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Stochastic Versions of Robust Control: Examples

• Petersen, James, and Dupuis (2000) IEEE Transactions in
Automatic Control

• Hansen, Sargent, Turmuhambetova, and Williams (2004)
forthcoming in JET

Related work by Epstein and Schneider (2003a) and
Epstein and Schneider (2003b)
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Motivation for research

• Alternative time series models are hard to distinguish statistically,
but can have important differences for valuation and assessment
of the impact of uncertainty

• Probability models typically used are arguably approximations
where approximation errors are challenging to pose in a full
probabilistic manner

Current paper:

• Study robust notions of learning and model averaging in
conjunction with decision making.

• Recursive formulation - related paper considers a commitment
formulation - Hansen-Sargent forthcoming in JET
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Exploit well known algorithms for updating probabilities

Hidden state Markov processes

• Kalman filtering - Linear, Gaussian models
• Wonham filtering - Finite state hidden state Markov chain

disguised by Brownian motion
• Zackai equation - clever change in probabilities
• particle filtering
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Learning and Permanent Income Model

• LQ permanent income model with a hidden states.
• One of the states is an unknown time invariant parameter - mean

of labor income
• Application of Kalman filtering.
• explore sensitivity of decisions to posterior distributions
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Learning about consumption growth rate: Kalman filter
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Conditional volatility of consumption
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Relative consumption distortion
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Stochastic growth model with hidden growth states

• Technology shock process in which growth states change
according to a Markov process.

• Wonham filter to produce posterior probabilities.
• Posterior sensitivity analysis
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Probability of High Growth State: Wonham filter
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Uncertainty premia in hidden growth model
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Model selection and long run risk

• Variety of recent work in macro/asset pricing studies implicitly
implications of models with similar statistical properties but
different long run properties.

• Prices in decentralized economies can be sensitive to these
changes.

• Why focus on one of the competing models?
• Robust model selection/averaging
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Martingales and Distorted Probabilities

• Event collections {Xt : t ≥ 0} where Xt is the date t information
set. Let Pr denote a probability measure on X∞ = ∨t≥0Xt.

• Nonnegative martingale {Mt : t ≥ 0} where M0 = 1. In particular,
E (Mt|X0) = 1.

• Distorted probability

Ẽ(xt|X0) = E (Mtxt|X0)

where Mt is a likelihood ratio or a R-N derivative.
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Entropy

• What is it?

EM logM

where EM = 1. Average log - likelihood.
Use gradient inequality

M logM ≥M − 1

• Why the name?

When Shannon had invented his quantity and consulted von Neumann
on what to call it, von Neumann replied: ‘Call it entropy. It is already in
use under that name and besides, it will give you a great edge in
debates because nobody knows what entropy is anyway.’
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Entropy penalization problem

• Problem

min
M≥0,EM=1

E (M [V + θ log(M)])

• Solution - exponential tilting

M∗ =
exp

(

− 1
θ
V

)

E
[

exp
(

− 1
θ
V

)]

• Minimized objective

−θ logE

[

exp

(

−
1

θ
V

)]
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Static formulation of robust control

• Let a in an action in a feasible set A and let x an unknown state.
Informational restrictions may be imposed on the action. Actions
and states can be processes. Objective can be discounted utility.

• Problem

sup
a∈A

inf
M≥0,EM=1

E (M [V (a, x) + θ log(M)])

Worst case M∗ depends on action. Zero sum game.
• Reverse orders:

inf
M≥0,EM=1

sup
a∈A

E (M [V (a, x) + θ log(M)])

Action a∗ optimizes against a fixed probability. ’Bayesian solution’.
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Multiplicative decomposition

Form mt+1:

Mt+1 = mt+1Mt

where

E (mt+1|Xt) = 1

Then

Mt =

t
∏

j=1

mj

The random variable mt+1 distorts the transition density between date
t and date t+ 1. Factoring (relative) likelihood.
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Robust Control and Discounted Entropy

• Recursive solution in which date t minimizing agent chooses mt+1

subject to penalty θE[mt+1 log(mt+1)].

• Hansen and Sargent (1995),
Anderson, Hansen, and Sargent (2003) and
Hansen, Sargent, Turmuhambetova, and Williams (2004)

Complaints

• Single benchmark model with perturbations around that model -
Levin, Wieland and Williams

• No focused consideration of parameter uncertainty - Onatski and
Williams

• No scope for learning

Introduce a hidden state Markov process as a motivation for learning.

Argonne – p. 18/32



Basic Idea

Two robustness recursions:

1. Allow for misspecified dynamics as before using mt+1 conditioned
on a big information set that includes information on a history of
hidden states.

2. Sensitivity analysis of posterior probabilities used for averaging
over the hidden states.

Observations

1. hidden states can be time invariant and hence index alternative
models or unknown parameters

2. hidden states can evolve as a Markov chain - time varying
parameter models - regime shift models

3. exploit tools for solving hidden state Markov chain models

4. minimizing agent has an informational advantage

5. recursive
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Learning, commitment and recursivity

Related papers:

• Hansen and Sargent (2005) commitment counterpart to this
paper - builds on Basar and Bernhard (1995) and others.

• Chamberlain (2000) and Knox (2003) closely related commitment
problems.

• Epstein and Schneider (2003a) and
Epstein and Schneider (2003b) avoid commitment in a different
but related formulation
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Alternative decompositions of Mt

Let St denote a signal history smaller that Xt.

• Decompose Mt+1 = mt+1Mt. Use mt+1 to distort dynamics
conditioned on the hidden state history.

