Optimal Income Taxation with Multidimensional Types

Kenneth L. Judd

Che-Lin Su

Hoover Institution Northwestern University NBER (Stanford Ph. D.)

PRELIMINARY AND INCOMPLETE

November, 2006

Introduction

- Optimal income taxation: Mirrlees
 - Heterogeneous productivity
 - Utilitarian (or redistributive) objective
 - Standard cases: clear pattern of binding IC constraints; tax rates in [0,1].
- Our criticism of Mirrlees not enough heterogeneity
- Multidimensional heterogeneity
 - Little theory; special cases only
 - No clear pattern of binding IC constraints
 - Revelation principle still holds, producing a nonlinear optimization problem with IC constraints.
 - Clearly more realistic than 1-D models.

- This paper examines multidimensional heterogeneity
 - We take a numerical approach
 - * This is not as difficult as commonly perceived.
 - * Novel numerical difficulties arise for large problems since pooling outcomes imply failure of LICQ
 - Results
 - * Optimal marginal tax rate at top can be negative
 - * Binding incentive constraints are **not** local.
 - \ast Increases in heterogeneity reduces optimal income redistribution
 - * Intuition: Income is a less informative signal in complex models, so use it less.

Public Finance Conventional Wisdom

- Redistributive progressive taxation is usually related to income
 - One might learn about potential income from I.Q., number of degrees, and age, but the natural and supposedly most reliable indicator is income.
 - Mirrlees (1971) examines what the optimal nonlinear income tax schedule would look like
- Mirrlees (1971) makes simplifying assumptions:
 - Intertemporal problems are ignored even though an optimal tax would be tied to life-cycle income and initial wealth.
 - Differences in tastes and family are ignored.
 - The State has perfect information about the individuals in the economy, their utilities and, consequently, their actions. In practice, this is certainly not true for some kinds of self-employment income from self-employment, in particular work done for the worker himself and his family.

- Diamond (2006): The distinction between "ad hoc" restrictions on tax tools, and deriving those tools from an underlying technology is over-drawn.
 - If asymmetric information extends to private actors, then how can government cheaply track total individual transactions?
 - If we recast asymmetric information as infinite administrative costs, how can we cheaply get enough information to implement nonlinear taxation on total income?
 - Having a basic model deriving the tax structure is not a virtue if basic model has critical incompleteness.
- Mirrlees (1986): Computational issues loom large in optimal taxation
 - It is not always easy to devise models simple enough to be manageable and rich enough to be relevant.
 - Optimal tax theory has reached a stage where good theorems may be hard to come by.

Mirrlees Model

- N types of tax payers.
- Two goods: consumption (c) and labour services (l).
- Taxpayer *i*'s productivity is w_i ; $0 < w_1, < ... < w_N$, *i*'s pretax income is

$$y_i := w_i l_i, \quad i = 1, ..., N$$
 (1)

• The utilitarian social welfare function $W: \mathbb{R}^N \times \mathbb{R}^N_+, \to \mathbb{R}$ is

$$W(a) := \sum_{i} \lambda_i u^i(c_i, y_i/w_i), \tag{2}$$

where λ_i is population frequency of type *i*.

• Resource constraint: $\sum_i \lambda_i c_i \leq \sum_i \lambda_i y_i$

- Each taxpayer can choose any (y_i, c_i) bundle offered by the government.
- Revelation principle: government constructs schedule s.t. type i will choose the (y_i, c_i) bundle
- Government problem

$$\max_{\substack{y_i,c_i\\y_i,c_i}} \sum_{i} \lambda_i u_i(c_i, y_i/w_i)$$

$$u_i(c_i, y_i/w_i) \ge u_i(c_j, y_j/w_i), \forall i, j$$

$$\sum_{i} c_i \le \sum_{i} y_i$$
(3)

