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Introduction

• Optimal income taxation: Mirrlees
— Heterogeneous productivity

— Utilitarian (or redistributive) objective

— Standard cases: clear pattern of binding IC constraints; tax rates in
[0,1].

• Our criticism of Mirrlees - not enough heterogeneity
• Multidimensional heterogeneity
— Little theory; special cases only

— No clear pattern of binding IC constraints

— Revelation principle still holds, producing a nonlinear optimization
problem with IC constraints.

— Clearly more realistic than 1-D models.
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• This paper examines multidimensional heterogeneity
— We take a numerical approach

∗ This is not as difficult as commonly perceived.
∗ Novel numerical difficulties arise for large problems since pooling
outcomes imply failure of LICQ

— Results

∗ Optimal marginal tax rate at top can be negative
∗ Binding incentive constraints are not local.
∗ Increases in heterogeneity reduces optimal income redistribution
∗ Intuition: Income is a less informative signal in complex models,
so use it less.
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Public Finance Conventional Wisdom

• Redistributive progressive taxation is usually related to income
— Onemight learn about potential income from I.Q., number of degrees,
and age, but the natural and supposedly most reliable indicator is
income.

— Mirrlees (1971) examines what the optimal nonlinear income tax
schedule would look like

• Mirrlees (1971) makes simplifying assumptions:
— Intertemporal problems are ignored even though an optimal taxwould
be tied to life-cycle income and initial wealth.

— Differences in tastes and family are ignored.

— The State has perfect information about the individuals in the econ-
omy, their utilities and, consequently, their actions. In practice, this
is certainly not true for some kinds of self-employment income from
self-employment, in particular work done for the worker himself and
his family.
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• Diamond (2006): The distinction between “ad hoc” restrictions on tax
tools, and deriving those tools from an underlying technology is over-
drawn.

— If asymmetric information extends to private actors, then how can
government cheaply track total individual transactions?

— If we recast asymmetric information as infinite administrative costs,
how can we cheaply get enough information to implement nonlinear
taxation on total income?

— Having a basic model deriving the tax structure is not a virtue if basic
model has critical incompleteness.

• Mirrlees (1986): Computational issues loom large in optimal taxation
— It is not always easy to devise models simple enough to bemanageable
and rich enough to be relevant.

— Optimal tax theory has reached a stage where good theorems may be
hard to come by.
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Mirrlees Model

• N types of taxpayers.

• Two goods: consumption (c)and labour services (l).
• Taxpayer i’s productivity is wi; 0 < w1, < ... < wN , i’s pretax income is

yi := wili, i = 1, ..., N (1)

• The utilitarian social welfare function W : RN ×RN+ ,→ R is

W (a) :=
X
i

λiu
i(ci, yi/wi), (2)

where λi is population frequency of type i.

• Resource constraint: Pi λici ≤
P

i λiyi
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• Each taxpayer can choose any (yi, ci) bundle offered by the government.
• Revelation principle: government constructs schedule s.t. type i will
choose the (yi, ci) bundle

• Government problem
max
yi,ci

X
i

λiui(ci, yi/wi) (3)

ui(ci, yi/wi) ≥ ui(cj, yj/wi),∀i, jX
i

ci ≤
X
i

yi

• The zero tax commodity bundles, (c∗, l∗, y∗), are the solutions to
max
l
ui(wil, l)
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• Examples:
u (c, l) = log c− l1/η+1/(1/η + 1)

N = 5

wi ∈ {1, 2, 3, 4, 5}
λi = 1/N

• The zero tax solution is li = 1, ci = wi
• We compute the solutions for various w and η, and report the following:

yi, i = 1, .., N,
yi − ci
yi

, i = 1, .., N, (average tax rate)

1− ul
wuc

, i = 1, .., N, (marginal tax rate)

li/l
∗
i , i = 1, .., N,

ci/c
∗
i , i = 1, .., N,
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Five Mirrlees Economies
Table 1. η = 1

i yi
yi−ci
yi

MTR+i li/l
∗
i ci/c

∗
i

1 0.40 -2.87 0.63 0.40 1.56
2 1.31 -0.45 0.53 0.65 0.95
3 2.56 0.03 0.40 0.85 0.83
4 4.01 0.16 0.25 1.00 0.84
5 5.54 0.19 — 1.10 0.90

Table 2. η = 1/2

i yi
yi−ci
yi

MTR+i li/l
∗
i ci/c

∗
i

1 0.60 -2.09 0.68 0.60 1.87
2 1.54 -0.39 0.59 0.77 1.08
3 2.69 0.02 0.47 0.89 0.87
4 3.99 0.17 0.32 0.99 0.82
5 5.41 0.21 — 1.08 0.85

