left\{\sum_{t=0}^{\infty}\beta^{t}\pi^{i}\left(x_{t},\omega_{t}\right)\right\}$$

- Both firms simultaneously maximize respective total profits

Pure Markov Strategies

Firm *i* uses a strategy of feedback form, $X^{i}(\omega)$ Firm *i*'s expected net present value $V^{i}(\omega)$

Bellman equations for the two firms

$$V^{1}(\omega) = \max_{x^{1}} \pi^{1} \left(x^{1}, X^{2}(\omega), \omega \right) + \beta E \left\{ V^{1}(\omega') | \omega, x^{1}, X^{2}(\omega) \right\}$$
$$V^{2}(\omega) = \max_{x^{2}} \pi^{2} \left(x^{2}, X^{1}(\omega), \omega \right) + \beta E \left\{ V^{2}(\omega') | \omega, x^{2}, X^{1}(\omega) \right\}$$

Firm *i*'s strategy, $X^{i}(\omega)$, is arg max of Bellman equation

$$X^{1}(\omega) = \arg \max_{x^{1}} \pi^{1}(x^{1}, X^{2}(\omega), \omega) + \beta E \left\{ V^{1}(\omega') | \omega, x^{1}, X^{2}(\omega) \right\}$$
$$X^{2}(\omega) = \arg \max_{x^{2}} \pi^{2}(x^{2}, X^{1}(\omega), \omega) + \beta E \left\{ V^{2}(\omega') | \omega, x^{2}, X^{1}(\omega) \right\}$$

Markov-Perfect Equilibrium

Markov-perfect ("feedback") equilibrium $(V^1(\omega), x^1(\omega), V^2(\omega), x^2(\omega))$

is a solution to the collection of Bellman equations and strategy equations

Existence: Few applications have existence theorem for pure strategy equilibria Doraszelski and Satterthwaite (2003)

Multiplicity: A common problem; here we aim to find just one Judd and Schmedders (2005)

Standard Gauss-Seidel Method

Initialize: Order states $\omega \in \Omega$ and make initial guesses $V^{i}(\omega)$ and $X^{i}(\omega)$

Iterate: Make many passes through Ω , updating values and strategies

$$X^{1}(\omega) \leftarrow \arg \max_{x^{1}} \quad \pi^{1}\left(x^{1}, X^{2}(\omega), \omega\right) + \beta E\left\{V^{1}(\omega') | \omega, x^{1}, X^{2}(\omega)\right\}$$
$$V^{1}(\omega) \leftarrow \max_{x^{1}} \quad \pi^{1}\left(x^{1}, X^{2}(\omega), \omega\right) + \beta E\left\{V^{1}(\omega') | \omega, x^{1}, X^{2}(\omega)\right\}$$
$$X^{2}(\omega) \leftarrow \arg \max_{x^{2}} \quad \pi^{2}\left(x^{2}, X^{1}(\omega), \omega\right) + \beta E\left\{V^{2}(\omega') | \omega, x^{2}, X^{1}(\omega)\right\}$$
$$V^{2}(\omega) \leftarrow \max_{x^{2}} \quad \pi^{2}\left(x^{2}, X^{1}(\omega), \omega\right) + \beta E\left\{V^{2}(\omega') | \omega, x^{2}, X^{1}(\omega)\right\}$$

Basically a best-reply approach

Better than Gauss-Jacobi – a.k.a. value function iteration – which does not update $V^{i}(\omega)$ and $X^{i}(\omega)$ until next iterates are computed at all ω

Newton Method for Discrete-Time Game

Construct system of equations

– One equation for each value function in each state ω

$$V^{1}(\omega) = \pi^{1} \left(X^{1}(\omega), X^{2}(\omega), \omega \right) + \beta E \left\{ V^{1}(\omega') | \omega, X^{1}(\omega), X^{2}(\omega) \right\}$$
$$V^{2}(\omega) = \pi^{2} \left(X^{1}(\omega), X^{2}(\omega), \omega \right) + \beta E \left\{ V^{2}(\omega') | \omega, X^{1}(\omega), X^{2}(\omega) \right\}$$

– First-order conditions of optimality of firms' decisions in each state ω

$$\frac{\partial}{\partial x^{1}} \left(\pi^{1} \left(X^{1} \left(\omega \right), X^{2} \left(\omega \right), \omega \right) + \beta E \left\{ V^{1} \left(\omega' \right) | \omega, X^{1} \left(\omega \right), X^{2} \left(\omega \right) \right\} \right) \leq 0$$

$$X^{1} \left(\omega \right) \geq 0$$

$$\frac{\partial}{\partial x^2} \left(\pi^2 \left(X^1 \left(\omega \right), X^2 \left(\omega \right), \omega \right) + \beta E \left\{ V^2 \left(\omega' \right) | \omega, X^1 \left(\omega \right), X^2 \left(\omega \right) \right\} \right) \le 0$$
$$X^2 \left(\omega \right) \ge 0$$

