Solving Dynamic Games with Newton's Method

Michael C. Ferris
University of Wisconsin

Kenneth L. Judd

Hoover Institution

Karl Schmedders
Kellogg School of Management

2006 Institute on Computational Economics
Argonne National Laboratory
July 21, 2006

Motivation

Stochastic, finite-state dynamic games have many applications in economics

Arise frequently in imperfect competition models

- Merger analysis (Gowrisankaran, 1999)
- Learning by doing (Benkard, 2000)
- Collusion (Fershtman and Pakes, 2000, de Roos, 2004)
- Capacity games (Besanko and Doraszelski, 2004)
- Advertising (Doraszelski and Markovich, 2005)

Solving Interesting Models

Numerical methods needed for solving non-trivial models

- Pakes and McGuire (1994, 2001)
- Doraszelski and Judd (2005)

Problem: Computational costs restrict applications

Our paper: We propose a simple method for solving large models

Overview of this Talk

- Description of general discrete-time stochastic games
- Basic idea of existing methods
- Newton method
- Application: Two-firm example with investment and production
- Conclusion: It is feasible to solve large games

Discrete-Time Dynamic Game

Stochastic discrete-time dynamic game (for two players)

State variables

- Represent production capacity, efficiency, experience, etc.
- State of firm i at time t is ω_{t}^{i}
- State of game is $\omega_{t}=\left(\omega_{t}^{1}, \omega_{t}^{2}\right) \in \Omega$

Actions

- Represent output, price decision, investments, etc.
- Firm i 's action at time t is $x_{t}^{i} \geq 0$
- Collection of actions at t is $x_{t}=\left(x_{t}^{1}, x_{t}^{2}\right)$

Discrete-Time Dynamic Game II

Stochastic process of state-to-state transitions

- Represents uncertainty about investment success, depreciation, etc.
- Transition probabilities

$$
\operatorname{Pr}\left(\omega_{t+1}=\xi \mid \omega_{t}, x\right)=\operatorname{Pr}^{1}\left(\omega_{t+1}^{1}=\xi^{1} \mid \omega_{t}^{1}, x_{t}^{1}\right) \cdot \operatorname{Pr}^{2}\left(\omega_{t+1}^{2}=\xi^{2} \mid \omega_{t}^{2}, x_{t}^{2}\right) .
$$

- Independent transitions, each firm controls its state

Payoffs

- Represent net profits from current sales, investment expenditures, etc.
- Firm i receives $\pi^{i}\left(x_{t}, \omega_{t}\right)$ at time t

Discrete-Time Dynamic Game III

Objective functions

- Represent total profit over an infinite horizon

$$
E\left\{\sum_{t=0}^{\infty} \beta^{t} \pi^{i}\left(x_{t}, \omega_{t}\right)\right\}
$$

- Both firms simultaneously maximize respective total profits

Pure Markov Strategies

Firm i uses a strategy of feedback form, $X^{i}(\omega)$
Firm i 's expected net present value $V^{i}(\omega)$
Bellman equations for the two firms

$$
\begin{aligned}
& V^{1}(\omega)=\max _{x^{1}} \pi^{1}\left(x^{1}, X^{2}(\omega), \omega\right)+\beta E\left\{V^{1}\left(\omega^{\prime}\right) \mid \omega, x^{1}, X^{2}(\omega)\right\} \\
& V^{2}(\omega)=\max _{x^{2}} \pi^{2}\left(x^{2}, X^{1}(\omega), \omega\right)+\beta E\left\{V^{2}\left(\omega^{\prime}\right) \mid \omega, x^{2}, X^{1}(\omega)\right\}
\end{aligned}
$$

