Exercise 1 Suppose the random variables $x_{t}(t=1, \ldots, T)$ are independent, and $P\left(x_{t}=\theta-1 \mid \theta\right)=P\left(x_{t}=\theta+1 \mid \theta\right)=1 / 2$.

Experiment 1 consists of collecting a sample of size $T=2$. Show that a 75% confidence interval of smallest size for θ is

$$
C\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
\text { the point }\left(x_{1}+x_{2}\right) / 2 \text { if } x_{1} \neq x_{2} \\
\text { the point } x_{1}-1 \text { if } x_{1}=x_{2}
\end{array}\right.
$$

(Thus if used repeatedly $C\left(x_{1}, x_{2}\right)$ would contain θ with probability 0.75 .) The evidence in Experiment 1 is that $C\left(x_{1}, x_{2}\right)$ constitutes a 75% confidence interval for θ.

Question: In the context of (a), suppose you observe $x_{1}=2$ and $x_{2}=4$. Then the 75% confidence interval in (a) is the point 3 . Is this consistent with common sense about the reliability of the conclusion that $\theta=3$?