Table 3. η = 1/3:

i yi
yi−ci
yi

MTR+i li/l
∗
i ci/c

∗
i

1 0.70 -1.91 0.73 0.70 2.06
2 1.66 -0.38 0.64 0.83 1.15
3 2.77 0.02 0.53 0.92 0.90
4 3.99 0.17 0.38 0.99 0.82
5 5.33 0.23 — 1.06 0.82

Table 4. η = 1/5

i yi
yi−ci
yi

MTR+i li/l
∗
i ci/c

∗
i

1 0.80 -1.84 0.79 0.80 2.29
2 1.78 -0.39 0.71 0.89 1.24
3 2.85 0.02 0.61 0.95 0.93
4 4.01 0.19 0.48 1.00 0.81
5 5.25 0.26 — 1.05 0.77

Table 5. η = 1/8

i yi
yi−ci
yi

MTR+i li/l
∗
i ci/c

∗
i

1 0.87 -1.84 0.84 0.87 2.48
2 1.86 -0.41 0.77 0.93 1.31
3 2.91 0.02 0.69 0.97 0.95
4 4.02 0.20 0.58 1.00 0.80
5 5.19 0.28 — 1.03 0.73
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Two-D Types - Productivity and Elasticity of Labor Supply

• uj(c, l) = log c− l1/ηj+1/(1/η j + 1), j ∈ {1, 2, ..., N}
• wi is productivity type i ∈ {1, 2, ..., N}
• No correlation between characteristics
• (cij, yij) is allocation for (i, j)-type taxpayer.
• Zero tax solution for type (i, j) is (l∗ij, c∗ij, y∗ij) = (1, wi, wi).
• Problem:

max(y,c)
PN

i=1

PN
j=1 λij u

j(cij, yij/wi)

uj(cij, yij/wi)− uj(ci0j0, yi0j0/wi) ≥ 0 ∀(i, j), (i0, j0)PN
i=1

PN
j=1 cij ≤

PN
i=1

PN
j=1 yij

• We choose the following parameters:
— N = 5, wi = i

— λij = 1

— η = (1, 1/2, 1/3, 1/5, 1/8).

— Use zero tax solution (c∗, y∗) as starting point for NLP solver.
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Table 6. η = (1, 1/2, 1/3, 1/5, 1/8), w = (1, 2, 3, 4, 5)

(i, j) cij yij MTRi,j ATRi,j lij/l
∗
ij cij/c

∗
ij Utility
Judd-Su Mirrlees

(1, 1) 1.68 0.42 0.28 -2.92 0.42 1.68 0.4294 .3641
(1, 2) 1.77 0.62 0.32 -1.86 0.62 1.77 0.4952 .3138
(1, 3) 1.79 0.65 0.51 -1.75 0.65 1.79 0.5378 .6601
(1, 4) 1.83 0.77 0.50 -1.37 0.77 1.83 0.5700 .7830
(1, 5) 1.86 0.86 0.43 -1.16 0.86 1.86 0.5940 .8760
(2, 1) 1.86 0.86 0.60 -1.16 0.43 0.93 0.5308 .3751
(2, 2) 2.03 1.39 0.50 -0.45 0.69 1.01 0.5973 .6180
(2, 3) 2.07 1.50 0.56 -0.38 0.75 1.03 0.6512 .7189
(2, 4) 2.16 1.74 0.46 -0.24 0.87 1.08 0.7006 .8181
(2, 5) 2.20 1.83 0.46 -0.20 0.91 1.10 0.7413 .9085
(3, 1) 2.20 1.83 0.55 -0.20 0.61 0.73 0.6053 .5496
(3, 2) 2.47 2.49 0.43 0.00 0.83 0.82 0.7157 .7269
(3, 3) 2.47 2.49 0.53 0.00 0.83 0.82 0.7878 .8158
(3, 4) 2.55 2.68 0.52 0.04 0.89 0.85 0.8520 .9057
(3, 5) 2.62 2.85 0.42 0.07 0.95 0.87 0.8965 .9672
(4, 1) 3.36 4.00 0.16 0.15 1.00 0.84 0.7127 .7090
(4, 2) 3.36 4.00 0.16 0.15 1.00 0.84 0.8794 .8664
(4, 3) 3.36 4.00 0.15 0.15 1.00 0.84 0.9627 .9402
(4, 4) 3.36 4.00 0.15 0.15 1.00 0.84 1.0461 1.0080
(4, 5) 3.36 4.00 0.15 0.15 1.00 0.84 1.1017 1.0476
(5, 5) 4.00 5.14 0 0.22 1.02 0.80 1.2439 1.1487
(5, 4) 4.11 5.24 -0.05 0.21 1.04 0.82 1.1928 1.1331
(5, 3) 4.34 5.43 -0.12 0.20 1.08 0.86 1.1188 1.0877
(5, 2) 4.49 5.56 -0.11 0.19 1.11 0.89 1.0428 1.0286
(5, 1) 4.87 5.87 -0.15 0.17 1.17 0.97 0.8933 .8901