Firm i 's strategy, $X^{i}(\omega)$, is arg max of Bellman equation

$$
\begin{aligned}
& X^{1}(\omega)=\arg \max _{x^{1}} \pi^{1}\left(x^{1}, X^{2}(\omega), \omega\right)+\beta E\left\{V^{1}\left(\omega^{\prime}\right) \mid \omega, x^{1}, X^{2}(\omega)\right\} \\
& X^{2}(\omega)=\arg \max _{x^{2}} \pi^{2}\left(x^{2}, X^{1}(\omega), \omega\right)+\beta E\left\{V^{2}\left(\omega^{\prime}\right) \mid \omega, x^{2}, X^{1}(\omega)\right\}
\end{aligned}
$$

Markov-Perfect Equilibrium

Markov-perfect ("feedback") equilibrium $\left(V^{1}(\omega), x^{1}(\omega), V^{2}(\omega), x^{2}(\omega)\right)$
is a solution to the collection of Bellman equations and strategy equations

Existence: Few applications have existence theorem for pure strategy equilibria Doraszelski and Satterthwaite (2003)

Multiplicity: A common problem; here we aim to find just one
Judd and Schmedders (2005)

Standard Gauss-Seidel Method

Initialize: Order states $\omega \in \Omega$ and make initial guesses $V^{i}(\omega)$ and $X^{i}(\omega)$
Iterate: Make many passes through Ω, updating values and strategies

$$
\begin{array}{ll}
X^{1}(\omega) \leftarrow \arg \max _{x^{1}} & \pi^{1}\left(x^{1}, X^{2}(\omega), \omega\right)+\beta E\left\{V^{1}\left(\omega^{\prime}\right) \mid \omega, x^{1}, X^{2}(\omega)\right\} \\
V^{1}(\omega) \leftarrow \max _{x^{1}} & \pi^{1}\left(x^{1}, X^{2}(\omega), \omega\right)+\beta E\left\{V^{1}\left(\omega^{\prime}\right) \mid \omega, x^{1}, X^{2}(\omega)\right\} \\
X^{2}(\omega) \leftarrow \arg \max _{x^{2}} & \pi^{2}\left(x^{2}, X^{1}(\omega), \omega\right)+\beta E\left\{V^{2}\left(\omega^{\prime}\right) \mid \omega, x^{2}, X^{1}(\omega)\right\} \\
V^{2}(\omega) \leftarrow \max _{x^{2}} & \pi^{2}\left(x^{2}, X^{1}(\omega), \omega\right)+\beta E\left\{V^{2}\left(\omega^{\prime}\right) \mid \omega, x^{2}, X^{1}(\omega)\right\}
\end{array}
$$

Basically a best-reply approach
Better than Gauss-Jacobi - a.k.a. value function iteration - which does not update $V^{i}(\omega)$ and $X^{i}(\omega)$ until next iterates are computed at all ω

Newton Method for Discrete-Time Game

Construct system of equations

- One equation for each value function in each state ω

$$
\begin{aligned}
& V^{1}(\omega)=\pi^{1}\left(X^{1}(\omega), X^{2}(\omega), \omega\right)+\beta E\left\{V^{1}\left(\omega^{\prime}\right) \mid \omega, X^{1}(\omega), X^{2}(\omega)\right\} \\
& V^{2}(\omega)=\pi^{2}\left(X^{1}(\omega), X^{2}(\omega), \omega\right)+\beta E\left\{V^{2}\left(\omega^{\prime}\right) \mid \omega, X^{1}(\omega), X^{2}(\omega)\right\}
\end{aligned}
$$

- First-order conditions of optimality of firms' decisions in each state ω

$$
\begin{aligned}
\frac{\partial}{\partial x^{1}}\left(\pi^{1}\left(X^{1}(\omega), X^{2}(\omega), \omega\right)+\beta E\left\{V^{1}\left(\omega^{\prime}\right) \mid \omega, X^{1}(\omega), X^{2}(\omega)\right\}\right) & \leq 0 \\
X^{1}(\omega) & \geq 0 \\
\frac{\partial}{\partial x^{2}}\left(\pi^{2}\left(X^{1}(\omega), X^{2}(\omega), \omega\right)+\beta E\left\{V^{2}\left(\omega^{\prime}\right) \mid \omega, X^{1}(\omega), X^{2}(\omega)\right\}\right) & \leq 0 \\
X^{2}(\omega) & \geq 0
\end{aligned}
$$

