
Numerical Optimization for Economists

Todd Munson
Mathematics and Computer Division

Argonne National Laboratory
tmunson@mcs.anl.gov

Institute for Computational Economics
University of Chicago

July 19–30, 2010

Munson Numerical Optimization

Part I

Numerical Optimization: Introduction

Munson Numerical Optimization

Modeling Language Benefits

• Portable language for optimization problems
• Algebraic description
• Models easily modified and solved
• Large problems can be processed
• Programming language features

• Many available optimization algorithms
• No need to compile C/FORTRAN code
• Derivatives automatically calculated
• Algorithms specific options can be set

• Communication with other tools
• Relational databases and spreadsheets
• MATLAB interface for function evaluations

• Excellent documentation

• Large user communities

Munson Numerical Optimization

Modeling Language Benefits

• Portable language for optimization problems
• Algebraic description
• Models easily modified and solved
• Large problems can be processed
• Programming language features

• Many available optimization algorithms
• No need to compile C/FORTRAN code
• Derivatives automatically calculated
• Algorithms specific options can be set

• Communication with other tools
• Relational databases and spreadsheets
• MATLAB interface for function evaluations

• Excellent documentation

• Large user communities

Munson Numerical Optimization

Modeling Language Benefits

• Portable language for optimization problems
• Algebraic description
• Models easily modified and solved
• Large problems can be processed
• Programming language features

• Many available optimization algorithms
• No need to compile C/FORTRAN code
• Derivatives automatically calculated
• Algorithms specific options can be set

• Communication with other tools
• Relational databases and spreadsheets
• MATLAB interface for function evaluations

• Excellent documentation

• Large user communities

Munson Numerical Optimization

Modeling Language Benefits

• Portable language for optimization problems
• Algebraic description
• Models easily modified and solved
• Large problems can be processed
• Programming language features

• Many available optimization algorithms
• No need to compile C/FORTRAN code
• Derivatives automatically calculated
• Algorithms specific options can be set

• Communication with other tools
• Relational databases and spreadsheets
• MATLAB interface for function evaluations

• Excellent documentation

• Large user communities

Munson Numerical Optimization

Modeling Languages Versus Solver Libraries

• Modeling languages
• Easy to model and solve problems
• Derivatives automatically computed
• Access to many numerical methods

• Can take over 50 times longer to solve
• Can consume over 100 times the memory

• Solver libraries
• Computationally efficient

• Select appropriate matrix representation
• Reorder data for locality of reference

• Memory requirements are less
• Very time consuming to code and validate application
• Limited to a single numerical method

Munson Numerical Optimization

Modeling Languages Versus Solver Libraries

• Modeling languages
• Easy to model and solve problems
• Derivatives automatically computed
• Access to many numerical methods
• Can take over 50 times longer to solve
• Can consume over 100 times the memory

• Solver libraries
• Computationally efficient

• Select appropriate matrix representation
• Reorder data for locality of reference

• Memory requirements are less
• Very time consuming to code and validate application
• Limited to a single numerical method

Munson Numerical Optimization

Modeling Languages Versus Solver Libraries

• Modeling languages
• Easy to model and solve problems
• Derivatives automatically computed
• Access to many numerical methods
• Can take over 50 times longer to solve
• Can consume over 100 times the memory

• Solver libraries
• Computationally efficient

• Select appropriate matrix representation
• Reorder data for locality of reference

• Memory requirements are less

• Very time consuming to code and validate application
• Limited to a single numerical method

Munson Numerical Optimization

Modeling Languages Versus Solver Libraries

• Modeling languages
• Easy to model and solve problems
• Derivatives automatically computed
• Access to many numerical methods
• Can take over 50 times longer to solve
• Can consume over 100 times the memory

• Solver libraries
• Computationally efficient

• Select appropriate matrix representation
• Reorder data for locality of reference

• Memory requirements are less
• Very time consuming to code and validate application
• Limited to a single numerical method

Munson Numerical Optimization

Model Declaration

• Sets
• Unordered, ordered, and circular sets
• Cross products and point to set mappings
• Set manipulation

• Parameters and variables
• Initial and default values
• Lower and upper bounds
• Check statements
• Defined variables

• Objective function and constraints
• Equality, inequality, and range constraints
• Complementarity constraints
• Multiple objectives

• Problem statement

Munson Numerical Optimization

Data and Commands

• Data declaration
• Set definitions

• Explicit list of elements
• Implicit list in parameter statements

• Parameter definitions
• Tables and transposed tables
• Higher dimensional parameters

• Execution commands
• Load model and data
• Select problem, algorithm, and options
• Solve the instance
• Output results

• Other operations
• Let and fix statements
• Conditionals and loop constructs
• Execution of external programs

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Part II

Numerical Optimization I: Static Models

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Model Formulation
• Classify m people into two groups using v variables

• c ∈ {0, 1}m is the known classification
• d ∈ <m×v are the observations
• β ∈ <v+1 defines the separator
• logit distribution function

• Maximum likelihood problem

max
β

m∑
i=1

ci log(f(β, di,·)) + (1− ci) log(1− f(β, di,·))

where

f(β, x) =

exp

β0 +

v∑
j=1

βjxj

1 + exp

β0 +

v∑
j=1

βjxj

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Model: mle.mod

param m > 0, integer; # Population

param v > 0, integer; # Variables

param c {1..m} binary; # Classification

param d {1..m, 1..v}; # Observation data

var beta {0..v}; # Weights

var lcomb {i in 1..m} = beta[0] + sum{j in 1..v} beta[j]*D[i,j];

var logit {i in 1..m} = exp(lcomb[i]) / (1+exp(lcomb[i]));

maximize likelihood:

sum {i in 1..m} (c[i]*log(logit[i]) + (1-c[i])*log(1-logit[i]));

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Data: mle.dat

param m := 3000; # Population

param v := 3; # Variables -- age, income, gender

Random classification and observations

let {i in 1..m} c[i] := floor(Uniform(0,1) + 0.5);

let {i in 1..m, j in 1..v-1} d[i,j] := Uniform(0,1);

let {i in 1..m} d[i,v] := floor(Uniform(0,1) + 0.5);

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Commands: mle.cmd

Load model and data

model mle.mod;

data mle.dat;

Specify solver and options

option solver tron;

option tron_options "frtol=0 fatol=0 gtol=1e-8";

Solve the instance

solve;

Output the results

display beta;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Output

ampl: include mle.cmd;

TRON: frtol=0

fatol=0

gtol=1e-8

Projected gradient at final iterate 5.95e-08

Function value at final iterate 2077.6373

Total execution time 0.03 sec

Exit Message CONVERGENCE: GTOL TEST SATISFIED

beta [*] :=

0 -0.186925

1 0.161719

2 0.15411

3 0.0509116

;

ampl: quit;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Solution Techniques

min
x
f(x)

Main ingredients of solution approaches:

• Local method: given xk (solution guess) compute a step s.
• Gradient Descent
• Quasi-Newton Approximation
• Sequential Quadratic Programming

• Globalization strategy: converge from any starting point.
• Trust region
• Line search

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Trust-Region Method

min
s

f(xk) + sT∇f(xk) +
1

2
sTH(xk)s

subject to ‖s‖ ≤ ∆k

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Trust-Region Method

1. Initialize trust-region radius

• Constant
• Direction
• Interpolation

2. Compute a new iterate

2.1 Solve trust-region subproblem

mins f(xk) + sT∇f(xk) + 1
2s
TH(xk)s

subject to ‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

• Reduction
• Interpolation

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Trust-Region Method

1. Initialize trust-region radius

• Constant
• Direction
• Interpolation

2. Compute a new iterate

2.1 Solve trust-region subproblem

mins f(xk) + sT∇f(xk) + 1
2s
TH(xk)s

subject to ‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

• Reduction
• Interpolation

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Trust-Region Method

1. Initialize trust-region radius

• Constant
• Direction
• Interpolation

2. Compute a new iterate

2.1 Solve trust-region subproblem

mins f(xk) + sT∇f(xk) + 1
2s
TH(xk)s

subject to ‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

• Reduction
• Interpolation

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Solving the Subproblem

• Moré-Sorensen method
• Computes global solution to subproblem

• Conjugate gradient method with trust region
• Objective function decreases monotonically
• Some choices need to be made

• Preconditioner
• Norm of direction and residual
• Dealing with negative curvature

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Line-Search Method

min
s

f(xk) + sT∇f(xk) +
1

2
sT (H(xk) + λkI)s

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Line-Search Method

1. Initialize perturbation to zero

2. Solve perturbed quadratic model

min
s

f(xk) + sT∇f(xk) +
1

2
sT (H(xk) + λkI)s

3. Find new iterate
3.1 Search along Newton direction
3.2 Search along gradient-based direction

4. Update perturbation
• Decrease perturbation if the following hold

• Iterative method succeeds
• Search along Newton direction succeeds

• Otherwise increase perturbation

5. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Line-Search Method

1. Initialize perturbation to zero

2. Solve perturbed quadratic model

min
s

f(xk) + sT∇f(xk) +
1

2
sT (H(xk) + λkI)s

3. Find new iterate
3.1 Search along Newton direction
3.2 Search along gradient-based direction

4. Update perturbation
• Decrease perturbation if the following hold

• Iterative method succeeds
• Search along Newton direction succeeds

• Otherwise increase perturbation

5. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Line-Search Method

1. Initialize perturbation to zero

2. Solve perturbed quadratic model

min
s

f(xk) + sT∇f(xk) +
1

2
sT (H(xk) + λkI)s

3. Find new iterate
3.1 Search along Newton direction
3.2 Search along gradient-based direction

4. Update perturbation
• Decrease perturbation if the following hold

• Iterative method succeeds
• Search along Newton direction succeeds

• Otherwise increase perturbation

5. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Solving the Subproblem

• Conjugate gradient method

• Conjugate gradient method with trust region
• Initialize radius

• Constant
• Direction
• Interpolation

• Update radius
• Reduction
• Step length
• Interpolation

• Some choices need to be made
• Preconditioner
• Norm of direction and residual
• Dealing with negative curvature