 \bullet The zero tax commodity bundles, (c^*, l^*, y^*) , are the solutions to

 $\max_{l} u_i(w_i l, l)$

• Examples:

$$u(c,l) = \log c - l^{1/\eta+1}/(1/\eta+1)$$

$$N = 5$$

$$w_i \in \{1, 2, 3, 4, 5\}$$

$$\lambda_i = 1/N$$

- The zero tax solution is $l_i = 1, c_i = w_i$
- We compute the solutions for various w and η , and report the following:

$$egin{aligned} y_i, & i=1,..,N,\ rac{y_i-c_i}{y_i}, & i=1,..,N,\ (ext{average tax rate})\ 1-rac{u_l}{wu_c}, & i=1,..,N,\ (ext{marginal tax rate})\ l_i/l_i^*, & i=1,..,N,\ c_i/c_i^*, & i=1,..,N, \end{aligned}$$

<u>Five Mirrlees Economies</u>												
Table 1								= 1				
			i	$y_i \frac{y_i}{x_i}$	$\frac{-c_i}{w}$ M	T	$\overline{R_i^+}$	l_i/l_i^*	$* c_i/c_i^*$	k		
			1 0	.40 -2	.87	0.6	53	0.40) 1.56			
			2 1	.31 -0	.45	0.5	53	0.65	6 0.95			
			3 2	.56 0.	03	0.4	40	0.85	5 0.83			
			4 4	.01 0.	16	0.2	25	1.00	0.84	:		
			$5 \ 5$.54 0.	19	_	-	1.1() 0.90			
Table 2. $\eta = 1/2$									Table	$3. \eta = 1$	/3:	
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i^+	l_i/l_i^*	c_i/c_i^*		i	y_i	$\frac{y_i - c_i}{u_i}$	MTR_i^+	l_i/l_i^*	c_i/c_i^*
1	0.60	-2.09	0.68	0.60	1.87	-	1	0.70	-1.91	0.73	0.70	2.06
2	1.54	-0.39	0.59	0.77	1.08		2	1.66	-0.38	0.64	0.83	1.15
3	2.69	0.02	0.47	0.89	0.87	-	3	2.77	0.02	0.53	0.92	0.90
4	3.99	0.17	0.32	0.99	0.82		4	3.99	0.17	0.38	0.99	0.82
5	5.41	0.21	_	1.08	0.85		5	5.33	0.23	_	1.06	0.82
		Table	e 4. $\eta = 1$	1/5					Table	e 5. $\eta = 1$	/8	
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i^+	l_i/l_i^*	c_i/c_i^*		i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i^+	l_i/l_i^*	c_i/c_i^*
1	0.80	-1.84	0.79	0.80	2.29		1	0.87	-1.84	0.84	0.87	2.48
2	1.78	-0.39	0.71	0.89	1.24		2	1.86	-0.41	0.77	0.93	1.31
3	2.85	0.02	0.61	0.95	0.93		3	2.91	0.02	0.69	0.97	0.95
4	4.01	0.19	0.48	1.00	0.81		4	4.02	0.20	0.58	1.00	0.80
5	5.25	0.26		1.05	0.77		5	5.19	0.28	_	1.03	0.73

Two-D Types - Productivity and Elasticity of Labor Supply

- $u^{j}(c, l) = \log c l^{1/\eta_{j}+1}/(1/\eta_{j}+1), j \in \{1, 2, ..., N\}$
- w_i is productivity type $i \in \{1, 2, ..., N\}$
- No correlation between characteristics
- (c_{ij}, y_{ij}) is allocation for (i, j)-type taxpayer.
- Zero tax solution for type (i, j) is $(l_{ij}^*, c_{ij}^*, y_{ij}^*) = (1, w_i, w_i)$.
- Problem:

$$\max_{(y,c)} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij} u^{j}(c_{ij}, y_{ij}/w_{i})$$
$$u^{j}(c_{ij}, y_{ij}/w_{i}) - u^{j}(c_{i'j'}, y_{i'j'}/w_{i}) \ge 0 \quad \forall (i, j), (i', j')$$
$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} \le \sum_{i=1}^{N} \sum_{j=1}^{N} y_{ij}$$

• We choose the following parameters:

$$-N = 5, w_i = i$$

 $-\lambda_{ij} = 1$
 $-\eta = (1, 1/2, 1/3, 1/5, 1/8).$

– Use zero tax solution (c^*, y^*) as starting point for NLP solver.