Technical Issues

Large system of nonlinear equations and inequalities

Presence of complementarity conditions

Size of the Jacobian

Two Firms: Cournot Competition

Two firms produce the same good
In each period firms play a Cournot game and produce quantities q_{1}, q_{2}
Total quantity $q=q_{1}+q_{2}$
Inverse demand function $P(q)=A-\phi q$
Firms' cost functions $C_{i}\left(c_{i}, q_{i}\right)=c_{i} q_{i}^{2}$
Technology of firm i given by c_{i}
Profits π_{i} for firm i

$$
\begin{aligned}
& \pi_{1}\left(q_{1}, q_{2} ; c_{1}\right)=q_{1} P\left(q_{1}+q_{2}\right)-c_{1} q_{1}^{2} \\
& \pi_{2}\left(q_{1}, q_{2} ; c_{2}\right)=q_{2} P\left(q_{1}+q_{2}\right)-c_{2} q_{2}^{2}
\end{aligned}
$$

Static Nash Equilibrium

Static Nash equilibrium can be solved in closed-form

$$
\begin{aligned}
& q_{1}^{N}\left(c_{1}, c_{2}\right)=A \frac{2 c_{2}+\phi}{4 c_{1} c_{2}+4\left(c_{1}+c_{2}\right) \phi+3 \phi^{2}} \\
& q_{2}^{N}\left(c_{1}, c_{2}\right)=A \frac{2 c_{1}+\phi}{4 c_{1} c_{2}+4\left(c_{1}+c_{2}\right) \phi+3 \phi^{2}}
\end{aligned}
$$

Cournot equilibrium profits

$$
\begin{aligned}
\pi_{1}^{N}\left(c_{1}, c_{2}\right) & =\frac{A^{2}\left(c_{1}+\phi\right)\left(2 c_{2}+\phi\right)^{2}}{\left(4 c_{1} c_{2}+4\left(c_{1}+c_{2}\right) \phi+3 \phi^{2}\right)^{2}} \\
\pi_{2}^{N}\left(c_{1}, c_{2}\right) & =\frac{A^{2}\left(c_{2}+\phi\right)\left(2 c_{1}+\phi\right)^{2}}{\left(4 c_{1} c_{2}+4\left(c_{1}+c_{2}\right) \phi+3 \phi^{2}\right)^{2}}
\end{aligned}
$$

Dynamic Model

Firm i can affect production cost c_{i} through investment
For simplicity: $c_{i}=\frac{1}{M_{i}}$ where M_{i} is the number of machines of firm i
M_{i} depends on investment effort and depreciation
Increase in M_{i} through investment, decrease in M_{i} through depreciation
Probability of depreciation shock δ

Cost of investment effort u_{i} is $C_{i}\left(u_{i}\right)=\gamma_{i} u_{i}+\eta_{i}\left(u_{i}\right)^{2}$
Observe $C_{i}^{\prime}(0)=\gamma_{i}$

Distinguish production cost $c_{i}=\frac{1}{M_{i}}$ and investment $\operatorname{cost} C_{i}\left(u_{i}\right)$

Stochastic Transition Process

Number of machines $M_{i} \in\{1,2, \ldots, N\}$
Popular specification of transition probabilities for $2 \leq M_{i} \leq N-1$

$$
\operatorname{Pr}^{i}\left(M_{i}^{+} \mid M_{i}, u_{i}\right)=\left\{\begin{array}{cl}
\frac{(1-\delta) \alpha u_{i}}{1+\alpha u_{i}} & \xi^{i}=M_{i}+1 \\
\frac{1-\delta+\delta \alpha u_{i}}{1+\alpha u_{i}} & \xi^{i}=M_{i} \\
\frac{\delta}{1+\alpha u_{i}} & \xi^{i}=M_{i}-1
\end{array}\right.
$$