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Solving the Subproblem

• Conjugate gradient method

• Conjugate gradient method with trust region
• Initialize radius

• Constant
• Direction
• Interpolation

• Update radius
• Reduction
• Step length
• Interpolation

• Some choices need to be made
• Preconditioner
• Norm of direction and residual
• Dealing with negative curvature

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Performing the Line Search

• Backtracking Armijo Line search
• Find t such that

f(xk + ts) ≤ f(xk) + σt∇f(xk)T s

• Try t = 1, β, β2, . . . for 0 < β < 1

• More-Thuente Line search
• Find t such that

f(xk + ts) ≤ f(xk) + σt∇f(xk)T s
|∇f(xk + ts)T s| ≤ δ|∇f(xk)T s|

• Construct cubic interpolant
• Compute t to minimize interpolant
• Refine interpolant

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Updating the Perturbation

1. If increasing and ∆k = 0

∆k+1 = Proj[`0,u0]

(
α0‖g(xk)‖

)
2. If increasing and ∆k > 0

∆k+1 = Proj[`i,ui]

(
max

(
αi‖g(xk)‖, βi∆k

))
3. If decreasing

∆k+1 = min
(
αd‖g(xk)‖, βd∆k

)
4. If ∆k+1 < `d, then ∆k+1 = 0

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Iterative Methods

• Conjugate gradient method
• Stop if negative curvature encountered
• Stop if residual norm is small

• Conjugate gradient method with trust region
• Nash

• Follow direction to boundary if first iteration
• Stop at base of direction otherwise

• Steihaug-Toint
• Follow direction to boundary

• Generalized Lanczos
• Compute tridiagonal approximation
• Find global solution to approximate problem on boundary
• Initialize perturbation with approximate minimum eigenvalue

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Iterative Methods

• Conjugate gradient method
• Stop if negative curvature encountered
• Stop if residual norm is small

• Conjugate gradient method with trust region
• Nash

• Follow direction to boundary if first iteration
• Stop at base of direction otherwise

• Steihaug-Toint
• Follow direction to boundary

• Generalized Lanczos
• Compute tridiagonal approximation
• Find global solution to approximate problem on boundary
• Initialize perturbation with approximate minimum eigenvalue

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Preconditioners

• No preconditioner

• Absolute value of Hessian diagonal

• Absolute value of perturbed Hessian diagonal

• Incomplete Cholesky factorization of Hessian

• Block Jacobi with Cholesky factorization of blocks

• Scaled BFGS approximation to Hessian matrix
• None
• Scalar
• Diagonal of Broyden update
• Rescaled diagonal of Broyden update
• Absolute value of Hessian diagonal
• Absolute value of perturbed Hessian diagonal

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Termination

• Typical convergence criteria
• Absolute residual ‖∇f(xk)‖ < τa
• Relative residual ‖∇f(xk)‖‖∇f(xk)‖ < τr
• Unbounded objective f(xk) < κ
• Slow progress |f(xk)− f(xk−1)| < ε
• Iteration limit
• Time limit

• Solver status

display solve_result; # String

display solve_result_num; # Number

display $solve_result_table; # Lookup table

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Convergence Issues

• Quadratic convergence – best outcome

• Linear convergence
• Far from a solution – ‖∇f(xk)‖ is large
• Hessian is incorrect – disrupts quadratic convergence
• Hessian is rank deficient – ‖∇f(xk)‖ is small
• Limits of finite precision arithmetic

1. ‖∇f(xk)‖ converges quadratically to small number
2. ‖∇f(xk)‖ hovers around that number with no progress

• Domain violations such as 1
x when x = 0

• Make implicit constraints explicit

• Nonglobal solution
• Apply a multistart heuristic
• Use global optimization solver

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Maximum Likelihood Estimation
Solution Techniques

Some Available Software

• TRON – Newton method with trust-region

• LBFGS – Limited-memory quasi-Newton method with line search

• TAO – Toolkit for Advanced Optimization
• NTR – Newton line-search method
• NLS – Newton trust-region method
• NTL – Newton line-search/trust-region method
• LMVM – Limited-memory quasi-Newton method
• CG – Nonlinear conjugate gradient methods

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model Formulation

• Economy with n agents and m commodities
• e ∈ <n×m are the endowments
• α ∈ <n×m and β ∈ <n×m are the utility parameters
• λ ∈ <n are the social weights

• Social planning problem

max
x≥0

n∑
i=1

λi

(
m∑
k=1

αi,k(1 + xi,k)
1−βi,k

1− βi,k

)

subject to
n∑
i=1

xi,k ≤
n∑
i=1

ei,k ∀k = 1, . . . ,m

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social1.mod

param n > 0, integer; # Agents

param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights

param alpha {1..n, 1..m} > 0; # Utility parameters

param beta {1..n, 1..m} > 0;

var x{1..n, 1..m} >= 0; # Consumption

var u{i in 1..n} = # Utility

sum {k in 1..m} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

maximize welfare:

sum {i in 1..n} lambda[i] * u[i];

subject to

consumption {k in 1..m}:

sum {i in 1..n} x[i,k] <= sum {i in 1..n} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social1.mod

param n > 0, integer; # Agents

param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights

param alpha {1..n, 1..m} > 0; # Utility parameters

param beta {1..n, 1..m} > 0;

var x{1..n, 1..m} >= 0; # Consumption

var u{i in 1..n} = # Utility

sum {k in 1..m} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

maximize welfare:

sum {i in 1..n} lambda[i] * u[i];

subject to

consumption {k in 1..m}:

sum {i in 1..n} x[i,k] <= sum {i in 1..n} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social1.mod

param n > 0, integer; # Agents

param m > 0, integer; # Commodities

param e {1..n, 1..m} >= 0, default 1; # Endowment

param lambda {1..n} > 0; # Social weights

param alpha {1..n, 1..m} > 0; # Utility parameters

param beta {1..n, 1..m} > 0;

var x{1..n, 1..m} >= 0; # Consumption

var u{i in 1..n} = # Utility

sum {k in 1..m} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

maximize welfare:

sum {i in 1..n} lambda[i] * u[i];

subject to

consumption {k in 1..m}:

sum {i in 1..n} x[i,k] <= sum {i in 1..n} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Data: social1.dat

param n := 3; # Agents

param m := 4; # Commodities

param alpha : 1 2 3 4 :=

1 1 1 1 1

2 1 2 3 4

3 2 1 1 5;

param beta (tr) : 1 2 3 :=

1 1.5 2 0.6

2 1.6 3 0.7

3 1.7 2 2.0

4 1.8 2 2.5;

param : lambda :=

1 1

2 1

3 1;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Data: social1.dat

param n := 3; # Agents

param m := 4; # Commodities

param alpha : 1 2 3 4 :=

1 1 1 1 1

2 1 2 3 4

3 2 1 1 5;

param beta (tr) : 1 2 3 :=

1 1.5 2 0.6

2 1.6 3 0.7

3 1.7 2 2.0

4 1.8 2 2.5;

param : lambda :=

1 1

2 1

3 1;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Commands: social1.cmd

Load model and data

model social1.mod;

data social1.dat;

Specify solver and options

option solver minos;

option minos_options "outlev=1";

Solve the instance

solve;

Output results

display x;

printf {i in 1..n} "%2d: % 5.4e\n", i, u[i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Output

ampl: include social1.cmd;

MINOS 5.5: outlev=1

MINOS 5.5: optimal solution found.

25 iterations, objective 2.252422003

Nonlin evals: obj = 44, grad = 43.

x :=

1 1 0.0811471

1 2 0.574164

1 3 0.703454

1 4 0.267241

2 1 0.060263

2 2 0.604858

2 3 1.7239

2 4 1.47516

3 1 2.85859

3 2 1.82098

3 3 0.572645

3 4 1.2576

;

1: -5.2111e+00

2: -4.0488e+00

3: 1.1512e+01

ampl: quit;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social2.mod

set AGENTS; # Agents

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x{AGENTS, COMMODITIES} >= 0; # Consumption

var u{i in AGENTS} = # Utility

sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:

sum {i in AGENTS} lambda[i] * u[i];

subject to

consumption {k in COMMODITIES}:

sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social2.mod

set AGENTS; # Agents

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x{AGENTS, COMMODITIES} >= 0; # Consumption

var u{i in AGENTS} = # Utility

sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:

sum {i in AGENTS} lambda[i] * u[i];

subject to

consumption {k in COMMODITIES}:

sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social2.mod

set AGENTS; # Agents

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x{AGENTS, COMMODITIES} >= 0; # Consumption

var u{i in AGENTS} = # Utility

sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:

sum {i in AGENTS} lambda[i] * u[i];

subject to

consumption {k in COMMODITIES}:

sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Model: social2.mod

set AGENTS; # Agents

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param lambda {AGENTS} > 0; # Social weights

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

param gamma {i in AGENTS, k in COMMODITIES} := 1 - beta[i,k];

var x{AGENTS, COMMODITIES} >= 0; # Consumption

var u{i in AGENTS} = # Utility

sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^gamma[i,k] / gamma[i,k];

maximize welfare:

sum {i in AGENTS} lambda[i] * u[i];

subject to

consumption {k in COMMODITIES}:

sum {i in AGENTS} x[i,k] <= sum {i in AGENTS} e[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Data: social2.dat

set COMMODITIES := Books, Cars, Food, Pens;

param: AGENTS : lambda :=

Jorge 1

Sven 1

Todd 1;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1

Sven 1 2 3 4

Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6

Cars 1.6 3 0.7

Food 1.7 2 2.0

Pens 1.8 2 2.5;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Data: social2.dat

set COMMODITIES := Books, Cars, Food, Pens;

param: AGENTS : lambda :=

Jorge 1

Sven 1

Todd 1;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1

Sven 1 2 3 4

Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6

Cars 1.6 3 0.7

Food 1.7 2 2.0

Pens 1.8 2 2.5;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Commands: social2.cmd

Load model and data

model social2.mod;

data social2.dat;

Specify solver and options

option solver minos;

option minos_options "outlev=1";

Solve the instance

solve;

Output results

display x;

printf {i in AGENTS} "%5s: % 5.4e\n", i, u[i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Output

ampl: include social2.cmd

MINOS 5.5: outlev=1

MINOS 5.5: optimal solution found.