Table 6. $\eta = (1, 1/2, 1/3, 1/5, 1/8), w = (1, 2, 3, 4, 5)$

(i,j)	c_{ij}	y_{ij}	$MTR_{i,j}$	$ATR_{i,j}$	l_{ij}/l_{ij}^{*}	c_{ij}/c^*_{ij}	Uti	lity
							Judd-Su	Mirrlees
(1, 1)	1.68	0.42	0.28	-2.92	0.42	1.68	0.4294	.3641
(1, 2)	1.77	0.62	0.32	-1.86	0.62	1.77	0.4952	.3138
(1, 3)	1.79	0.65	0.51	-1.75	0.65	1.79	0.5378	.6601
(1, 4)	1.83	0.77	0.50	-1.37	0.77	1.83	0.5700	.7830
(1, 5)	1.86	0.86	0.43	-1.16	0.86	1.86	0.5940	.8760
(2, 1)	1.86	0.86	0.60	-1.16	0.43	0.93	0.5308	.3751
(2, 2)	2.03	1.39	0.50	-0.45	0.69	1.01	0.5973	.6180
(2,3)	2.07	1.50	0.56	-0.38	0.75	1.03	0.6512	.7189
(2, 4)	2.16	1.74	0.46	-0.24	0.87	1.08	0.7006	.8181
(2,5)	2.20	1.83	0.46	-0.20	0.91	1.10	0.7413	.9085
(3, 1)	2.20	1.83	0.55	-0.20	0.61	0.73	0.6053	.5496
(3, 2)	2.47	2.49	0.43	0.00	0.83	0.82	0.7157	.7269
(3, 3)	2.47	2.49	0.53	0.00	0.83	0.82	0.7878	.8158
(3, 4)	2.55	2.68	0.52	0.04	0.89	0.85	0.8520	.9057
(3, 5)	2.62	2.85	0.42	0.07	0.95	0.87	0.8965	.9672
(4, 1)	3.36	4.00	0.16	0.15	1.00	0.84	0.7127	.7090
(4, 2)	3.36	4.00	0.16	0.15	1.00	0.84	0.8794	.8664
(4, 3)	3.36	4.00	0.15	0.15	1.00	0.84	0.9627	.9402
(4, 4)	3.36	4.00	0.15	0.15	1.00	0.84	1.0461	1.0080
(4, 5)	3.36	4.00	0.15	0.15	1.00	0.84	1.1017	1.0476
(5, 5)	4.00	5.14	0	0.22	1.02	0.80	1.2439	1.1487
(5, 4)	4.11	5.24	-0.05	0.21	1.04	0.82	1.1928	1.1331
(5, 3)	4.34	5.43	-0.12	0.20	1.08	0.86	1.1188	1.0877
(5, 2)	4.49	5.56	-0.11	0.19	1.11	0.89	1.0428	1.0286
(5, 1)	4.87	5.87	-0.15	0.17	1.17	0.97	0.8933	.8901

Table 7. Binding $\mathrm{IC}[(i,j),\,(i',j')]$

(i,j)	(i'j')	(i,j)	(i'j')
		(4,1)	(3,2), (3,3), (3,5), (4,2), (4,3), (4,4), (4,5)
(1,2)	(1,1)	(4,2)	(4,1), (4,3), (4,4), (4,5)
(1,3)	(1,2)	(4,3)	(4,1), (4,2), (4,4), (4,5)
(1,4)	(1,3)	(4,4)	(4,1), (4,2), (4,3), (4,5)
(1,5)	(1,4), (2,1)	(4,5)	(4,1), (4,2), (4,3), (4,4)
(2,1)	(1,4), (1,5)	(5,1)	(4,1), (4,2), (4,3), (4,4), (4,5)
(2,2)	(1,5), (2,1)	(5,2)	(4,1), (4,2), (4,3), (4,4), (4,5), (5,1)
(2,3)	(2,2)	(5,3)	(5,2)
(2,4)	(2,3)	(5,4)	(5,3)
(2,5)	(2,4), (3,1)	(5,5)	(5,4)
(3,1)	(2,3), (2,5)		
(3,2)	(2,5), (3,1), (3,3)		
(3,3)	(3,2)		
$(\overline{3,4})$	(3,2), (3,3)		
(3,5)	(3,4)		