12

Table 7. Binding IC[(i, j), (i0, j 0)]

(i, j) (i0j0)

(1, 2) (1, 1)

(1, 3) (1, 2)

(1, 4) (1, 3)

(1, 5) (1, 4), (2, 1)
(2, 1) (1, 4), (1, 5)
(2, 2) (1, 5), (2, 1)
(2, 3) (2, 2)

(2, 4) (2, 3)

(2, 5) (2, 4), (3, 1)
(3, 1) (2, 3), (2, 5)
(3, 2) (2, 5), (3, 1), (3, 3)
(3, 3) (3, 2)

(3, 4) (3, 2), (3, 3)
(3, 5) (3, 4)

(i, j) (i0j 0)
(4, 1) (3, 2), (3, 3), (3, 5), (4, 2), (4, 3), (4, 4), (4, 5)
(4, 2) (4, 1), (4, 3), (4, 4), (4, 5)
(4, 3) (4, 1), (4, 2), (4, 4), (4, 5)
(4, 4) (4, 1), (4, 2), (4, 3), (4, 5)
(4, 5) (4, 1), (4, 2), (4, 3), (4, 4)
(5, 1) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5)
(5, 2) (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1)
(5, 3) (5, 2)

(5, 4) (5, 3)

(5, 5) (5, 4)
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Comparisons

• Negative marginal rates at top in heterogeneous η case!
• Binding IC constraints
— Some are not local in income space; appears to violate Assumption B
in Guesnerie-Seade

— More binding constraints than variables - LICQ problem?

• Less redistribution in heterogeneous η case
— Total redistribution is less

— Average tax rates are lower for top two productivity types

— Marginal tax rates are lower for top two productivity types

— All high ability types prefer heterogeneous world

• More output - both consumption and labor supply tends to be higher in
heterogeneous economy
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Numerical Issues

• LICQ (linear independence constraint qualification)
— “The gradients of the binding constraints are linearly independent at
the solution.”

— LICQ implies unique Karush-Kuhn-Tucker multipliers.

— LICQ is a sufficient condition in convergence theorems for most algo-
rithms.

— Essentially a necessary condition for good convergence rate.

— Will fail when there are more binding constraints than variables.

— MFCQ fails in some cases, and shadow prices will be unbounded!

• Software and Hardware
— AMPL - modelling language commonly used in OR

— Desktop computers, primarily through NEOS
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• Algorithms
— FilterSQP was most reliable - robust to moderate LICQ failure

— SNOPT was pretty reliable - robust to moderate LICQ failure

— IPOPT stopped early - interior point method is too loose

— MINOS often failed - relies strongly on LICQ

— Others at NEOS failed

— fmincon - no point in trying it

— Lesson: try many different algorithms!

• Global optimization issues
— Successful algorithms agreed

— Small deviation examples and multiple restarts found same results
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MPCC

• “Mathematical programming with complementarity constraints”
max
x

f (x)

g (x) = 0

h (x) ≥ 0, s (x) ≥ 0
s (x)h (x) = 0, componentwise

• If complementarity slackness conditions bind, then LICQ will generically
fail in many problems

• “Stackelberg games” areMPCCs: choose all players’ moves so as to maxi-
mize leader’s objective subject to the followers’ responses being consistent
with equilibrium.
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• Economics is full of MPCCs
— All nonlinear pricing, optimal taxation, and mechanism design prob-
lems

— Many empirical methods. Judd and Su (2006) shows

∗ MPCC outperforms NFXP on Harold Zurcher problem
∗ MPCC can estimate games; NFXP can’t

• Algorithms
— Several under development: Leyffer, Munson, Anitescu, Peng, Ralph

— Su and Judd (2005) proposes hybrid approach combining lottery ap-
proach andMPCCmethods to deal with global optimization problems
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Three-Dimensional Types - Productivity and Labor Disutility