25 iterations, objective 2.252422003

Nonlin evals: obj = 44, grad = 43.

x :=

Jorge Books 0.0811471

Jorge Cars 0.574164

Jorge Food 0.703454

Jorge Pens 0.267241

Sven Books 0.060263

Sven Cars 0.604858

Sven Food 1.7239

Sven Pens 1.47516

Todd Books 2.85859

Todd Cars 1.82098

Todd Food 0.572645

Todd Pens 1.2576

;

Jorge: -5.2111e+00

Sven: -4.0488e+00

Todd: 1.1512e+01

ampl: quit;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Solving Constrained Optimization Problems

min
x

f(x)

subject to c(x) ≥ 0

Main ingredients of solution approaches:

• Local method: given xk (solution guess) find a step s.
• Sequential Quadratic Programming (SQP)
• Sequential Linear/Quadratic Programming (SLQP)
• Interior-Point Method (IPM)

• Globalization strategy: converge from any starting point.
• Trust region
• Line search

• Acceptance criteria: filter or penalty function.

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Linear Programming

1. Initialize trust-region radius

2. Compute a new iterate

2.1 Solve linear program

min
s

f(xk) + sT∇f(xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Linear Programming

1. Initialize trust-region radius

2. Compute a new iterate

2.1 Solve linear program

min
s

f(xk) + sT∇f(xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Linear Programming

1. Initialize trust-region radius

2. Compute a new iterate

2.1 Solve linear program

min
s

f(xk) + sT∇f(xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Quadratic Programming

1. Initialize trust-region radius

2. Compute a new iterate

2.1 Solve quadratic program

min
s

f(xk) + sT∇f(xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Quadratic Programming

1. Initialize trust-region radius

2. Compute a new iterate

2.1 Solve quadratic program

min
s

f(xk) + sT∇f(xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Quadratic Programming

1. Initialize trust-region radius

2. Compute a new iterate

2.1 Solve quadratic program

min
s

f(xk) + sT∇f(xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2.2 Accept or reject iterate
2.3 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Linear Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate

2.1 Solve linear program to predict active set

min
d

f(xk) + dT∇f(xk)

subject to c(xk) +∇c(xk)T d ≥ 0
‖d‖ ≤ ∆k

2.2 Solve equality constrained quadratic program

min
s

f(xk) + sT∇f(xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

2.3 Accept or reject iterate
2.4 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Linear Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate

2.1 Solve linear program to predict active set

min
d

f(xk) + dT∇f(xk)

subject to c(xk) +∇c(xk)T d ≥ 0
‖d‖ ≤ ∆k

2.2 Solve equality constrained quadratic program

min
s

f(xk) + sT∇f(xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

2.3 Accept or reject iterate
2.4 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Sequential Linear Quadratic Programming

1. Initialize trust-region radius
2. Compute a new iterate

2.1 Solve linear program to predict active set

min
d

f(xk) + dT∇f(xk)

subject to c(xk) +∇c(xk)T d ≥ 0
‖d‖ ≤ ∆k

2.2 Solve equality constrained quadratic program

min
s

f(xk) + sT∇f(xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

2.3 Accept or reject iterate
2.4 Update trust-region radius

3. Check convergence

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Acceptance Criteria

• Decrease objective function value: f(xk + s) ≤ f(xk)

• Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖

• Four possibilities

1. step can decrease both f(x) and ‖c−(x)‖ GOOD
2. step can decrease f(x) and increase ‖c−(x)‖ ???
3. step can increase f(x) and decrease ‖c−(x)‖ ???
4. step can increase both f(x) and ‖c−(x)‖ BAD

• Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Acceptance Criteria

• Decrease objective function value: f(xk + s) ≤ f(xk)

• Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖
• Four possibilities

1. step can decrease both f(x) and ‖c−(x)‖ GOOD
2. step can decrease f(x) and increase ‖c−(x)‖ ???
3. step can increase f(x) and decrease ‖c−(x)‖ ???
4. step can increase both f(x) and ‖c−(x)‖ BAD

• Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Acceptance Criteria

• Decrease objective function value: f(xk + s) ≤ f(xk)

• Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖
• Four possibilities

1. step can decrease both f(x) and ‖c−(x)‖ GOOD
2. step can decrease f(x) and increase ‖c−(x)‖ ???
3. step can increase f(x) and decrease ‖c−(x)‖ ???
4. step can increase both f(x) and ‖c−(x)‖ BAD

• Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Filter Framework

Filter F : list of non-dominated pairs (h`, f`)

• new xk+1 is acceptable to filter F iff

1. hk+1 ≤ h` for all ` ∈ F or
2. fk+1 ≤ f` for all ` ∈ F

• remove redundant filter entries

• new xk+1 is rejected if for some ` ∈ F
1. hk+1 > h` and
2. fk+1 > f`

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Filter Framework

Filter F : list of non-dominated pairs (h`, f`)

• new xk+1 is acceptable to filter F iff

1. hk+1 ≤ h` for all ` ∈ F or
2. fk+1 ≤ f` for all ` ∈ F

• remove redundant filter entries

• new xk+1 is rejected if for some ` ∈ F
1. hk+1 > h` and
2. fk+1 > f`

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Filter Framework

Filter F : list of non-dominated pairs (h`, f`)

• new xk+1 is acceptable to filter F iff

1. hk+1 ≤ h` for all ` ∈ F or
2. fk+1 ≤ f` for all ` ∈ F

• remove redundant filter entries

• new xk+1 is rejected if for some ` ∈ F
1. hk+1 > h` and
2. fk+1 > f`

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Convergence Criteria

• Feasible and no descent directions
• Constraint qualification – LICQ, MFCQ
• Linearized active constraints characterize directions
• Objective gradient is a linear combination of constraint gradients

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Optimality Conditions

• If x∗ is a local minimizer and a constraint qualification holds, then
there exist multipliers λ∗ ≥ 0 such that

∇f(x∗)−∇cA(x∗)Tλ∗A = 0

• Lagrangian function L(x, λ) := f(x)− λT c(x)

• Optimality conditions can be written as

∇f(x)−∇c(x)Tλ = 0
0 ≤ λ ⊥ c(x) ≥ 0

• Complementarity problem

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Termination

• Feasible and complementary ‖min(c(xk), λk)‖ ≤ τf
• Optimal ‖∇xL(xk, λk)‖ ≤ τo
• Other possible conditions

• Slow progress
• Iteration limit
• Time limit

• Multipliers and reduced costs

display consumption.slack; # Constraint violation

display consumption.dual; # Lagrange multipliers

display x.rc; # Gradient of Lagrangian

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Convergence Issues

• Quadratic convergence – best outcome

• Globally infeasible – linear constraints infeasible

• Locally infeasible – nonlinear constraints locally infeasible

• Unbounded objective – hard to detect

• Unbounded multipliers – constraint qualification not satisfied
• Linear convergence rate

• Far from a solution – ‖∇f(xk)‖ is large
• Hessian is incorrect – disrupts quadratic convergence
• Hessian is rank deficient – ‖∇f(xk)‖ is small
• Limits of finite precision arithmetic

• Domain violations such as 1
x when x = 0

• Make implicit constraints explicit

• Nonglobal solutions
• Apply a multistart heuristic
• Use global optimization solver

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Social Planning Model
Sequential Quadratic Programming

Some Available Software

• ASTROS – Active-Set Trust-Region Optimization Solvers

• filterSQP
• trust-region SQP; robust QP solver
• filter to promote global convergence

• SNOPT
• line-search SQP; null-space CG option
• `1 exact penalty function

• SLIQUE – part of KNITRO
• SLP-EQP
• trust-region with `1 penalty
• use with knitro options = "algorithm=3";

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model Formulation

• Maximize discounted utility
• u(·) is the utility function
• R is the retirement age
• T is the terminal age
• w is the wage
• β is the discount factor
• r is the interest rate

• Optimization problem

max
s,c

T∑
t=0

βtu(ct)

subject to st+1 = (1 + r)st + w − ct t = 0, . . . , R− 1
st+1 = (1 + r)st − ct t = R, . . . , T
s0 = sT+1 = 0

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: life1.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: life1.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: life1.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Data: life1.dat

param R := 7; # Retirement age

param T := 10; # Terminal age

param beta := 0.9; # Discount factor

param rate := 0.2; # Interest rate

param wage := 1.0; # Wage rate

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Commands: life1.cmd

Load model and data

model life1.mod;

data life1.dat;

Specify solver and options

option solver mpec;

Solve the instance

solve;

Output results

printf {t in 0..T} "%2d %5.4e %5.4e\n", t, s[t], c[t] > out1.dat;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Output

ampl: include life1.cmd

AMPL interface to filter-MPEC: 20040408

: filter objective function = -3.24322

constraint violation = 1.01433e-11

Optimal solution found

14 iterations (0 for feasibility)

Evals: obj = 15, constr = 16, grad = 16, Hes = 15

ampl: quit;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: negishi.mod

set Commodities; # Goods and factors

set Producers within Commodities; # Consumer goods produced

Structure of the Nested CES Functions for Producers

INodes: internal nodes for the tree in postfix order

FUse : factor inputs used by the node

IUse : internal node output used by the node

TUse : full list of factors referenced

set P_INodes {Producers} ordered;

set P_FUse {p in Producers, P_INodes[p]} within Commodities;

set P_IUse {p in Producers, P_INodes[p]} within P_INodes[p];

set P_TUse {p in Producers} := union {k in P_INodes[p]} P_FUse[p,k];

Parameters for Producer Nested CES Functions

param P_Scale {p in Producers, i in P_INodes[p]}

param P_Elasticity {p in Producers, i in P_INodes[p]}

param P_FDist {p in Producers, i in P_INodes[p], k in P_FUse[p,i]}

param P_IDist {p in Producers, i in P_INodes[p], j in P_IUse[p,i]}

param P_Alpha {p in Producers, i in P_INodes[p]}

:= 1.0 - 1.0/P_Elasticity[p,i];

param P_Beta {p in Producers, i in P_INodes[p]} := 1.0 / P_Alpha[p,i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: negishi.mod

set Commodities; # Goods and factors

set Producers within Commodities; # Consumer goods produced

Structure of the Nested CES Functions for Producers

INodes: internal nodes for the tree in postfix order

FUse : factor inputs used by the node

IUse : internal node output used by the node

TUse : full list of factors referenced

set P_INodes {Producers} ordered;

set P_FUse {p in Producers, P_INodes[p]} within Commodities;

set P_IUse {p in Producers, P_INodes[p]} within P_INodes[p];

set P_TUse {p in Producers} := union {k in P_INodes[p]} P_FUse[p,k];

