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Motivation

Stochastic, finite-state dynamic games have many applications in economics

Arise frequently in imperfect competition models

– Merger analysis (Gowrisankaran, 1999)

– Learning by doing (Benkard, 2000)

– Collusion (Fershtman and Pakes, 2000, de Roos, 2004)

– Capacity games (Besanko and Doraszelski, 2004)

– Advertising (Doraszelski and Markovich, 2005)
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Solving Interesting Models

Numerical methods needed for solving non-trivial models

– Pakes and McGuire (1994, 2001)

– Doraszelski and Judd (2005)

Problem: Computational costs restrict applications

Our paper: We propose a simple method for solving large models
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Overview of this Talk

• Description of general discrete-time stochastic games

• Basic idea of existing methods

• Newton method

• Application: Two-firm example with investment and production

• Conclusion: It is feasible to solve large games
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Discrete-Time Dynamic Game

Stochastic discrete-time dynamic game (for two players)

State variables

– Represent production capacity, efficiency, experience, etc.

– State of firm i at time t is ωi
t

– State of game is ωt =
(
ω1

t , ω
2
t

) ∈ Ω

Actions

– Represent output, price decision, investments, etc.

– Firm i’s action at time t is xi
t ≥ 0

– Collection of actions at t is xt =
(
x1

t , x
2
t

)
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Discrete-Time Dynamic Game II

Stochastic process of state-to-state transitions

– Represents uncertainty about investment success, depreciation, etc.

– Transition probabilities

Pr (ωt+1 = ξ|ωt, x) = Pr1
(
ω1

t+1 = ξ1|ω1
t , x

1
t

) · Pr2
(
ω2

t+1 = ξ2|ω2
t , x

2
t

)
.

– Independent transitions, each firm controls its state

Payoffs

– Represent net profits from current sales, investment expenditures, etc.

– Firm i receives πi(xt, ωt) at time t
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Discrete-Time Dynamic Game III

Objective functions

– Represent total profit over an infinite horizon

E

{ ∞∑
t=0

βtπi (xt, ωt)

}

– Both firms simultaneously maximize respective total profits
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Pure Markov Strategies
Firm i uses a strategy of feedback form, X i (ω)

Firm i’s expected net present value V i(ω)

Bellman equations for the two firms

V 1 (ω) = max
x1

π1
(
x1, X2 (ω) , ω

)
+ βE

{
V 1 (ω′) |ω, x1, X2 (ω)

}

V 2 (ω) = max
x2

π2
(
x2, X1 (ω) , ω

)
+ βE

{
V 2 (ω′) |ω, x2, X1 (ω)

}

Firm i’s strategy, X i (ω), is arg max of Bellman equation

X1 (ω) = arg max
x1

π1
(
x1, X2 (ω) , ω

)
+ βE

{
V 1 (ω′) |ω, x1, X2 (ω)

}

X2 (ω) = arg max
x2

π2
(
x2, X1 (ω) , ω

)
+ βE

{
V 2 (ω′) |ω, x2, X1 (ω)

}
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Markov-Perfect Equilibrium

Markov-perfect (“feedback”) equilibrium (V 1(ω), x1(ω), V 2(ω), x2(ω))

is a solution to the collection of Bellman equations and strategy equations

Existence: Few applications have existence theorem for pure strategy equilibria

Doraszelski and Satterthwaite (2003)

Multiplicity: A common problem; here we aim to find just one

Judd and Schmedders (2005)
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Standard Gauss-Seidel Method
Initialize: Order states ω ∈ Ω and make initial guesses V i (ω) and X i (ω)

Iterate: Make many passes through Ω, updating values and strategies

X1 (ω) ← arg max
x1

π1
(
x1, X2 (ω) , ω

)
+ βE

{
V 1 (ω′) |ω, x1, X2 (ω)

}

V 1 (ω) ← max
x1

π1
(
x1, X2 (ω) , ω

)
+ βE

{
V 1 (ω′) |ω, x1, X2 (ω)

