Continuous Optimization with AMPL

Todd Munson

Mathematics and Computer Science Division
Argonne National Laboratory
• Continuous Optimization
• Numerical Methods
• Modeling Languages
• Beginning AMPL
• Conclusion
Continuous Optimization

- Minimize or maximize function subject to constraints
 \[\min_{x \geq 0} f(x) \]
 subject to \[c(x) \leq 0 \]
 \[h(x) = 0 \]

- Functions are nonlinear but sufficiently smooth
- Includes both inequality and equality constraints
- Potentially large number of variables and constraints
- Restrict ourselves to finding local solutions
Economic Applications

- Portfolio Optimization
- Principal-Agent Problems
- Maximum Likelihood Estimation
- Optimal Growth and Life-Cycle Problems
- Social Planning Problems
Numerical Methods

- Several “standard” techniques exist
 - Augmented Lagrangian methods
 - Interior-point methods
 - Sequential quadratic programming

- Many variations on these themes
 - Choice of merit function or filter
 - Line search or trust region
 - Dealing with infeasibility
 - Linear algebra employed
 - Derivative requirements

- Best algorithm and settings are problem dependent
 - Number of variables and constraints
 - Amount of nonlinearity in problem
1. Compute direction by solving

\[
\begin{align*}
\min_d & \quad \frac{1}{2} d^T H_k d + \nabla f(x^k)^T d \\
\text{subject to} & \quad \nabla c(x^k) d + c(x^k) \leq 0 \\
& \quad \nabla h(x^k) d + h(x^k) = 0 \\
& \quad d + x^k \geq 0
\end{align*}
\]

2. Update iterate

\[x^{k+1} = x^k + d \]

3. Repeat until convergence
Issues to Address

• Efficiently solving the subproblems
 – Warm starts
 – Rank deficiency and degeneracy

• Dealing with infeasible subproblems
 – Elastic mode
 – Feasibility restoration

• Handling unbounded subproblems

• Computing the Hessian of Lagrangian H_k
 – Possibly an indefinite matrix
 – Positive definite approximation

• Obtaining global convergence
 – Merit function or filter
 – Line search or trust region
General-Purpose Algorithms on NEOS

- **Augmented Lagrangian Methods**
 - LANCELOT – trust region
 - MINOS – linearly constrained Lagrangian
 - PENNON – generalized Lagrangian

- **Interior-Point Methods**
 - IPOPT – filter line search
 - KNITRO – trust region
 - LOQO – line search

- **Sequential Quadratic Programming Methods**
 - FILTER – filter
 - SNOPT – line search

- **Other Techniques**
 - CONOPT – generalized reduced gradient
Traditional Method with Libraries

- Download and compile code or obtain libraries
- Read documentation to learn function calls
- Write application code
 - Construct sparsity pattern
 - Compute derivative information
 - Call optimization routines
 - Verify correctness
- Compile, link, and execute code
- Fix bugs – could take days to months
- Find out algorithm not appropriate for application
 - Start over with different library
 - Function calls not standardized
 - Some code can be reused
int KTR_solve(KTR_context *kc,
 double *f, /* (scalar) Objective function value */
 int ftype, /* (scalar) Type of objective */
 int n, /* (scalar) The number of unknowns */
 double *x, /* (length n, vector) Unknown values */
 double *bl, /* (length n, vector) Lower bounds */
 double *bu, /* (length n, vector) Upper bounds */
 double *fgrad,/* (length n, vector) Obj. gradient */
 int m, /* (scalar) The number of constraints */
 double *c, /* (length m, vector) Constraint values */
 double *cl, /* (length m, vector) Lower bounds */
 double *cu, /* (length m, vector) Upper bounds */
 int *ctype, /* (length m, vector) Constraint type */
 int nnzj, /* (scalar) Number of nonzeros in Jacobian */
 double *cjac, /* (length nnzj, vector) Jacobian data */
 int *indvar, /* (length nnzj) column start index */
 int *indfun, /* (length nnzj) row index */
 double *lambda,/* (length m+n, vector) Multiplier estimates */
 int nnzh, /* (scalar) Number of nonzeros in Hessian */
 double *hess, /* (length nnzh, vector) Hessian data */
 int *hrow, /* (length nnzh) row index */
 int *hcol, /* (length nnzh) column index */
 double *vector,/* (length n) vector for Hessian products */
 void *user /* pointer for callback functions */
);
Modeling Languages: A Better Way

- Portable language for specifying problems
 - Based on algebraic description
 - Large models can be processed
 - Easy to modify code as needed
 - Include programming language features

- Able to switch algorithms at will
 - No need to compile codes
 - Interfaces written by developers
 - Derivatives automatically calculated
 - Algorithm specific options can be set

- Support for other facilities
 - Relational databases and spreadsheets
 - MATLAB interface to obtain function evaluations
Notes on Modeling Languages

● Pros
 – Excellent documentation
 – Easy to use with convenient syntax
 – Many solvers are available
 – Automatic differentiation
 – Separation of model and data
 – Large user communities