Technical Issues

Large system of nonlinear equations and inequalities

Presence of complementarity conditions

Size of the Jacobian

Two Firms: Cournot Competition

Two firms produce the same good

In each period firms play a Cournot game and produce quantities q_1, q_2

Total quantity $q = q_1 + q_2$

Inverse demand function $P(q) = A - \phi q$

Firms' cost functions $C_i(\mathbf{c_i}, q_i) = \mathbf{c_i} q_i^2$

Technology of firm i given by c_i

Profits π_i for firm i

$$\pi_1(q_1, q_2; c_1) = q_1 P(q_1 + q_2) - c_1 q_1^2$$

$$\pi_2(q_1, q_2; c_2) = q_2 P(q_1 + q_2) - c_2 q_2^2$$

Static Nash Equilibrium

Static Nash equilibrium can be solved in closed-form

$$q_1^N(c_1, c_2) = A \frac{2c_2 + \phi}{4c_1c_2 + 4(c_1 + c_2)\phi + 3\phi^2}$$
$$q_2^N(c_1, c_2) = A \frac{2c_1 + \phi}{4c_1c_2 + 4(c_1 + c_2)\phi + 3\phi^2}$$

Cournot equilibrium profits

$$\pi_1^N(c_1, c_2) = \frac{A^2 (c_1 + \phi) (2c_2 + \phi)^2}{(4c_1c_2 + 4 (c_1 + c_2) \phi + 3\phi^2)^2}$$
$$\pi_2^N(c_1, c_2) = \frac{A^2 (c_2 + \phi) (2c_1 + \phi)^2}{(4c_1c_2 + 4 (c_1 + c_2) \phi + 3\phi^2)^2}$$

Dynamic Model

Firm *i* can affect production cost c_i through investment For simplicity: $c_i = \frac{1}{M_i}$ where M_i is the number of machines of firm *i* M_i depends on investment effort and depreciation Increase in M_i through investment, decrease in M_i through depreciation Probability of depreciation shock δ

Cost of investment effort u_i is $C_i(u_i) = \gamma_i u_i + \eta_i (u_i)^2$ Observe $C'_i(0) = \gamma_i$

Distinguish production cost $c_i = \frac{1}{M_i}$ and investment cost $C_i(u_i)$

Stochastic Transition Process

Number of machines $M_i \in \{1, 2, \ldots, N\}$

Popular specification of transition probabilities for $2 \le M_i \le N - 1$

$$\Pr^{i}(M_{i}^{+}|M_{i}, u_{i}) = \begin{cases} \frac{(1-\delta)\alpha u_{i}}{1+\alpha u_{i}} & \xi^{i} = M_{i} + 1\\ \frac{1-\delta+\delta\alpha u_{i}}{1+\alpha u_{i}} & \xi^{i} = M_{i}\\ \frac{\delta}{1+\alpha u_{i}} & \xi^{i} = M_{i} - 1 \end{cases}$$

State-to-state transition probabilities

$$\Pr\left((M_1^+, M_2^+) | (M_1, M_2), (u_1, u_2)\right) = \Pr^1(M_1^+ | M_1, u_1) \cdot \Pr^2(M_2^+ | M_2, u_2)$$

Complete Dynamic Game

State of the economy is (M_1, M_2) at the beginning of period Production technologies of firms $(c_1, c_2) = (\frac{1}{M_1}, \frac{1}{M_2})$ Cournot outcome on product market with period profits (π_1^N, π_2^N) Firms' investment in technology (u_1, u_2) incurring costs $(C_1(u_1), C_2(u_2))$ Stochastic transition to new states (M_1^+, M_2^+) for next period

Infinite-horizon model

Firms have discount factor β

Firms maximize expected discounted sum of per-period profits

Optimality Conditions

Separation between static Cournot game and dynamic investment decisions

Optimal investment effort $U_1(M_1, M_2)$ satisfies

$$V_{1}(M_{1}, M_{2}) = \left(\pi_{1}^{N}(M_{1}, M_{2}) - C_{1}(U_{1}(M_{1}, M_{2}))\right)$$