Comparisons

- Negative marginal rates at top in heterogeneous η case!
- Binding IC constraints
 - Some are not local in income space; appears to violate Assumption B in Guesnerie-Seade
 - More binding constraints than variables LICQ problem?
- Less redistribution in heterogeneous η case
 - Total redistribution is less
 - Average tax rates are lower for top two productivity types
 - Marginal tax rates are lower for top two productivity types
 - All high ability types prefer heterogeneous world
- More output both consumption and labor supply tends to be higher in heterogeneous economy

Numerical Issues

- LICQ (linear independence constraint qualification)
 - "The gradients of the binding constraints are linearly independent at the solution."
 - LICQ implies unique Karush-Kuhn-Tucker multipliers.
 - LICQ is a sufficient condition in convergence theorems for most algorithms.
 - Essentially a necessary condition for good convergence rate.
 - Will fail when there are more binding constraints than variables.
 - MFCQ fails in some cases, and shadow prices will be unbounded!
- Software and Hardware
 - AMPL modelling language commonly used in OR
 - Desktop computers, primarily through NEOS

• Algorithms

- FilterSQP was most reliable robust to moderate LICQ failure
- SNOPT was pretty reliable robust to moderate LICQ failure
- IPOPT stopped early interior point method is too loose
- MINOS often failed relies strongly on LICQ
- Others at NEOS failed
- fmincon no point in trying it
- Lesson: try many different algorithms!
- Global optimization issues
 - Successful algorithms agreed
 - Small deviation examples and multiple restarts found same results

MPCC

• "Mathematical programming with complementarity constraints"

$$\begin{array}{rcl}
\max_{x} & f(x) \\
g(x) &= 0 \\
h(x) &\geq 0, \ s(x) \geq 0 \\
s(x) h(x) &= 0, \ \text{componentwise}
\end{array}$$

- If complementarity slackness conditions bind, then LICQ will generically fail in many problems
- "Stackelberg games" are MPCCs: choose all players' moves so as to maximize leader's objective subject to the followers' responses being consistent with equilibrium.

- Economics is full of MPCCs
 - All nonlinear pricing, optimal taxation, and mechanism design problems
 - Many empirical methods. Judd and Su (2006) shows
 - \ast MPCC outperforms NFXP on Harold Zurcher problem
 - * MPCC can estimate games; NFXP can't
- Algorithms
 - Several under development: Leyffer, Munson, Anitescu, Peng, Ralph
 - Su and Judd (2005) proposes hybrid approach combining lottery approach and MPCC methods to deal with global optimization problems

Three-Dimensional Types - Productivity and Labor Disutility

• Consider the utility function

$$u(c,l) = u(c,y/w) := \frac{(c-\alpha)^{1-1/\gamma}}{1-1/\gamma} - \psi \frac{(y/w)^{1/\eta+1}}{1/\eta+1}$$

- Possible heterogeneities: w, η, α, γ , and ψ
 - $\circ w$ wage
 - \circ η elasticity of labor supply
 - $\circ~\alpha$ the net of initial wealth and basic needs
 - $\circ~\gamma$ elasticity of demand for consumption
 - $\circ~\psi$ level of distaste for work
- Example: $N = 3, w_i \in \{2, 3, 4\}, \eta_j \in \{1/2, 1, 2\}, a_k \in \{0, 1, 2\}, \gamma = \psi = 1$

Two-Dimensional Types - Productivity and Age

- Dynamic OLG optimal tax
 - Individuals know life-cyle productivity
 - Mirrlees approach would have agent reveal type
 - Tax policy would be age-dependent
- Suppose age is not used
 - Better description of actual tax policies
 - Still a mechanism design problem just (a lot) more incentive constraints