}

X2 (ω) ← arg max
x2

π2
(
x2, X1 (ω) , ω

)
+ βE

{
V 2 (ω′) |ω, x2, X1 (ω)

}

V 2 (ω) ← max
x2

π2
(
x2, X1 (ω) , ω

)
+ βE

{
V 2 (ω′) |ω, x2, X1 (ω)

}

Basically a best-reply approach

Better than Gauss-Jacobi – a.k.a. value function iteration – which does not update

V i (ω) and X i (ω) until next iterates are computed at all ω
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Newton Method for Discrete-Time Game

Construct system of equations

– One equation for each value function in each state ω

V 1 (ω) = π1
(
X1 (ω) , X2 (ω) , ω

)
+ βE

{
V 1 (ω′) |ω, X1 (ω) , X2 (ω)

}

V 2 (ω) = π2
(
X1 (ω) , X2 (ω) , ω

)
+ βE

{
V 2 (ω′) |ω, X1 (ω) , X2 (ω)

}

– First-order conditions of optimality of firms’ decisions in each state ω

∂

∂x1

(
π1

(
X1 (ω) , X2 (ω) , ω

)
+ βE

{
V 1 (ω′) |ω,X1 (ω) , X2 (ω)

}) ≤ 0

X1 (ω) ≥ 0

∂

∂x2

(
π2

(
X1 (ω) , X2 (ω) , ω

)
+ βE

{
V 2 (ω′) |ω,X1 (ω) , X2 (ω)

}) ≤ 0

X2 (ω) ≥ 0
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Technical Issues

Large system of nonlinear equations and inequalities

Presence of complementarity conditions

Size of the Jacobian
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Two Firms: Cournot Competition

Two firms produce the same good

In each period firms play a Cournot game and produce quantities q1, q2

Total quantity q = q1 + q2

Inverse demand function P (q) = A− φq

Firms’ cost functions Ci(ci, qi) = ci q2
i

Technology of firm i given by ci

Profits πi for firm i

π1(q1, q2; c1) = q1P (q1 + q2)− c1q
2
1

π2(q1, q2; c2) = q2P (q1 + q2)− c2q
2
2
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Static Nash Equilibrium

Static Nash equilibrium can be solved in closed-form

qN
1 (c1, c2) = A

2c2 + φ

4c1c2 + 4 (c1 + c2) φ + 3φ2

qN
2 (c1, c2) = A

2c1 + φ

4c1c2 + 4 (c1 + c2) φ + 3φ2

Cournot equilibrium profits

πN
1 (c1, c2) =

A2 (c1 + φ) (2c2 + φ)2

(4c1c2 + 4 (c1 + c2) φ + 3φ2)2

πN
2 (c1, c2) =

A2 (c2 + φ) (2c1 + φ)2

(4c1c2 + 4 (c1 + c2) φ + 3φ2)2
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Dynamic Model

Firm i can affect production cost ci through investment

For simplicity: ci = 1
Mi

where Mi is the number of machines of firm i

Mi depends on investment effort and depreciation

Increase in Mi through investment, decrease in Mi through depreciation

Probability of depreciation shock δ

Cost of investment effort ui is Ci(ui) = γiui + ηi(ui)
2

Observe C ′
i(0) = γi

Distinguish production cost ci = 1
Mi

and investment cost Ci(ui)
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Stochastic Transition Process

Number of machines Mi ∈ {1, 2, . . . , N}
Popular specification of transition probabilities for 2 ≤ Mi ≤ N − 1

Pri(M+
i |Mi, ui) =





(1−δ)αui
1+αui

ξi = Mi + 1

1−δ+δαui
1+αui

ξi = Mi

δ
1+αui

ξi = Mi − 1

State-to-state transition probabilities

Pr
(
(M+

1 ,M+
2 )|(M1,M2), (u1, u2)

)
= Pr1(M+

1 |M1, u1) · Pr2(M+
2 |M2, u2)
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Complete Dynamic Game

State of the economy is (M1,M2) at the beginning of period

Production technologies of firms (c1, c2) = ( 1
M1

, 1
M2

)