Parameters for Producer Nested CES Functions

param P_Scale {p in Producers, i in P_INodes[p]}

param P_Elasticity {p in Producers, i in P_INodes[p]}

param P_FDist {p in Producers, i in P_INodes[p], k in P_FUse[p,i]}

param P_IDist {p in Producers, i in P_INodes[p], j in P_IUse[p,i]}

param P_Alpha {p in Producers, i in P_INodes[p]}

:= 1.0 - 1.0/P_Elasticity[p,i];

param P_Beta {p in Producers, i in P_INodes[p]} := 1.0 / P_Alpha[p,i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: negishi.mod

set Commodities; # Goods and factors

set Producers within Commodities; # Consumer goods produced

Structure of the Nested CES Functions for Producers

INodes: internal nodes for the tree in postfix order

FUse : factor inputs used by the node

IUse : internal node output used by the node

TUse : full list of factors referenced

set P_INodes {Producers} ordered;

set P_FUse {p in Producers, P_INodes[p]} within Commodities;

set P_IUse {p in Producers, P_INodes[p]} within P_INodes[p];

set P_TUse {p in Producers} := union {k in P_INodes[p]} P_FUse[p,k];

Parameters for Producer Nested CES Functions

param P_Scale {p in Producers, i in P_INodes[p]}

param P_Elasticity {p in Producers, i in P_INodes[p]}

param P_FDist {p in Producers, i in P_INodes[p], k in P_FUse[p,i]}

param P_IDist {p in Producers, i in P_INodes[p], j in P_IUse[p,i]}

param P_Alpha {p in Producers, i in P_INodes[p]}

:= 1.0 - 1.0/P_Elasticity[p,i];

param P_Beta {p in Producers, i in P_INodes[p]} := 1.0 / P_Alpha[p,i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: negishi.mod

Producer Behavior

Input : quantities of commodities demanded by the producers

Output: quantities of commodities created by the producers

var Input {p in Producers, P_TUse[p]} >= 0, := 1;

var Output {p in Producers, i in P_INodes[p]} =

P_Scale[p,i]*(

sum {k in P_FUse[p,i]} P_FDist[p,i,k]*Input[p,k]^P_Alpha[p,i] +

sum {j in P_IUse[p,i]} P_IDist[p,i,j]*Output[p,j]^P_Alpha[p,i]

)^P_Beta[p,i];

Consumer Behavior

Endow : initial endowment of commodities

Demand : quantities of commodities demanded by the consumer

Utility: utility of the commodities demanded by the consumer

: determined from the nested CES Utility Function

param Endow {c in Consumers, k in Commodities};

var Demand {c in Consumers, C_TUse[c]} >= 0, := 1;

var Utility {c in Consumers, i in C_INodes[c]} =

C_Scale[c,i]*(

sum {k in C_FUse[c,i]} C_AFDist[c,i,k]*Demand[c,k]^C_Alpha[c,i] +

sum {j in C_IUse[c,i]} C_AIDist[c,i,j]*Utility[c,j]^C_Alpha[c,i]

)^C_Beta[c,i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: negishi.mod

Producer Behavior

Input : quantities of commodities demanded by the producers

Output: quantities of commodities created by the producers

var Input {p in Producers, P_TUse[p]} >= 0, := 1;

var Output {p in Producers, i in P_INodes[p]} =

P_Scale[p,i]*(

sum {k in P_FUse[p,i]} P_FDist[p,i,k]*Input[p,k]^P_Alpha[p,i] +

sum {j in P_IUse[p,i]} P_IDist[p,i,j]*Output[p,j]^P_Alpha[p,i]

)^P_Beta[p,i];

Consumer Behavior

Endow : initial endowment of commodities

Demand : quantities of commodities demanded by the consumer

Utility: utility of the commodities demanded by the consumer

: determined from the nested CES Utility Function

param Endow {c in Consumers, k in Commodities};

var Demand {c in Consumers, C_TUse[c]} >= 0, := 1;

var Utility {c in Consumers, i in C_INodes[c]} =

C_Scale[c,i]*(

sum {k in C_FUse[c,i]} C_AFDist[c,i,k]*Demand[c,k]^C_Alpha[c,i] +

sum {j in C_IUse[c,i]} C_AIDist[c,i,j]*Utility[c,j]^C_Alpha[c,i]

)^C_Beta[c,i];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: negishi.mod

Negishi Weights

param Weights{c in Consumers}

default 1 / card(Consumers);

Negishi Optimization Problem

maximize Welfare:

sum{c in Consumers} Weights[c]*Utility[c,last(C_INodes[c])];

subject to

Market {k in Commodities}:

sum{c in Consumers} Endow[c,k] + (if (k in Producers) then Output[k,last(P_INodes[k])]) >=

sum{p in Producers: k in P_TUse[p]} Input[p,k] + sum{c in Consumers: k in C_TUse[c]} Demand[c,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Data: negishi.dat

set Commodities := G1 G2 F1 F2 F3;

set Consumers := C1 C2;

set Producers := G1 G2;

set Numeraire := F1;

set P_INodes[G1] := I1 I2 I3;

set P_FUse[G1, I1] := F1 F2;

set P_FUse[G1, I2] := F1 F3;

set P_FUse[G1, I3] := F2 F3 G2;

set P_IUse[G1, I1] := ;

set P_IUse[G1, I2] := ;

set P_IUse[G1, I3] := I1 I2;

set P_INodes[G2] := I1 I2;

set P_FUse[G2, I1] := F1 F2;

set P_FUse[G2, I2] := F3 G1;

set P_IUse[G2, I1] := ;

set P_IUse[G2, I2] := I1;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Data: negishi.dat

set Commodities := G1 G2 F1 F2 F3;

set Consumers := C1 C2;

set Producers := G1 G2;

set Numeraire := F1;

set P_INodes[G1] := I1 I2 I3;

set P_FUse[G1, I1] := F1 F2;

set P_FUse[G1, I2] := F1 F3;

set P_FUse[G1, I3] := F2 F3 G2;

set P_IUse[G1, I1] := ;

set P_IUse[G1, I2] := ;

set P_IUse[G1, I3] := I1 I2;

set P_INodes[G2] := I1 I2;

set P_FUse[G2, I1] := F1 F2;

set P_FUse[G2, I2] := F3 G1;

set P_IUse[G2, I1] := ;

set P_IUse[G2, I2] := I1;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model Formulation

• Route commodities through a network
• N is the set of nodes
• A ⊆ N ×N is the set of arcs
• K is the set of commodities
• α and β are the congestion parameters
• b denotes the supply and demand

• Multicommodity network flow problem

max
x≥0,f≥0

∑
(i,j)∈A

(
αi,jfi,j + βi,jf

4
i,j

)
subject to

∑
(i,j)∈A

xi,j,k ≤
∑

(j,i)∈A

xj,i,k + bi,k ∀i ∈ N , k ∈ K

fi,j =
∑
k∈K

xi,j,k ∀(i, j) ∈ A

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: network.mod

set NODES; # Nodes in network

set ARCS within NODES cross NODES; # Arcs in network

set COMMODITIES := 1..3; # Commodities

param b {NODES, COMMODITIES} default 0; # Supply/demand

check {k in COMMODITIES}: # Supply exceeds demand

sum{i in NODES} b[i,k] >= 0;

param alpha{ARCS} >= 0; # Linear part

param beta{ARCS} >= 0; # Nonlinear part

var x{ARCS, COMMODITIES} >= 0; # Flow on arcs

var f{(i,j) in ARCS} = # Total flow

sum {k in COMMODITIES} x[i,j,k];

minimize time:

sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to

conserve {i in NODES, k in COMMODITIES}:

sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: network.mod

set NODES; # Nodes in network

set ARCS within NODES cross NODES; # Arcs in network

set COMMODITIES := 1..3; # Commodities

param b {NODES, COMMODITIES} default 0; # Supply/demand

check {k in COMMODITIES}: # Supply exceeds demand

sum{i in NODES} b[i,k] >= 0;

param alpha{ARCS} >= 0; # Linear part

param beta{ARCS} >= 0; # Nonlinear part

var x{ARCS, COMMODITIES} >= 0; # Flow on arcs

var f{(i,j) in ARCS} = # Total flow

sum {k in COMMODITIES} x[i,j,k];

minimize time:

sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to

conserve {i in NODES, k in COMMODITIES}:

sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: network.mod

set NODES; # Nodes in network

set ARCS within NODES cross NODES; # Arcs in network

set COMMODITIES := 1..3; # Commodities

param b {NODES, COMMODITIES} default 0; # Supply/demand

check {k in COMMODITIES}: # Supply exceeds demand

sum{i in NODES} b[i,k] >= 0;

param alpha{ARCS} >= 0; # Linear part

param beta{ARCS} >= 0; # Nonlinear part

var x{ARCS, COMMODITIES} >= 0; # Flow on arcs

var f{(i,j) in ARCS} = # Total flow

sum {k in COMMODITIES} x[i,j,k];

minimize time:

sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to

conserve {i in NODES, k in COMMODITIES}:

sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Model: network.mod

set NODES; # Nodes in network

set ARCS within NODES cross NODES; # Arcs in network

set COMMODITIES := 1..3; # Commodities

param b {NODES, COMMODITIES} default 0; # Supply/demand

check {k in COMMODITIES}: # Supply exceeds demand

sum{i in NODES} b[i,k] >= 0;

param alpha{ARCS} >= 0; # Linear part

param beta{ARCS} >= 0; # Nonlinear part

var x{ARCS, COMMODITIES} >= 0; # Flow on arcs

var f{(i,j) in ARCS} = # Total flow

sum {k in COMMODITIES} x[i,j,k];

minimize time:

sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to

conserve {i in NODES, k in COMMODITIES}:

sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Data: network.dat

set NODES := 1 2 3 4 5;

param: ARCS : alpha beta =

1 2 1 0.5

1 3 1 0.4

2 3 2 0.7

2 4 3 0.1

3 2 1 0.0

3 4 4 0.5

4 1 5 0.0

4 5 2 0.1

5 2 0 1.0;

let b[1,1] := 7; # Node 1, Commodity 1 supply

let b[4,1] := -7; # Node 4, Commodity 1 demand

let b[2,2] := 3; # Node 2, Commodity 2 supply

let b[5,2] := -3; # Node 5, Commodity 2 demand

let b[3,3] := 5; # Node 1, Commodity 3 supply

let b[1,3] := -5; # Node 4, Commodity 3 demand

fix {i in NODES, k in COMMODITIES: (i,i) in ARCS} x[i,i,k] := 0;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Data: network.dat

set NODES := 1 2 3 4 5;

param: ARCS : alpha beta =

1 2 1 0.5

1 3 1 0.4

2 3 2 0.7

2 4 3 0.1

3 2 1 0.0

3 4 4 0.5

4 1 5 0.0

4 5 2 0.1

5 2 0 1.0;

let b[1,1] := 7; # Node 1, Commodity 1 supply

let b[4,1] := -7; # Node 4, Commodity 1 demand

let b[2,2] := 3; # Node 2, Commodity 2 supply

let b[5,2] := -3; # Node 5, Commodity 2 demand

let b[3,3] := 5; # Node 1, Commodity 3 supply

let b[1,3] := -5; # Node 4, Commodity 3 demand

fix {i in NODES, k in COMMODITIES: (i,i) in ARCS} x[i,i,k] := 0;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Commands: network.cmd

Load model and data

model network.mod;

data network.dat;

Specify solver and options

option solver minos;

option minos_options "outlev=1";

Solve the instance

solve;

Output results

for {k in COMMODITIES} {

printf "Commodity: %d\n", k > network.out;

printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;

printf "\n" > network.out;

}

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Output

ampl: include network.cmd;

MINOS 5.5: outlev=1

MINOS 5.5: optimal solution found.

12 iterations, objective 1505.526478

Nonlin evals: obj = 14, grad = 13.

ampl: quit;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Results: network.out

Commodity: 1

1.2 = 3.3775e+00

1.3 = 3.6225e+00

2.4 = 6.4649e+00

3.2 = 3.0874e+00

3.4 = 5.3510e-01

Commodity: 2

2.4 = 3.0000e+00

4.5 = 3.0000e+00

Commodity: 3

3.4 = 5.0000e+00

4.1 = 5.0000e+00

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Initial Coordinate Descent: wardrop0.cmd

Load model and data

model network.mod;

data network.dat;

option solver minos;

option minos_options "outlev=1";

Coordinate descent method

fix {(i,j) in ARCS, k in COMMODITIES} x[i,j,k];

drop {i in NODES, k in COMMODITIES} conserve[i,k];

for {iter in 1..100} {

for {k in COMMODITIES} {

unfix {(i,j) in ARCS} x[i,j,k];

restore {i in NODES} conserve[i,k];

solve;

fix {(i,j) in ARCS} x[i,j,k];

drop {i in NODES} conserve[i,k];

}

}

Output results

for {k in COMMODITIES} {

printf "\nCommodity: %d\n", k > network.out;

printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > network.out;

}

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Improved Coordinate Descent: wardrop.mod

set NODES; # Nodes in network

set ARCS within NODES cross NODES; # Arcs in network

set COMMODITIES := 1..3; # Commodities

param b {NODES, COMMODITIES} default 0; # Supply/demand

param alpha {ARCS} >= 0; # Linear part

param beta {ARCS} >= 0; # Nonlinear part

var x {ARCS, COMMODITIES} >= 0; # Flow on arcs

var f {(i,j) in ARCS} = # Total flow

sum {k in COMMODITIES} x[i,j,k];

minimize time {k in COMMODITIES}:

sum {(i,j) in ARCS} (alpha[i,j]*f[i,j] + beta[i,j]*f[i,j]^4);

subject to

conserve {i in NODES, k in COMMODITIES}:

sum {(i,j) in ARCS} x[i,j,k] <= sum{(j,i) in ARCS} x[j,i,k] + b[i,k];

problem subprob {k in COMMODITIES}: time[k], {i in NODES} conserve[i,k],

{(i,j) in ARCS} x[i,j,k], f;

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Improved Coordinate Descent: wardrop1.cmd

Load model and data

model wardrop.mod;

data wardrop.dat;

Specify solver and options

option solver minos;

option minos_options "outlev=1";

Coordinate descent method

for {iter in 1..100} {

for {k in COMMODITIES} {

solve subprob[k];

}

}

for {k in COMMODITIES} {

printf "Commodity: %d\n", k > wardrop.out;

printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > wardrop.out;

printf "\n" > wardrop.out;

}

Munson Numerical Optimization

Unconstrained Optimization
Constrained Optimization

Other Models

Life-Cycle Model
Negishi Model
Traffic Routing

Final Coordinate Descent: wardrop2.cmd

Load model and data

model wardrop.mod;

data wardrop.dat;

Specify solver and options

option solver minos;

option minos_options "outlev=1";

Coordinate descent method

param xold{ARCS, COMMODITIES};

param xnew{ARCS, COMMODITIES};

repeat {

for {k in COMMODITIES} {

problem subprob[k];

let {(i,j) in ARCS} xold[i,j,k] := x[i,j,k];

solve;

let {(i,j) in ARCS} xnew[i,j,k] := x[i,j,k];

}

} until (sum {(i,j) in ARCS, k in COMMODITIES} abs(xold[i,j,k] - xnew[i,j,k]) <= 1e-6);

for {k in COMMODITIES} {

printf "Commodity: %d\n", k > wardrop.out;

printf {(i,j) in ARCS: x[i,j,k] > 0} "%d.%d = % 5.4e\n", i, j, x[i,j,k] > wardrop.out;

printf "\n" > wardrop.out;

}

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Part III

Numerical Optimization II: Optimal Control

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model Formulation

• Maximize discounted utility
• u(·) is the utility function
• R is the retirement age
• T is the terminal age
• w is the wage
• β is the discount factor
• r is the interest rate

• Optimization problem

max
s,c

T∑
t=0

βtu(ct)

subject to st+1 = (1 + r)st + w − ct t = 0, . . . , R− 1
st+1 = (1 + r)st − ct t = R, . . . , T
s0 = sT+1 = 0

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model: life1.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model: life1.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model: life1.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Data: life.dat

param R := 75; # Retirement age

param T := 100; # Terminal age

param beta := 0.9; # Discount factor

param rate := 0.2; # Interest rate

param wage := 1.0; # Wage rate

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Commands: life1.cmd

Load model and data

model life1.mod;

data life.dat;

Specify solver and options

option solver mpec;

Solve the instance

solve;

Output results

printf {t in 0..T} "%2d %5.4e %5.4e\n", t, s[t], c[t] > out1.dat;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Output

ampl: include life1.cmd

AMPL interface to filter-MPEC: 20040408

: filter objective function = -3.24322

constraint violation = 1.01433e-11

Optimal solution found

14 iterations (0 for feasibility)

Evals: obj = 15, constr = 16, grad = 16, Hes = 15

ampl: quit;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model: life2.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption

var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - cbar[t] / beta^t;

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - cbar[t] / beta^t;

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model: life3.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption

var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

beta^t*s[t+1] = beta^t*(1+rate)*s[t] + beta^t*wage - cbar[t];

retired {t in R..T}:

beta^t*s[t+1] = beta^t*(1+rate)*s[t] - cbar[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Model: life4.mod
param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption

var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption

var sbar{0..T+1}; # Scaled savings

var s{t in 0..T+1} = sbar[t] / beta^t; # Actual savings

var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

sbar[t+1]/beta = (1+rate)*sbar[t] + beta^t*wage - cbar[t];

retired {t in R..T}:

sbar[t+1]/beta = (1+rate)*sbar[t] - cbar[t];

initial:

sbar[0] = 0;

terminal:

sbar[T+1] = 0;

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Solving Constrained Optimization Problems

min
x

f(x)

subject to c(x) ≥ 0

Main ingredients of solution approaches:

• Local method: given xk (solution guess) find a step s.
• Sequential Quadratic Programming (SQP)
• Sequential Linear/Quadratic Programming (SLQP)
• Interior-Point Method (IPM)

• Globalization strategy: converge from any starting point.
• Trust region
• Line search

• Acceptance criteria: filter or penalty function.

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Interior-Point Method

• Reformulate optimization problem with slacks

min
x

f(x)

subject to c(x) = 0
x ≥ 0

• Construct perturbed optimality conditions

Fτ (x, y, z) =

 ∇f(x)−∇c(x)T y − z
c(x)

Xz − τe

• Central path {x(τ), y(τ), z(τ) | τ > 0}
• Apply Newton’s method for sequence τ ↘ 0

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Interior-Point Method

1. Compute a new iterate

1.1 Solve linear system of equations Wk −∇c(xk)T −I
∇c(xk) 0 0
Zk 0 Xk

 sx
sy
sz

 = −Fµ(xk, yk, zk)

1.2 Accept or reject iterate
1.3 Update parameters

2. Check convergence

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Convergence Issues

• Quadratic convergence – best outcome

• Globally infeasible – linear constraints infeasible

• Locally infeasible – nonlinear constraints locally infeasible

• Dual infeasible – dual problem is locally infeasible

• Unbounded objective – hard to detect

• Unbounded multipliers – constraint qualification not satisfied

• Duality gap

• Domain violations such as 1
x when x = 0

• Make implicit constraints explicit

• Nonglobal solutions
• Apply a multistart heuristic
• Use global optimization solver

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Life-Cycle Saving Model
Interior-Point Methods

Some Available Software

• IPOPT – open source in COIN-OR
• line-search filter algorithm

• KNITRO
• trust-region Newton to solve barrier problem
• `1 penalty barrier function
• Newton system: direct solves or null-space CG

• LOQO
• line-search method
• Newton system: modified Cholesky factorization

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Optimal Technology

Optimize energy production schedule and transition between old and new
reduced-carbon technology to meet carbon targets

• Maximize social welfare

• Constraints
• Limit total greenhouse gas emissions
• Low-carbon technology less costly as it becomes widespread

• Assumptions on emission rates, economic growth, and energy costs

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Model Formulation

• Finite time: t ∈ [0, T]

• Instantaneous energy output: qo(t) and qn(t)

• Cumulative energy output: xo(t) and xn(t)

xn(t) =

∫ t

0
qn(τ)dτ

• Discounted greenhouse gases emissions∫ T

0
e−at (boq

o(t) + bnq
n(t)) dt ≤ zT

• Consumer surplus S(Q(t), t) derived from utility
• Production costs

• co per unit cost of old technology
• cn(xn(t)) per unit cost of new technology (learning by doing)

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Continuous-Time Model

max
{qo,qn,xn,z}(t)

∫ T

0
e−rt [S(qo(t) + qn(t), t)− coqo(t)− cn(xn(t))qn(t)] dt

subject to ẋn(t) = qn(t) x(0) = x0 = 0

ż(t) = e−at (boq
o(t) + bnq

n(t)) z(0) = z0 = 0

z(T) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Optimal Technology Penetration

Discretization:

• t ∈ [0, T] replaced by N + 1 equally spaced points ti = ih

• h := T/N time integration step-length

• approximate qni ' qn(ti) etc.