+ $\beta \sum_{M_{1}^{+}} \sum_{M_{2}^{+}} \Pr^{1}(M_{1}^{+}|M_{1}, U_{1}(M_{1}, M_{2})) \cdot \Pr^{2}(M_{2}^{+}|M_{2}, U_{2}(M_{1}, M_{2}))V_{1}(M_{1}^{+}, M_{2}^{+})$
If $U_{1}(M_{1}, M_{2}) > 0$ then

$$0 = -\frac{\partial}{\partial u_1} C_1(U_1(M_1, M_2)) + \beta \sum_{M_1^+} \sum_{M_2^+} \frac{\partial}{\partial u_1} \Pr^1(M_1^+ | M_1, U_1(M_1, M_2)) \cdot \Pr^2(M_2^+ | M_2, U_2(M_1, M_2)) V_1(M_1^+, M_2^+)$$
If $U_1(M_1, M_2) = 0$ then

$$0 \ge -\frac{\partial}{\partial u_1} C_1(U_1(M_1, M_2)) + \beta \sum_{M_1^+} \sum_{M_2^+} \frac{\partial}{\partial u_1} \Pr^1(M_1^+ | M_1, U_1(M_1, M_2)) \cdot \Pr^2(M_2^+ | M_2, U_2(M_1, M_2)) V_1(M_1^+, M_2^+)$$

Solutions

Recall cost of investment effort $C_1(u_1) = \gamma_1 u_1 + \eta_1(u_1)^2$

If $\gamma_1 = 0$ then interior solution $u_1 > 0$ and no complementarity conditions necessary

If $\gamma_1 > 0$ then boundary solution $u_1 = 0$ possible

Four equations for each state (M_1, M_2) , so $4 \times N^2$ equations

Running times in seconds (using the PATH solver)

	Ý1	γ_2	N = 20	N = 50	N = 80	N = 100
(0	0	0.56	11.2	72	146
	1	1	0.57	12.5	59	192
	1	2	0.62	12.8	98	182

More Interesting Models

Cournot stage game was solved in closed-form

No analytical solution for Cournot quantity q_i for more general functions

Replace

$$\begin{split} V_1(M_1, M_2) &= \arg \max_{\boldsymbol{u}_1} \left(\pi_1^N(M_1, M_2) - C_1(\boldsymbol{u}_1) \right) \\ &+ \beta \sum_{M_1^+} \sum_{M_2^+} \Pr^1(M_1^+ | M_1, \boldsymbol{u}_1) \cdot \Pr^2(M_2^+ | M_2, U_2(M_1, M_2)) V_1(M_1^+, M_2^+) \end{split}$$
 by

$$V_1(M_1, M_2) = \arg \max_{\boldsymbol{u}_1, q_1} \left(\pi_1(\boldsymbol{q}_1, \boldsymbol{Q}_2(M_1, M_2); M_1) - C_1(\boldsymbol{u}_1) \right) + \beta \sum_{M_1^+} \sum_{M_2^+} \Pr^1(M_1^+ | M_1, \boldsymbol{u}_1) \cdot \Pr^2(M_2^+ | M_2, U_2(M_1, M_2)) V_1(M_1^+, M_2^+)$$

where

$$\pi_1(q_1, q_2; M_1) = q_1 P(q_1 + q_2) - \frac{1}{M_1} q_1^2$$

More Equations

Additional optimality conditions

If $Q_1(M_1, M_2) > 0$ then

$$\frac{\partial}{\partial q_1} \pi_1(Q_1(M_1, M_2), Q_2(M_1, M_2); M_1) = 0$$

If $Q_1(M_1, M_2) = 0$ then

$$\frac{\partial}{\partial q_1} \pi_1(Q_1(M_1, M_2), Q_2(M_1, M_2); M_1) \le 0$$

Additional complementarity conditions

Solving More Equations

Six equations for each state (M_1, M_2) , so $6 \times N^2$ equations

Production quantities are always positive (complementarity conditions not needed)

Running times in seconds

γ	1	γ_2	N = 20	N = 50	N = 80	N = 100
()	0	0.65	13.9	62	128
-	1	1	0.65	14.4	112	287
-	1	2	0.70	15.3	86	234

No significant difference to smaller systems with explicit profit functions

Summary

Stochastic dynamic discrete-time games with thousands of states

Explicit solution for the static Nash equilibrium unnecessary

Multi-dimensional controls

Complementarity conditions

Corner solutions

Next Steps

More general cost functions

Multi-dimensional state vectors per player

More players

More general transitions (jump more than one unit per state)

Specialized version of PATH: better scaling and linear algebra routines