Cournot outcome on product market with period profits (πN
1 , πN

2 )

Firms’ investment in technology (u1, u2) incurring costs (C1(u1), C2(u2))

Stochastic transition to new states (M+
1 ,M+

2 ) for next period

Infinite-horizon model

Firms have discount factor β

Firms maximize expected discounted sum of per-period profits
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Optimality Conditions
Separation between static Cournot game and dynamic investment decisions

Optimal investment effort U1(M1,M2) satisfies

V1(M1,M2) =
(
πN

1 (M1,M2)− C1(U1(M1,M2))
)

+ β
∑

M+
1

∑
M+

2
Pr1(M+

1 |M1, U1(M1,M2)) · Pr2(M+
2 |M2, U2(M1,M2))V1(M

+
1 ,M+

2 )

If U1(M1,M2) > 0 then

0 = − ∂
∂u1

C1(U1(M1,M2))

+ β
∑

M+
1

∑
M+

2

∂
∂u1

Pr1(M+
1 |M1, U1(M1,M2)) · Pr2(M+

2 |M2, U2(M1,M2))V1(M
+
1 ,M+

2 )

If U1(M1,M2) = 0 then

0 ≥ − ∂
∂u1

C1(U1(M1,M2))

+ β
∑

M+
1

∑
M+

2

∂
∂u1

Pr1(M+
1 |M1, U1(M1,M2)) · Pr2(M+

2 |M2, U2(M1,M2))V1(M
+
1 ,M+

2 )
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Solutions

Recall cost of investment effort C1(u1) = γ1u1 + η1(u1)
2

If γ1 = 0 then interior solution u1 > 0 and no complementarity conditions necessary

If γ1 > 0 then boundary solution u1 = 0 possible

Four equations for each state (M1,M2), so 4×N 2 equations

Running times in seconds (using the PATH solver)

γ1 γ2 N = 20 N = 50 N = 80 N = 100
0 0 0.56 11.2 72 146
1 1 0.57 12.5 59 192
1 2 0.62 12.8 98 182
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More Interesting Models
Cournot stage game was solved in closed-form

No analytical solution for Cournot quantity qi for more general functions

Replace

V1(M1,M2) = arg maxu1

(
πN

1 (M1,M2)− C1(u1)
)

+ β
∑

M+
1

∑
M+

2
Pr1(M+

1 |M1, u1) · Pr2(M+
2 |M2, U2(M1,M2))V1(M

+
1 ,M+

2 )

by

V1(M1,M2) = arg maxu1,q1 (π1(q1, Q2(M1,M2); M1)− C1(u1))

+ β
∑

M+
1

∑
M+

2
Pr1(M+

1 |M1, u1) · Pr2(M+
2 |M2, U2(M1,M2))V1(M

+
1 ,M+

2 )

where

π1(q1, q2; M1) = q1P (q1 + q2)− 1

M1
q2
1
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More Equations

Additional optimality conditions

If Q1(M1,M2) > 0 then

∂

∂q1
π1(Q1(M1,M2), Q2(M1,M2); M1) = 0

If Q1(M1,M2) = 0 then

∂

∂q1
π1(Q1(M1,M2), Q2(M1,M2); M1) ≤ 0

Additional complementarity conditions
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Solving More Equations

Six equations for each state (M1,M2), so 6×N 2 equations

Production quantities are always positive (complementarity conditions not needed)

Running times in seconds

γ1 γ2 N = 20 N = 50 N = 80 N = 100
0 0 0.65 13.9 62 128
1 1 0.65 14.4 112 287
1 2 0.70 15.3 86 234

No significant difference to smaller systems with explicit profit functions
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Summary

Stochastic dynamic discrete-time games with thousands of states

Explicit solution for the static Nash equilibrium unnecessary

Multi-dimensional controls

Complementarity conditions

Corner solutions
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Next Steps

More general cost functions

Multi-dimensional state vectors per player

More players

More general transitions (jump more than one unit per state)

Specialized version of PATH: better scaling and linear algebra routines
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