Replace differential equation

ẋ(t) = qn(t)

by
xi+1 = xi + hqni

Output of new technology between t = 24 and t = 35

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Optimal Technology Penetration

Discretization:

• t ∈ [0, T] replaced by N + 1 equally spaced points ti = ih

• h := T/N time integration step-length

• approximate qni ' qn(ti) etc.

Replace differential equation

ẋ(t) = qn(t)

by
xi+1 = xi + hqni

Output of new technology between t = 24 and t = 35

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Solution with Varying h

Output for different discretization schemes and step-sizes
Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

• Kj(t) amount of capital in technology j at t.

• Ij(t) investment to increase Kj(t).

• initial capital level as K̄j
0 :

Notation:

• Q(t) = qo(t) + qn(t)

• C(t) = Co(qo(t),Ko(t)) + Cn(qn(t),Kn(t))

• I(t) = Io(t) + In(t)

• K(t) = Ko(t) +Kn(t)

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Optimal Technology Penetration

maximize
{qj ,Kj ,Ij ,x,z}(t)

{∫ T

0
e−rt

[
S̃(Q(t), t)− C(t)−K(t)

]
dt+ e−rTK(T)

}
subject to ẋ(t) = qn(t), x(0) = x0 = 0

K̇j(t) = −δKj(t) + Ij(t), Kj(0) = K̄j
0 , j ∈ {o, n}

ż(t) = e−at[boq
o(t) + bnq

n(t)], z(0) = z0 = 0

z(T) ≤ zT

qj(t) ≥ 0, j ∈ {o, n}

Ij(t) ≥ 0, j ∈ {o, n}

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Optimal Technology Penetration

Optimal output, investment, and capital for 50% CO2 reduction.

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)
e3t/2(2 + e3)

.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2 + 2y2k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k = 0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)
e3t/2(2 + e3)

.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2 + 2y2k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k = 0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)
e3t/2(2 + e3)

.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2 + 2y2k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k = 0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Tips to Solve Continuous-Time Problems

• Use discretize-then-optimize with different schemes

• Refine discretization: h = 1 discretization is nonsense

• Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

• Consistent adjoint/dual discretization

• Discretized gradients can be wrong!

• Harder for inequality constraints

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models

Technology Penetration Model
Discretize then Optimize

Tips to Solve Continuous-Time Problems

• Use discretize-then-optimize with different schemes

• Refine discretization: h = 1 discretization is nonsense

• Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

• Consistent adjoint/dual discretization

• Discretized gradients can be wrong!

• Harder for inequality constraints

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models
Finite-Element Method

Ordered Sets

param V, integer; # Number of vertices

param E, integer; # Number of elements

set VERTICES := {1..V}; # Vertex indices

set ELEMENTS := {1..E}; # Element indices

set COORDS := {1..3} ordered; # Spatial coordinates

param T{ELEMENTS, 1..4} in VERTICES; # Tetrahedral elements

var x{VERTICES, COORDS}; # Position of vertices

var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}

(x[T[e,j], i] - x[T[e,1], i])^2;

var area{e in ELEMENTS} = sum{i in COORDS}

(x[T[e,2], i] - x[T[e,1], i]) *

((x[T[e,3], nextw(i)] - x[T[e,1], nextw(i)]) *

(x[T[e,4], prevw(i)] - x[T[e,1], prevw(i)]) -

(x[T[e,3], prevw(i)] - x[T[e,1], prevw(i)]) *

(x[T[e,4], nextw(i)] - x[T[e,1], nextw(i)]));

minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ^ (2 / 3);

Munson Numerical Optimization

Discrete-Time Optimal Control
Continuous-Time Optimal Control

Other Models
Finite-Element Method

Circular Sets

param V, integer; # Number of vertices

param E, integer; # Number of elements

set VERTICES := {1..V}; # Vertex indices

set ELEMENTS := {1..E}; # Element indices

set COORDS := {1..3} circular; # Spatial coordinates

param T{ELEMENTS, 1..4} in VERTICES; # Tetrahedral elements

var x{VERTICES, COORDS}; # Position of vertices

var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}

(x[T[e,j], i] - x[T[e,1], i])^2;

var area{e in ELEMENTS} = sum{i in COORDS}

(x[T[e,2], i] - x[T[e,1], i]) *

((x[T[e,3], next(i)] - x[T[e,1], next(i)]) *

(x[T[e,4], prev(i)] - x[T[e,1], prev(i)]) -

(x[T[e,3], prev(i)] - x[T[e,1], prev(i)]) *

(x[T[e,4], next(i)] - x[T[e,1], next(i)]));

minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ^ (2 / 3);

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Part IV

Numerical Optimization III: Complementarity
Constraints

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Nash Games
• Non-cooperative game played by n individuals

• Each player selects a strategy to optimize their objective
• Strategies for the other players are fixed

• Equilibrium reached when no improvement is possible

• Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x, y

∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x

∗, y)

subject to c2(y) ≤ 0

• Many applications in economics
• Bimatrix games
• Cournot duopoly models
• General equilibrium models
• Arrow-Debreau models

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Nash Games
• Non-cooperative game played by n individuals

• Each player selects a strategy to optimize their objective
• Strategies for the other players are fixed

• Equilibrium reached when no improvement is possible
• Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x, y

∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x

∗, y)

subject to c2(y) ≤ 0

• Many applications in economics
• Bimatrix games
• Cournot duopoly models
• General equilibrium models
• Arrow-Debreau models

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Nash Games
• Non-cooperative game played by n individuals

• Each player selects a strategy to optimize their objective
• Strategies for the other players are fixed

• Equilibrium reached when no improvement is possible
• Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x, y

∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x

∗, y)

subject to c2(y) ≤ 0

• Many applications in economics
• Bimatrix games
• Cournot duopoly models
• General equilibrium models
• Arrow-Debreau models

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Complementarity Formulation

• Assume each optimization problem is convex
• f1(·, y) is convex for each y
• f2(x, ·) is convex for each x
• c1(·) and c2(·) satisfy constraint qualification

• Then the first-order conditions are necessary and sufficient

min
x≥0

f1(x, y
∗)

subject to c1(x) ≤ 0
⇔ 0 ≤ x ⊥ ∇xf1(x, y

∗) + λT
1∇xc1(x) ≥ 0

0 ≤ λ1 ⊥ −c1(x) ≥ 0

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Complementarity Formulation

• Assume each optimization problem is convex
• f1(·, y) is convex for each y
• f2(x, ·) is convex for each x
• c1(·) and c2(·) satisfy constraint qualification

• Then the first-order conditions are necessary and sufficient

min
y≥0

f2(x
∗, y)

subject to c2(y) ≤ 0
⇔ 0 ≤ y ⊥ ∇yf2(x

∗, y) + λT
2∇yc2(y) ≥ 0

0 ≤ λ2 ⊥ −c2(y) ≥ 0

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Complementarity Formulation

• Assume each optimization problem is convex
• f1(·, y) is convex for each y
• f2(x, ·) is convex for each x
• c1(·) and c2(·) satisfy constraint qualification

• Then the first-order conditions are necessary and sufficient

0 ≤ x ⊥ ∇xf1(x, y) + λT1∇xc1(x) ≥ 0
0 ≤ y ⊥ ∇yf2(x, y) + λT2∇yc2(y) ≥ 0
0 ≤ λ1 ⊥ −c1(y) ≥ 0
0 ≤ λ2 ⊥ −c2(y) ≥ 0

• Nonlinear complementarity problem
• Square system – number of variables and constraints the same
• Each solution is an equilibrium for the Nash game

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Model Formulation

• Economy with n agents and m commodities
• e ∈ <n×m are the endowments
• α ∈ <n×m and β ∈ <n×m are the utility parameters
• p ∈ <m are the commodity prices

• Agent i maximizes utility with budget constraint

max
xi,∗≥0

m∑
k=1

αi,k(1 + xi,k)
1−βi,k

1− βi,k

subject to
m∑
k=1

pk (xi,k − ei,k) ≤ 0

• Market k sets price for the commodity

0 ≤ pk ⊥
n∑
i=1

(ei,k − xi,k) ≥ 0

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Model: cge.mod

set AGENTS; # Agents

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)

var l {AGENTS}; # Multipliers (no bounds!)

var p {COMMODITIES}; # Prices (no bounds!)

var du {i in AGENTS, k in COMMODITIES} = # Marginal prices

alpha[i,k] / (1 + x[i,k])^beta[i,k];

subject to

optimality {i in AGENTS, k in COMMODITIES}:

0 <= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;

budget {i in AGENTS}:

0 <= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

market {k in COMMODITIES}:

0 <= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Data: cge.dat

set AGENTS := Jorge, Sven, Todd;

set COMMODITIES := Books, Cars, Food, Pens;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1