State-to-state transition probabilities

$$
\operatorname{Pr}\left(\left(M_{1}^{+}, M_{2}^{+}\right) \mid\left(M_{1}, M_{2}\right),\left(u_{1}, u_{2}\right)\right)=\operatorname{Pr}^{1}\left(M_{1}^{+} \mid M_{1}, u_{1}\right) \cdot \operatorname{Pr}^{2}\left(M_{2}^{+} \mid M_{2}, u_{2}\right)
$$

Complete Dynamic Game

State of the economy is $\left(M_{1}, M_{2}\right)$ at the beginning of period
Production technologies of firms $\left(c_{1}, c_{2}\right)=\left(\frac{1}{M_{1}}, \frac{1}{M_{2}}\right)$
Cournot outcome on product market with period profits $\left(\pi_{1}^{N}, \pi_{2}^{N}\right)$
Firms' investment in technology $\left(u_{1}, u_{2}\right)$ incurring costs $\left(C_{1}\left(u_{1}\right), C_{2}\left(u_{2}\right)\right)$
Stochastic transition to new states $\left(M_{1}^{+}, M_{2}^{+}\right)$for next period

Infinite-horizon model
Firms have discount factor β
Firms maximize expected discounted sum of per-period profits

Optimality Conditions

Separation between static Cournot game and dynamic investment decisions
Optimal investment effort $U_{1}\left(M_{1}, M_{2}\right)$ satisfies

$$
\begin{aligned}
& V_{1}\left(M_{1}, M_{2}\right)=\left(\pi_{1}^{N}\left(M_{1}, M_{2}\right)-C_{1}\left(U_{1}\left(M_{1}, M_{2}\right)\right)\right) \\
& \quad+\beta \sum_{M_{1}^{+}} \sum_{M_{2}^{+}} \operatorname{Pr}^{1}\left(M_{1}^{+} \mid M_{1}, U_{1}\left(M_{1}, M_{2}\right)\right) \cdot \operatorname{Pr}^{2}\left(M_{2}^{+} \mid M_{2}, U_{2}\left(M_{1}, M_{2}\right)\right) V_{1}\left(M_{1}^{+}, M_{2}^{+}\right)
\end{aligned}
$$

If $U_{1}\left(M_{1}, M_{2}\right)>0$ then

$$
\begin{aligned}
0 & =-\frac{\partial}{\partial u_{1}} C_{1}\left(U_{1}\left(M_{1}, M_{2}\right)\right) \\
& +\beta \sum_{M_{1}^{+}} \sum_{M_{2}^{+}} \frac{\partial}{\partial u_{1}} \operatorname{Pr}^{1}\left(M_{1}^{+} \mid M_{1}, U_{1}\left(M_{1}, M_{2}\right)\right) \cdot \operatorname{Pr}^{2}\left(M_{2}^{+} \mid M_{2}, U_{2}\left(M_{1}, M_{2}\right)\right) V_{1}\left(M_{1}^{+}, M_{2}^{+}\right)
\end{aligned}
$$

If $U_{1}\left(M_{1}, M_{2}\right)=0$ then

$$
\begin{aligned}
0 & \geq-\frac{\partial}{\partial u_{1}} C_{1}\left(U_{1}\left(M_{1}, M_{2}\right)\right) \\
& +\beta \sum_{M_{1}^{+}} \sum_{M_{2}^{+}} \frac{\partial}{\partial u_{1}} \operatorname{Pr}^{1}\left(M_{1}^{+} \mid M_{1}, U_{1}\left(M_{1}, M_{2}\right)\right) \cdot \operatorname{Pr}^{2}\left(M_{2}^{+} \mid M_{2}, U_{2}\left(M_{1}, M_{2}\right)\right) V_{1}\left(M_{1}^{+}, M_{2}^{+}\right)
\end{aligned}
$$