• Example:

– No discounting, $u(c, l) = \log c - l^2/2$

wage motory									
	Period								
Type	1	2	3						
1	1	3	2						
2	2	4	4						
3	2	5	4						
4	3	5	6						

Wage History

- Wage patterns: four types, each lives three periods.
- Consider four policies: Mirrlees I (see age and consumption), Mirrlees II (see only age), age-free Mirrlees (unobservable savings), linear (-a + by)
- Total income patterns under three policies (observability in savings did not matter in this example)

	Tot	tal Inco	ome	Tota	al Tax I	Paid	Total Utility		
Type	Mirr.	Nlin.	Lin.	Mirr.	Nlin.	Lin.	Mirr.	Nlin.	Lin.
1	4.72	5.43	5.65	-2.40	-1.36	-0.96	1.79	1.40	1.23
2	9.60	10.02	9.70	-0.03	0.07	-0.07	2.22	2.20	2.23
3	11.88	11.19	10.83	0.51	0.36	0.18	2.43	2.46	2.49
4	15.48	14.35	13.90	1.91	0.93	0.85	2.82	3.01	3.03

Table 8: Aggregate Outputs for Each Type

Table 5. Life-cycle patterns of meonic, taxes, and write										
O	LG N	/Iodel ·	- Mirrle	ees	Nonlinear tax			Linear tax		
Type	age	y	Tax	MTR	y	Tax	MTR	y	Tax	MTR
1	1	0.31	-0.79	0.25	0.32	-1.01	0.25	0.42	-0.64	0.22
1	2	3.15	-0.79	0.16	3.55	0.24	0.10	3.46	0.02	0.22
1	3	1.25	-0.79	0.25	1.54	-0.59	0.12	1.75	-0.34	0.22
2	1	1.05	-0.01	0.15	1.05	-0.73	0.12	1.12	-0.48	0.22
2	2	4.32	-0.01	0.13	4.48	0.39	0.07	4.28	0.20	0.22
2	3	4.22	-0.01	0.15	4.48	0.39	0.07	4.28	0.20	0.22
3	1	1.05	0.17	0.00	1.02	-0.73	0.07	1.12	-0.48	0.22
3	2	6.59	0.17	0.00	6.29	0.79	0.09	6.10	0.60	0.22
3	3	4.22	0.17	0.00	3.85	0.29	0.12	3.59	0.05	0.22
4	1	1.99	0.63	0.00	1.54	-0.59	0.23	1.75	-0.34	0.22
4	2	5.52	0.63	0.00	4.90	0.47	0.12	4.83	0.32	0.22
4	3	7.96	0.63	0.00	7.90	1.05	0.01	7.30	0.87	0.22

Table 9: Life-cycle patterns of income, taxes, and MTR

Future Work and Conclusions

- Robustness
 - Other objectives e.g., Rawls
 - Government expenditures
 - Labor participation decisions and fixed costs of working
 - Examine more of the parameter space
 - Empirically reasonable wage distributions
- Related policy issues
 - Optimal treatment of educational expenses
 - Deductibility of children, medical expenses, mortgage interest
 - Taxation of capital income and assets
 - Use wage rate when observable?
 - Allow some memory at option of taxpayer?
 - Marriage tax?

- Address computational issues
 - Resurrect LICQ by finding minimal but sufficient set of binding constraints
 - Hope that mathematicians solve the mathematical challenges we have described to them
 - Develop asymptotic approximation methods
 - Examine alternative formulations
 - \ast Relaxations of ICs
 - * Piecewise linear tax schedules
- Exploit third millenium computer technologies Blue Gene, Red Storm, Thunderbird, Jaguar, TeraGrid, Condor, BOINC - that are far more powerful than second millenium technologies - abacus, sliderule, and desktops

Future Work and Conclusions

- Multidimensionality in taxpayer types significantly affects results
- Multidimensional problems require use of state-of-the-art computational methods but are feasible