● Cons
 – Interpreted languages
 * May be slow for some applications
 * Can consume large amount of memory
 – Not easily extensible to new paradigms (SDP)
AMPL Overview: Model Declaration

- Set declarations
 - Unordered, ordered, and circular sets
 - Cross products and point to set mappings
 - Set manipulation operations

- Parameters and variables
 - Attributes
 - Check statements
 - Defined variables

- Objectives and constraints
 - Equality, inequality, and range constraints
 - Complementarity constraints
 - Multiple objectives

- Problem statement
AMPL Overview: Data and Commands

- Data Declaration
 - Set definitions
 * Explicit list of elements
 * Implicit list in parameter statements
 - Parameter definitions
 * Tables and transposed tables
 * Higher dimensional parameters

- Execution Commands
 - Load model and data
 - Select problem, algorithm, and options
 - Solve the instance
 - Output results
Let and fix statements
Conditionals and loop constructs
Execution of external programs
Access to relational databases
Social Planning for Endowment Economy

- Economy with n agents and m commodities
 - $e \in \mathbb{R}^{n \times m}$ are the endowments
 - $\alpha, \beta \in \mathbb{R}^{n \times m}$ are the utility parameters
 - $\lambda \in \mathbb{R}^n$ are the social weights

- Social planning problem

$$\max_{x \geq 0, u} \sum_{i=1}^{n} \lambda_i u_i$$

subject to

$$\sum_{i=1}^{n} x_{i,k} \leq \sum_{i=1}^{n} e_{i,k} \quad \forall k = 1, \ldots, m$$

$$u_i = \sum_{k=1}^{n} \frac{\alpha_{i,k}(1 + x_{i,k})^{1-\beta_{i,k}}}{1 - \beta_{i,k}} \quad \forall i = 1, \ldots, n$$
param n > 0, integer; # Agents
param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights
param alpha {1..n, 1..m} > 0; # Utility parameters
param beta {1..n, 1..m} > 0;

var x {1..n, 1..m} >= 0; # Consumption
var u {i in 1..n} = # Utility
 sum {k in 1..m} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

maximize welfare:
 sum {i in 1..n} lambda[i] * u[i];

subject to
 consumption {k in 1..m}:
 sum {i in 1..n} x[i,k] <= sum {i in 1..n} e[i,k];
Data Definition: social1.dat

param n := 3; # Agents
param m := 4; # Commodities

param alpha : 1 2 3 4 :=
1 1 1 1 1
2 1 2 3 4
3 2 1 1 5;

param beta (tr) : 1 2 3 :=
1 1.5 2 0.6
2 1.6 3 0.7
3 1.7 2 2.0
4 1.8 2 2.5;

param : lambda :=
1 1
2 1
3 1;
Load model and data
model social1.mod;
data social1.dat;

Specify solver and options
option solver "minos";
option minos_options "outlev=1";

Solve the instance
solve;

Output results
display x;
printf {i in 1..n} "\%2d: \% 5.4e\n", i, u[i];
ampl: include social1.cmd;
MINOS 5.5: outlev=1
MINOS 5.5: optimal solution found.
25 iterations, objective 2.252422003
Nonlin evals: obj = 44, grad = 43.
x :=
1 1 0.0811471
1 2 0.574164
1 3 0.703454
1 4 0.267241
2 1 0.060263
2 2 0.604858
2 3 1.7239
2 4 1.47516
3 1 2.85859
3 2 1.82098
3 3 0.572645
3 4 1.2576
;
1: -5.2111e+00
2: -4.0488e+00
3: 1.1512e+01
ampl: quit;
Model Definition: social2.mod

set AGENTS; # Agents
set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x {AGENTS, COMMODITIES} >= 0; # Consumption
var u {i in AGENTS} = # Utility
 sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:
 sum {i in AGENTS} lambda[i] * u[i];

subject to
 consumption {k in COMMODITIES}:
 sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];
set COMMODITIES := Books, Cars, Food, Pens;

param: AGENTS : lambda :=
 Jorge 1
 Sven 1
 Todd 1;

param alpha : Books Cars Food Pens :=
 Jorge 1 1 1 1
 Sven 1 2 3 4
 Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=
 Books 1.5 2 0.6
 Cars 1.6 3 0.7
 Food 1.7 2 2.0
 Pens 1.8 2 2.5;
Execution Commands: social.cmd

Load model and data
model social2.mod;
data social2.dat;

Specify solver and options
option solver "minos";
option minos_options "outlev=1";

Solve the instance
solve;

Output results
display x;
printf {i in AGENTS} "%5s: % 5.4e\n", i, u[i];
ampl: include social.cmd;
MINOS 5.5: outlev=1
MINOS 5.5: optimal solution found.
25 iterations, objective 2.252422003
Nonlin evals: obj = 44, grad = 43.
x :=
 Jorge Books 0.0811471
 Jorge Cars 0.574164
 Jorge Food 0.703454
 Jorge Pens 0.267241
 Sven Books 0.060263
 Sven Cars 0.604858
 Sven Food 1.7239
 Sven Pens 1.47516
 Todd Books 2.85859
 Todd Cars 1.82098
 Todd Food 0.572645
 Todd Pens 1.2576
;
Jorge: -5.2111e+00
Sven: -4.0488e+00
Todd: 1.1512e+01
ampl: quit;
Traffic Routing with Congestion