Solutions

Recall cost of investment effort $C_{1}\left(u_{1}\right)=\gamma_{1} u_{1}+\eta_{1}\left(u_{1}\right)^{2}$
If $\gamma_{1}=0$ then interior solution $u_{1}>0$ and no complementarity conditions necessary
If $\gamma_{1}>0$ then boundary solution $u_{1}=0$ possible

Four equations for each state $\left(M_{1}, M_{2}\right)$, so $4 \times N^{2}$ equations

Running times in seconds (using the PATH solver)

γ_{1}	γ_{2}	$N=20$	$N=50$	$N=80$	$N=100$
0	0	0.56	11.2	72	146
1	1	0.57	12.5	59	192
1	2	0.62	12.8	98	182

More Interesting Models

Cournot stage game was solved in closed-form
No analytical solution for Cournot quantity q_{i} for more general functions
Replace

$$
\begin{aligned}
& V_{1}\left(M_{1}, M_{2}\right)=\arg \max _{u_{1}}\left(\pi_{1}^{N}\left(M_{1}, M_{2}\right)-C_{1}\left(u_{1}\right)\right) \\
& \quad+\beta \sum_{M_{1}^{+}} \sum_{M_{2}^{+}} \operatorname{Pr}^{1}\left(M_{1}^{+} \mid M_{1}, u_{1}\right) \cdot \operatorname{Pr}^{2}\left(M_{2}^{+} \mid M_{2}, U_{2}\left(M_{1}, M_{2}\right)\right) V_{1}\left(M_{1}^{+}, M_{2}^{+}\right)
\end{aligned}
$$

by

$$
\begin{aligned}
& V_{1}\left(M_{1}, M_{2}\right)=\arg \max _{u_{1}, q_{1}}\left(\pi_{1}\left(q_{1}, Q_{2}\left(M_{1}, M_{2}\right) ; M_{1}\right)-C_{1}\left(u_{1}\right)\right) \\
& \quad+\beta \sum_{M_{1}^{+}} \sum_{M_{2}^{+}} \operatorname{Pr}^{1}\left(M_{1}^{+} \mid M_{1}, u_{1}\right) \cdot \operatorname{Pr}^{2}\left(M_{2}^{+} \mid M_{2}, U_{2}\left(M_{1}, M_{2}\right)\right) V_{1}\left(M_{1}^{+}, M_{2}^{+}\right)
\end{aligned}
$$

where

$$
\pi_{1}\left(q_{1}, q_{2} ; M_{1}\right)=q_{1} P\left(q_{1}+q_{2}\right)-\frac{1}{M_{1}} q_{1}^{2}
$$

More Equations

Additional optimality conditions

If $Q_{1}\left(M_{1}, M_{2}\right)>0$ then

$$
\frac{\partial}{\partial q_{1}} \pi_{1}\left(Q_{1}\left(M_{1}, M_{2}\right), Q_{2}\left(M_{1}, M_{2}\right) ; M_{1}\right)=0
$$

If $Q_{1}\left(M_{1}, M_{2}\right)=0$ then

$$
\frac{\partial}{\partial q_{1}} \pi_{1}\left(Q_{1}\left(M_{1}, M_{2}\right), Q_{2}\left(M_{1}, M_{2}\right) ; M_{1}\right) \leq 0
$$

Additional complementarity conditions

Solving More Equations

Six equations for each state $\left(M_{1}, M_{2}\right)$, so $6 \times N^{2}$ equations

Production quantities are always positive (complementarity conditions not needed)

Running times in seconds

γ_{1}	γ_{2}	$N=20$	$N=50$	$N=80$	$N=100$
0	0	0.65	13.9	62	128
1	1	0.65	14.4	112	287
1	2	0.70	15.3	86	234

No significant difference to smaller systems with explicit profit functions

Summary

Stochastic dynamic discrete-time games with thousands of states

Explicit solution for the static Nash equilibrium unnecessary

Multi-dimensional controls

Complementarity conditions

Corner solutions

Next Steps

More general cost functions

Multi-dimensional state vectors per player

More players

More general transitions (jump more than one unit per state)

Specialized version of PATH: better scaling and linear algebra routines