Sven 1 2 3 4

Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6

Cars 1.6 3 0.7

Food 1.7 2 2.0

Pens 1.8 2 2.5;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Commands: cge.cmd

Load model and data

model cge.mod;

data cge.dat;

Specify solver and options

option presolve 0;

option solver "pathampl";

Solve the instance

solve;

Output results

printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cge.out;

printf "\n" > cge.out;

printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cge.out;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Results: cge.out

Jorge Books: 8.9825e-01

Jorge Cars: 1.4651e+00

Jorge Food: 1.2021e+00

Jorge Pens: 6.8392e-01

Sven Books: 2.5392e-01

Sven Cars: 7.2054e-01

Sven Food: 1.6271e+00

Sven Pens: 1.4787e+00

Todd Books: 1.8478e+00

Todd Cars: 8.1431e-01

Todd Food: 1.7081e-01

Todd Pens: 8.3738e-01

Books: 1.0825e+01

Cars: 6.6835e+00

Food: 7.3983e+00

Pens: 1.1081e+01

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Commands: cgenum.cmd

Load model and data

model cge.mod;

data cge.dat;

Specify solver and options

option presolve 0;

option solver "pathampl";

Solve the instance

drop market[’Books’];

fix p[’Books’] := 1;

solve;

Output results

printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgenum.out;

printf "\n" > cgenum.out;

printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgenum.out;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Results: cgenum.out

Jorge Books: 8.9825e-01

Jorge Cars: 1.4651e+00

Jorge Food: 1.2021e+00

Jorge Pens: 6.8392e-01

Sven Books: 2.5392e-01

Sven Cars: 7.2054e-01

Sven Food: 1.6271e+00

Sven Pens: 1.4787e+00

Todd Books: 1.8478e+00

Todd Cars: 8.1431e-01

Todd Food: 1.7081e-01

Todd Pens: 8.3738e-01

Books: 1.0000e+00

Cars: 6.1742e-01

Food: 6.8345e-01

Pens: 1.0237e+00

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Pitfalls

• Nonsquare systems
• Side variables
• Side constraints

• Orientation of equations
• Skew symmetry preferred
• Proximal point perturbation

• AMPL presolve
• option presolve 0;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Newton Method for Nonlinear Equations

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Newton Method for Nonlinear Equations

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Newton Method for Nonlinear Equations

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Newton Method for Nonlinear Equations

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Methods for Complementarity Problems

• Sequential linearization methods (PATH)

1. Solve the linear complementarity problem

0 ≤ x ⊥ F (xk) +∇F (xk)(x− xk) ≥ 0

2. Perform a line search along merit function
3. Repeat until convergence

• Semismooth reformulation methods (SEMI)
• Solve linear system of equations to obtain direction
• Globalize with a trust region or line search
• Less robust in general

• Interior-point methods

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Methods for Complementarity Problems

• Sequential linearization methods (PATH)

1. Solve the linear complementarity problem

0 ≤ x ⊥ F (xk) +∇F (xk)(x− xk) ≥ 0

2. Perform a line search along merit function
3. Repeat until convergence

• Semismooth reformulation methods (SEMI)
• Solve linear system of equations to obtain direction
• Globalize with a trust region or line search
• Less robust in general

• Interior-point methods

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Semismooth Reformulation

• Define Fischer-Burmeister function

φ(a, b) := a+ b−
√
a2 + b2

• φ(a, b) = 0 iff a ≥ 0, b ≥ 0, and ab = 0

• Define the system
[Φ(x)]i = φ(xi, Fi(x))

• x∗ solves complementarity problem iff Φ(x∗) = 0

• Nonsmooth system of equations

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Semismooth Algorithm

1. Calculate Hk ∈ ∂BΦ(xk) and solve the following system for dk:

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2. Compute smallest nonnegative integer ik such that

Ψ(xk + βi
k
dk) ≤ Ψ(xk) + σβi

k∇Ψ(xk)dk

3. Set xk+1 = xk + βi
k
dk, k = k + 1, and go to 1.

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Semismooth Algorithm

1. Calculate Hk ∈ ∂BΦ(xk) and solve the following system for dk:

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2. Compute smallest nonnegative integer ik such that

Ψ(xk + βi
k
dk) ≤ Ψ(xk) + σβi

k∇Ψ(xk)dk

3. Set xk+1 = xk + βi
k
dk, k = k + 1, and go to 1.

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Convergence Issues

• Quadratic convergence – best outcome

• Linear convergence
• Far from a solution – r(xk) is large
• Jacobian is incorrect – disrupts quadratic convergence
• Jacobian is rank deficient – ‖∇r(xk)‖ is small
• Converge to local minimizer – guarantees rank deficiency
• Limits of finite precision arithmetic

1. r(xk) converges quadratically to small number
2. r(xk) hovers around that number with no progress

• Domain violations such as 1
x when x = 0

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Arrow-Debreu Model
Generalized Newton Methods

Some Available Software

• PATH – sequential linearization method

• MILES – sequential linearization method

• SEMI – semismooth linesearch method

• TAO – Toolkit for Advanced Optimization
• SSLS – full-space semismooth linesearch methods
• ASLS – active-set semismooth linesearch methods
• RSCS – reduced-space method

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Definition
• Leader-follower game

• Dominant player (leader) selects a strategy y∗

• Then followers respond by playing a Nash game

x∗i ∈

{
arg min

xi≥0
fi(x, y)

subject to ci(xi) ≤ 0

• Leader solves optimization problem with equilibrium constraints

min
y≥0,x,λ

g(x, y)

subject to h(y) ≤ 0
0 ≤ xi ⊥ ∇xifi(x, y) + λTi ∇xici(xi) ≥ 0
0 ≤ λi ⊥ −ci(xi) ≥ 0

• Many applications in economics
• Optimal taxation
• Tolling problems

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Model Formulation

• Economy with n agents and m commodities
• e ∈ <n×m are the endowments
• α ∈ <n×m and β ∈ <n×m are the utility parameters
• p ∈ <m are the commodity prices

• Agent i maximizes utility with budget constraint

max
xi,∗≥0

m∑
k=1

αi,k(1 + xi,k)
1−βi,k

1− βi,k

subject to
m∑
k=1

pk (xi,k − ei,k) ≤ 0

• Market k sets price for the commodity

0 ≤ pk ⊥
n∑
i=1

(ei,k − xi,k) ≥ 0

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Model: cgempec.mod

set LEADER; # Leader

set FOLLOWERS; # Followers

set AGENTS := LEADER union FOLLOWERS; # All the agents

check: (card(LEADER) == 1 && card(LEADER inter FOLLOWERS) == 0);

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)

var l {FOLLOWERS}; # Multipliers (no bounds!)

var p {COMMODITIES}; # Prices (no bounds!)

var u {i in AGENTS} = # Utility

sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

var du {i in AGENTS, k in COMMODITIES} = # Marginal prices

alpha[i,k] / (1 + x[i,k])^beta[i,k];

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Model: cgempec.mod

maximize

objective: sum {i in LEADER} u[i];

subject to

leader_budget {i in LEADER}:

sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

optimality {i in FOLLOWERS, k in COMMODITIES}:

0 <= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;

budget {i in FOLLOWERS}:

0 <= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

market {k in COMMODITIES}:

0 <= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Data: cgempec.dat

set LEADER := Jorge;

set FOLLOWERS := Sven, Todd;

set COMMODITIES := Books, Cars, Food, Pens;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1

Sven 1 2 3 4

Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6

Cars 1.6 3 0.7

Food 1.7 2 2.0

Pens 1.8 2 2.5;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Commands: cgempec.cmd

Load model and data

model cgempec.mod;

data cgempec.dat;

Specify solver and options

option presolve 0;

option solver "loqo";

Solve the instance

drop market[’Books’];

fix p[’Books’] := 1;

solve;

Output results

printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgempec.out;

printf "\n" > cgempec.out;

printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgempec.out;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Output: cgempec.out

Stackleberg Nash Game

Jorge Books: 9.2452e-01 Jorge Books: 8.9825e-01

Jorge Cars: 1.3666e+00 Jorge Cars: 1.4651e+00

Jorge Food: 1.1508e+00 Jorge Food: 1.2021e+00

Jorge Pens: 7.7259e-01 Jorge Pens: 6.8392e-01

Sven Books: 2.5499e-01 Sven Books: 2.5392e-01

Sven Cars: 7.4173e-01 Sven Cars: 7.2054e-01

Sven Food: 1.6657e+00 Sven Food: 1.6271e+00

Sven Pens: 1.4265e+00 Sven Pens: 1.4787e+00

Todd Books: 1.8205e+00 Todd Books: 1.8478e+00

Todd Cars: 8.9169e-01 Todd Cars: 8.1431e-01

Todd Food: 1.8355e-01 Todd Food: 1.7081e-01

Todd Pens: 8.0093e-01 Todd Pens: 8.3738e-01

Books: 1.0000e+00 Books: 1.0000e+00

Cars: 5.9617e-01 Cars: 6.1742e-01

Food: 6.6496e-01 Food: 6.8345e-01

Pens: 1.0700e+00 Pens: 1.0237e+00

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Nonlinear Programming Formulation

min
x,y,λ,s,t≥0

g(x, y)

subject to h(y) ≤ 0
si = ∇xifi(x, y) + λTi ∇xici(xi)
ti = −ci(xi)∑
i

(
sTi xi + λiti

)
≤ 0

• Constraint qualification fails
• Lagrange multiplier set unbounded
• Constraint gradients linearly dependent
• Central path does not exist

• Able to prove convergence results for some methods

• Reformulation very successful and versatile in practice

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Penalization Approach

min
x,y,λ,s,t≥0

g(x, y) + π
∑
i

(
sTi xi + λiti

)
subject to h(y) ≤ 0

si = ∇xifi(x, y) + λTi ∇xici(xi)
ti = −ci(xi)

• Optimization problem satisfies constraint qualification

• Need to increase π

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Relaxation Approach

min
x,y,λ,s,t≥0

g(x, y)

subject to h(y) ≤ 0
si = ∇xifi(x, y) + λTi ∇xici(xi)
ti = −ci(xi)∑
i

(
sTi xi + λiti

)
≤ τ

• Need to decrease τ

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Limitations

• Multipliers may not exist

• Solvers can have a hard time computing solutions
• Try different algorithms
• Compute feasible starting point