- Route commodities through network
 - \mathcal{N} denotes the nodes and $\mathcal{A} \subseteq \mathcal{N} \times \mathcal{N}$ the arcs
 - \mathcal{K} denotes the commodities
 - α, β are the congestion parameters
 - b denotes the supply and demand

- Multicommodity network flow problem

$$\min_{x \geq 0, f \geq 0} \sum_{(i,j) \in \mathcal{A}} \alpha_{i,j} f_{i,j} + \beta_{i,j} f_{i,j}^4$$

subject to

$$\sum_{(i,j) \in \mathcal{A}} x_{i,j,k} \leq \sum_{(j,i) \in \mathcal{A}} x_{j,i,k} + b_{i,k} \quad \forall i \in \mathcal{N}, k \in \mathcal{K}$$

$$f_{i,j} = \sum_{k \in \mathcal{K}} x_{i,j,k} \quad \forall (i, j) \in \mathcal{A}$$
Model Definition: network.mod

```plaintext
set NODES;               # Nodes in network
set ARCS within NODES cross NODES;  # Arcs in network
set COMMODITIES := 1..3;  # Commodities

param b {NODES, COMMODITIES} default 0;  # Supply/demand
check {k in COMMODITIES}:
    sum{i in NODES} b[i,k] >= 0;

param alpha {ARCS} >= 0;  # Linear part
param beta {ARCS} >= 0;  # Nonlinear part

var x {ARCS, COMMODITIES} >= 0;  # Flow on arcs
var f {(i,j) in ARCS} =
    sum {k in COMMODITIES} x[i,j,k];  # Total flow

minimize time:
    sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to
    conserve {i in NODES, k in COMMODITIES}:
        sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];
```

Data Definition: network.dat

set NODES := 1 2 3 4 5;

param: ARCS : alpha beta =
 1 2 1 0.5
 1 3 1 0.4
 2 3 2 0.7
 2 4 3 0.1
 3 2 1 0.0
 3 4 4 0.5
 4 1 5 0.0
 4 5 2 0.1
 5 2 0 1.0;

let b[1,1] := 7; # Node 1, Commodity 1 supply
let b[4,1] := -7; # Node 4, Commodity 1 demand
let b[2,2] := 3; # Node 2, Commodity 2 supply
let b[5,2] := -3; # Node 5, Commodity 2 demand
let b[3,3] := 5; # Node 1, Commodity 3 supply
let b[1,3] := -5; # Node 4, Commodity 3 demand

fix {i in NODES, k in COMMODITIES: (i,i) in ARCS} x[i,i,k] := 0;
Execution Commands: network.cmd

Load model and data
model network.mod;
data network.dat;

Specify solver and options
option solver "minos";
option minos_options "outlev=1";

Solve the instance
solve;

Output results
for {k in COMMODITIES} {
 printf "Commodity: %d\n", k > network.out;
 printf {(i,j) in ARCS: x[i,j,k] > 0} "\%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;
 printf "\n" > network.out;
}
Commodity: 1
1.2 = 3.3775e+00
1.3 = 3.6225e+00
2.4 = 6.4649e+00
3.2 = 3.0874e+00
3.4 = 5.3510e-01

Commodity: 2
2.4 = 3.0000e+00
4.5 = 3.0000e+00

Commodity: 3
3.4 = 5.0000e+00
4.1 = 5.0000e+00
Load model and data
model network.mod;
data network.dat;

Specify solver and options
option solver "kestrel";
option kestrel_options "solver=knitro";
option knitro_options "outlev=1";

Solve the instance
solve;

Output results
for {k in COMMODITIES} {
 printf "Commodity: %d\n", k > network.out;
 printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;
 printf "\n" > network.out;
}
Job has been submitted to Kestrel
Kestrel/NEOS Job number : 579001
Kestrel/NEOS Job password : XDdwVLQU
Check the following URL for progress report :
 http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi?job=579001&pass=XDdwVLQU
In case of problems, e-mail :
 neos-comments@mcs.anl.gov

Intermediate Solver Output:
KNITRO 4.0: 12/15/04

| Iter | Objective | Feas err | Opt err | ||Step|| | CG its |
|------|-----------|----------|---------|---------|--------|--------|
| 0 | 3.131973e+02 | 7.000e+00 | | | | |
| 10 | 1.467524e+03 | 4.710e-02 | 6.322e+00 | 4.704e-01 | 0 | |
| 15 | 1.505526e+03 | 2.019e-07 | 2.844e-05 | 8.428e-04 | 0 | |

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.
Conclusion

- Optimization problems are prevalent
- Algorithms for solving them are mature
 - Commercially available
 - Usable through NEOS
- Modeling languages good for expressing problems
 - Based on algebraic description
 - Large models can be processed
 - Many features