• Use entropy penalty E[mt+1 log(mt+1)|Xt] = 1.
• Decompose:

Mt = htGt, E(ht|St) = 1.

• Use ht to distort the probabilities assigned to Xt events
conditioned on St

• Use an entropy penalty on ht:

E(ht log ht|St)
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Baseline Problem Setup

• Partition a state vector as xt =

[

yt

zt

]

, where yt is observed and zt

is not. Let st denote a vector of signals of the unobserved state zt.
• Let Z denote a space of admissible unobserved states, Z a

corresponding sigma algebra of subsets of states, and λ a
measure on the measurable space of hidden states (Z,Z). Let S
denote the space of signals, S a corresponding sigma algebra,
and η a measure on the measurable space (S,S) of signals.
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State Evolution

• Signals and states are determined by the transition functions

yt+1 = πy(st+1, yt, at), (1)

zt+1 = πz(xt, at, wt+1), (2)

st+1 = πs(xt, at, wt+1) (3)

where {wt+1 : t ≥ 0} is an i.i.d. sequence of random vectors.

• Observable state evolution:

yt+1 = π̄y(xt, at, wt+1).

• Equations (3) and (2) determine a conditional density
τ(zt+1, st+1|xt, at) relative to the product measure λ× η.
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Recursive Formulation

• Use τ to construct two densities for the signal:

κ(s∗|yt, zt, at)
.
=

∫

τ(z∗, s∗|yt, zt, at)dλ(z∗)

ς(s∗|yt, qt, at)
.
=

∫

κ(s∗|yt, z, at)qt(z)dλ(z).

• By Bayes’ rule,

qt+1(z
∗) =

∫

τ(z∗, st+1|yt, z, at)qt(z)dλ(z)

ς(st+1|yt, qt, at)

.
= πq(st+1, yt, qt, at).

πq can be computed by using filtering methods that specialize
Bayes’ rule (e.g., the Kalman filter or a discrete time version of the
Wonham filter or Zackai equation.
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Constructed State Vector

• Take (yt, qt) as the state with transition law

yt+1 = πy(st+1, yt, at)

qt+1 = πq(st+1, yt, qt, at).

• Choose at as a function of (yt, qt).

One strategy is apply our earlier ”full information” approach to
stochastic robust control to this problem!! We will consider alternatives.

Argonne – p. 25/32



Robustness and hidden states

• Two agents face different information restrictions. Minimizing
agent can find distortions conditioned on hidden states.

• Break link between recursive and commitment formulations using
two robustness recursions.

• Control is forward looking and solved by backward induction.
Prediction is backward looking and solved by forward induction.
Tension in the construction of worst-case models.
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Recursive formulation

• Two distinct distortions at date t:

1. Distort dynamics for (xt+1, st+1) conditioned on (xt, qt). mt+1

distortion from before. Distort probabilities assigned to Xt+1

conditioned on Xt.
2. Distort hidden state probabilities qt or more generally the

conditional probabilities assigned to Xt events conditioned on
St.

• We do not simply ”reduce compound lotteries” where the
compounding is over hidden state zt.
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Recursive Distortion of State Dynamics

Consider a value function V (yt+1, qt+1, zt+1),

T
1(V |θ)(y, q, z, a) =

−θ log

∫

exp

(

−
V [π(s∗, y, q, a), z∗]

θ

)

τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗).

The transformation T
1 maps a value function that depends on the state

(y, q, z) into a risk-adjusted value function that depends on (y, q, z, a).
Associated with this risk adjustment is a worst-case distortion in the
transition dynamics for the state and signal process:

φt(z
∗, s∗) =

exp
(

−V [π(s∗,yt,qt,at),z
∗]

θ

)

E
[

exp
(

−V [π(st+1,yt,qt,at),zt+1]
θ

)

|Xt

] .
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Recursive Distortion of State Probabilities

Consider a value function of the form: V̂ (yt, qt, zt, at) and operator:

T
2(V̂ |θ)(y, q, a) = −θ log

∫

exp

[

−
V̂ (y, q, z, a)

θ

]

q(z)dλ(z).

The worst case density conditioned on St is ψt(z)qt(z) where

ψt(z) =
exp

(

− V̂ (yt,qt,z,at)
θ

)

E
[

exp
(

− V̂ (yt,qt,z,at)
θ

)

|St

] .
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Recursive Game I

Consider an approach that keeps track of a value function that
depends on the hidden state.

W̌ (y, q, z) = U(x, a) + T
1
[

βW̌ ∗(y∗, q∗, z∗)|θ1
]

(x, q, a)

after choosing an action according to

max
a

T
2
{

U(x, a) + T
1
[

βW̌ ∗(y∗, q∗, z∗)|θ1
]

|θ2
}

(y, q, a),
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Recursive Game II

Next consider an approach in which the value function depends only
on the reduced information encoded in y, q:

W (y, q) = max
a

T
2
(

U(x, a) + T
1 [βW ∗(y∗, q∗)|θ1] |θ2

)

(y, q, a)
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Issues and Extensions

• Incompatible probability assignments over hidden states;
• Construct well defined worst case probabilities over signals -

objects that restrict actions, contracts etc.
• Risk-base approach - relax the reduction of compound lotteries as

in Segal (1990), Klibanoff, Marinacci, and Mukerji (2003) and
Ergin and Gul (2004).

• Constraints instead of penalties - Epstein and Schneider (2003b).
• Penalties that depend on states - Maenhout (2004) and

Lin, Pan, and Wang (2004).
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