• Consider the utility function

u(c, l) = u(c, y/w) :=
(c− α)1−1/γ

1− 1/γ − ψ
(y/w)1/η+1

1/η + 1

• Possible heterogeneities: w, η,α, γ, and ψ

◦ w - wage
◦ η - elasticity of labor supply
◦ α - the net of initial wealth and basic needs
◦ γ - elasticity of demand for consumption
◦ ψ - level of distaste for work

• Example: N = 3, wi ∈ {2, 3, 4}, ηj ∈ {1/2, 1, 2}, ak ∈ {0, 1, 2}, γ = ψ =

1
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Two-Dimensional Types - Productivity and Age

• Dynamic OLG optimal tax
— Individuals know life-cyle productivity

— Mirrlees approach would have agent reveal type

— Tax policy would be age-dependent

• Suppose age is not used
— Better description of actual tax policies

— Still a mechanism design problem - just (a lot) more incentive con-
straints
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• Example:
— No discounting, u (c, l) = log c− l2/2

Wage History
Period

Type 1 2 3
1 1 3 2
2 2 4 4
3 2 5 4
4 3 5 6

— Wage patterns: four types, each lives three periods.

— Consider four policies: Mirrlees I (see age and consumption), Mir-
rlees II (see only age), age-free Mirrlees (unobservable savings), linear
(−a + by)

— Total income patterns under three policies (observability in savings
did not matter in this example)

Table 8: Aggregate Outputs for Each Type
Total Income Total Tax Paid Total Utility

Type Mirr. Nlin. Lin. Mirr. Nlin. Lin. Mirr. Nlin. Lin.
1 4.72 5.43 5.65 —2.40 —1.36 —0.96 1.79 1.40 1.23
2 9.60 10.02 9.70 —0.03 0.07 —0.07 2.22 2.20 2.23
3 11.88 11.19 10.83 0.51 0.36 0.18 2.43 2.46 2.49
4 15.48 14.35 13.90 1.91 0.93 0.85 2.82 3.01 3.03
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Table 9: Life-cycle patterns of income, taxes, and MTR
OLG Model - Mirrlees

Type age y Tax MTR
1 1 0.31 —0.79 0.25
1 2 3.15 —0.79 0.16
1 3 1.25 —0.79 0.25
2 1 1.05 —0.01 0.15
2 2 4.32 —0.01 0.13
2 3 4.22 —0.01 0.15
3 1 1.05 0.17 0.00
3 2 6.59 0.17 0.00
3 3 4.22 0.17 0.00
4 1 1.99 0.63 0.00
4 2 5.52 0.63 0.00
4 3 7.96 0.63 0.00

Nonlinear tax

y Tax MTR
0.32 —1.01 0.25
3.55 0.24 0.10
1.54 —0.59 0.12
1.05 —0.73 0.12
4.48 0.39 0.07
4.48 0.39 0.07
1.02 —0.73 0.07
6.29 0.79 0.09
3.85 0.29 0.12
1.54 —0.59 0.23
4.90 0.47 0.12
7.90 1.05 0.01

Linear tax

y Tax MTR
0.42 —0.64 0.22
3.46 0.02 0.22
1.75 —0.34 0.22
1.12 —0.48 0.22
4.28 0.20 0.22
4.28 0.20 0.22
1.12 —0.48 0.22
6.10 0.60 0.22
3.59 0.05 0.22
1.75 —0.34 0.22
4.83 0.32 0.22
7.30 0.87 0.22
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Future Work and Conclusions

• Robustness
— Other objectives - e.g., Rawls

— Government expenditures

— Labor participation decisions and fixed costs of working

— Examine more of the parameter space

— Empirically reasonable wage distributions

• Related policy issues
— Optimal treatment of educational expenses

— Deductibility of children, medical expenses, mortgage interest

— Taxation of capital income and assets

— Use wage rate when observable?

— Allow some memory at option of taxpayer?

— Marriage tax?
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• Address computational issues
— Resurrect LICQ by finding minimal but sufficient set of binding con-
straints

— Hope that mathematicians solve the mathematical challenges we have
described to them

— Develop asymptotic approximation methods

— Examine alternative formulations

∗ Relaxations of ICs
∗ Piecewise linear tax schedules

• Exploit third millenium computer technologies - Blue Gene, Red Storm,
Thunderbird, Jaguar, TeraGrid, Condor, BOINC - that are far more pow-
erful than secondmillenium technologies - abacus, sliderule, and desktops
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Future Work and Conclusions

• Multidimensionality in taxpayer types significantly affects results
• Multidimensional problems require use of state-of-the-art computational
methods but are feasible