• Stationary points may have descent directions
• Checking for descent is an exponential problem
• Strong stationary points found in certain cases

• Many stationary points – global optimization

• Formulation of follower problem
• Multiple solutions to Nash game
• Nonconvex objective or constraints
• Existence of multipliers

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Endowment Economy
Solution Techniques

Limitations

• Multipliers may not exist

• Solvers can have a hard time computing solutions
• Try different algorithms
• Compute feasible starting point

• Stationary points may have descent directions
• Checking for descent is an exponential problem
• Strong stationary points found in certain cases

• Many stationary points – global optimization

• Formulation of follower problem
• Multiple solutions to Nash game
• Nonconvex objective or constraints
• Existence of multipliers

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model Formulation

• Firm f ∈ F chooses output xf to maximize profit
• u is the utility function

u =

1 +
∑
f∈F

xαf

η
α

• α and η are parameters
• cf is the unit cost for each firm

• In particular, for each firm f ∈ F

x∗f ∈ arg max
xf≥0

(
∂u

∂xf
− cf

)
xf

• First-order optimality conditions

0 ≤ xf ⊥ cf − ∂u
∂xf
− xf ∂

2u
∂x2f
≥ 0

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model: oligopoly.mod

set FIRMS; # Firms in problem

param c {FIRMS}; # Unit cost

param alpha > 0; # Constants

param eta > 0;

var x {FIRMS} default 0.1; # Output (no bounds!)

var s = 1 + sum {f in FIRMS} x[f]^alpha; # Summation term

var u = s^(eta/alpha); # Utility

var du {f in FIRMS} = # Marginal price

eta * s^(eta/alpha - 1) * x[f]^(alpha - 1);

var dudu {f in FIRMS} = # Derivative

eta * (eta - alpha) * s^(eta/alpha - 2) * x[f]^(2 * alpha - 2) +

eta * (alpha - 1) * s^(eta/alpha - 1) * x[f]^(alpha - 2);

compl {f in FIRMS}:

0 <= x[f] complements c[f] - du[f] - x[f] * dudu[f] >= 0;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Data: oligopoly.dat

param: FIRMS : c :=

1 0.07

2 0.08

3 0.09;

param alpha := 0.999;

param eta := 0.2;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Commands: oligopoly.cmd

Load model and data

model oligopoly.mod;

data oligopoly.dat;

Specify solver and options

option presolve 0;

option solver "pathampl";

Solve complementarity problem

solve;

Output the results

printf {f in FIRMS} "Output for firm %2d: % 5.4e\n", f, x[f] > oligcomp.out;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Results: oligopoly.out

Output for firm 1: 8.3735e-01

Output for firm 2: 5.0720e-01

Output for firm 3: 1.7921e-01

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model Formulation

• Players select strategies to minimize loss
• p ∈ <n is the probability player 1 chooses each strategy
• q ∈ <m is the probability player 2 chooses each strategy
• A ∈ <n×m is the loss matrix for player 1
• B ∈ <n×m is the loss matrix for player 2

• Optimization problem for player 1

min
0≤p≤1

pTAq

subject to eT p = 1

• Optimization problem for player 2

min
0≤q≤1

pTBq

subject to eT q = 1

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model Formulation

• Players select strategies to minimize loss
• p ∈ <n is the probability player 1 chooses each strategy
• q ∈ <m is the probability player 2 chooses each strategy
• A ∈ <n×m is the loss matrix for player 1
• B ∈ <n×m is the loss matrix for player 2

• Complementarity problem

0 ≤ p ≤ 1 ⊥ Aq − λ1
0 ≤ q ≤ 1 ⊥ BT p− λ2
λ1 free ⊥ eT p = 1
λ2 free ⊥ eT q = 1

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model: bimatrix1.mod

param n > 0, integer; # Strategies for player 1

param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1

param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i

var q{1..m}; # Probability player 2 selects strategy j

var lambda1; # Multiplier for constraint

var lambda2; # Multiplier for constraint

subject to

opt1 {i in 1..n}: # Optimality conditions for player 1

0 <= p[i] <= 1 complements sum{j in 1..m} A[i,j] * q[j] - lambda1;

opt2 {j in 1..m}: # Optimality conditions for player 2

0 <= q[j] <= 1 complements sum{i in 1..n} B[i,j] * p[i] - lambda2;

con1:

lambda1 complements sum{i in 1..n} p[i] = 1;

con2:

lambda2 complements sum{j in 1..m} q[j] = 1;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model: bimatrix2.mod

param n > 0, integer; # Strategies for player 1

param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1

param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i

var q{1..m}; # Probability player 2 selects strategy j

var lambda1; # Multiplier for constraint

var lambda2; # Multiplier for constraint

subject to

opt1 {i in 1..n}: # Optimality conditions for player 1

0 <= p[i] complements sum{j in 1..m} A[i,j] * q[j] - lambda1 >= 0;

opt2 {j in 1..m}: # Optimality conditions for player 2

0 <= q[j] complements sum{i in 1..n} B[i,j] * p[i] - lambda2 >= 0;

con1:

0 <= lambda1 complements sum{i in 1..n} p[i] >= 1;

con2:

0 <= lambda2 complements sum{j in 1..m} q[j] >= 1;

Munson Numerical Optimization

Complementarity Problems
Mathematical Programs with Equilibrium Constraints

Other Models

Oligopoly Model
Bimatrix Games

Model: bimatrix3.mod

param n > 0, integer; # Strategies for player 1

param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1

param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i

var q{1..m}; # Probability player 2 selects strategy j

subject to

opt1 {i in 1..n}: # Optimality conditions for player 1

0 <= p[i] complements sum{j in 1..m} A[i,j] * q[j] >= 1;

opt2 {j in 1..m}: # Optimality conditions for player 2

0 <= q[j] complements sum{i in 1..n} B[i,j] * p[i] >= 1;

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Part V

Numerical Optimization IV: Extensions

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Global Optimization

I need to find the GLOBAL minimum!

• use any NLP solver (often work well!)

• use the multi-start trick from previous slides

• global optimization based on branch-and-reduce: BARON

• constructs global underestimators
• refines region by branching
• tightens bounds by solving LPs
• solve problems with 100s of variables

• “voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Derivative-Free Optimization

My model does not have derivatives!

• Change your model ... good models have derivatives!

• pattern-search methods for min f(x)
• evaluate f(x) at stencil xk + ∆M
• move to new best point
• extend to NLP; some convergence theory h
• matlab: NOMADm.m; parallel APPSPACK

• solvers based on building interpolating quadratic models
• DFO project on www.coin-or.org
• Mike Powell’s NEWUOA quadratic model

• “voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

• modeling discrete choices ⇒ 0− 1 variables

• modeling integer decisions ⇒ integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:

• branch (separate zi = 0 and zi = 1) and cut

• solve millions of NLP relaxations: MINLPBB, SBB

• outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & FilMINT on NEOS

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Portfolio Management

• N : Universe of asset to purchase

• xi: Amount of asset i to hold

• B: Budget

minimize u(x) subject to
∑
i∈N

xi = B, x ≥ 0

• Markowitz: u(x)
def
= −αTx+ λxTQx

• α: maximize expected returns
• Q: variance-covariance matrix of expected returns
• λ: minimize risk; aversion parameter

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Portfolio Management

• N : Universe of asset to purchase

• xi: Amount of asset i to hold

• B: Budget

minimize u(x) subject to
∑
i∈N

xi = B, x ≥ 0

• Markowitz: u(x)
def
= −αTx+ λxTQx

• α: maximize expected returns
• Q: variance-covariance matrix of expected returns
• λ: minimize risk; aversion parameter

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

More Realistic Models

• b ∈ R|N | of “benchmark” holdings

• Benchmark Tracking: u(x)
def
= (x− b)TQ(x− b)

• Constraint on E[Return]: αTx ≥ r

• Limit Names: |i ∈ N : xi > 0| ≤ K
• Use binary indicator variables to model the implication
xi > 0⇒ yi = 1

• Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N

•
∑
i∈N yi ≤ K

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

More Realistic Models

• b ∈ R|N | of “benchmark” holdings

• Benchmark Tracking: u(x)
def
= (x− b)TQ(x− b)

• Constraint on E[Return]: αTx ≥ r
• Limit Names: |i ∈ N : xi > 0| ≤ K

• Use binary indicator variables to model the implication
xi > 0⇒ yi = 1

• Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N

•
∑
i∈N yi ≤ K

Munson Numerical Optimization

Global Optimization
Derivative-Free Optimization

Integer Variables

Optimization Conclusions

Optimization is General Modeling Paradigm

• linear, nonlinear, equations, inequalities

• integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

• express optimization problems

• use automatic differentiation

• easy access to state-of-the-art solvers

Optimization Software

• open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)
• current solver limitations on laptop:

• 1,000,000 variables/constraints for LPs
• 100,000 variables/constraints for NLPs/NCPs
• 100 variables/constraints for global optimization
• 500,000,000 variable LP on BlueGene/P

Munson Numerical Optimization

	Numerical Optimization: Introduction
	Numerical Optimization I: Static Models
	Unconstrained Optimization
	Maximum Likelihood Estimation
	Solution Techniques

	Constrained Optimization
	Social Planning Model
	Sequential Quadratic Programming

	Other Models
	Life-Cycle Model
	Negishi Model
	Traffic Routing

	Numerical Optimization II: Optimal Control
	Discrete-Time Optimal Control
	Life-Cycle Saving Model
	Interior-Point Methods

	Continuous-Time Optimal Control
	Technology Penetration Model
	Discretize then Optimize

	Other Models
	Finite-Element Method

	Numerical Optimization III: Complementarity Constraints
	Complementarity Problems
	Arrow-Debreu Model
	Generalized Newton Methods

	Mathematical Programs with Equilibrium Constraints
	Endowment Economy
	Solution Techniques

	Other Models
	Oligopoly Model
	Bimatrix Games

	Numerical Optimization IV: Extensions
	Global Optimization
	Derivative-Free Optimization
	Integer Variables

