
Computing Supergame Equilibria

Kenneth L. Judd

Hoover Institution

Stanford, CA 94305

judd@hoover.stanford.edu

Sevin Yeltekin

KGSM-MEDS

Northwestern University

2001 Sheridan Rd.

Evanston, IL 60208

s-yeltekin@kellogg.nwu.edu

James Conklin

Lehman Brothers

New York, New York

This revision: September, 2000∗

Abstract. We present a general method for computing the set of supergame

equilibria in inÞnitely repeated games with perfect monitoring and public random-

ization. We present a three-step algorithm which constructs a convex set containing

the set of equilibrium values, constructs another convex set contained in the set of

equilibrium values, and produces strategies which support equilibrium values. We

explore the properties of this algorithm by applying it to familiar games. We Þnd

that the algorithm produces high quality approximations at moderate computational

cost.

Keywords: Computational methods, repeated games, Nash equilibrium

∗This work was supported by NSF grant SES-9012128, SES-9309613, and SES-9708991. This paper

is an extension and Þnal version of Conklin and Judd (1993). We gratefully acknowledge comments of

seminar participants at Northwestern University and SITE.

1

Computing Supergame Equilibria 2

1. Introduction

The nature of repeated interaction has been extensively studied in the repeated game

literature. The theory of repeated games has produced important qualitative results,

but it is difficult to apply the theory quantitatively. This paper presents methods for

computing the set of subgame perfect equilibria in inÞnitely repeated games with perfect

monitoring. Our approach is recursive, following the �self-generating set� constructions of

Abreu (1988), Abreu, Pearce and Stacchetti (1986, 1990), and Cronshaw and Luenberger

(1994). Our algorithm can quantitatively investigate many of the properties of the set

of all Nash equilibrium payoffs in inÞnitely repeated games. The method presented in

this paper is general, being applicable to a large variety of games studied in industrial

organization, contract theory, and dynamic policy analysis. Furthermore, the method can

be extended in many directions such as inÞnite-horizon games with state variables.

The recursive theory of supergames introduces the concept of self-generating sets of

payoffs to characterize the set of equilibria. The set of equilibrium values may not be well-

behaved. For example, Sorin (1986) studies an inÞnitely repeated Prisoner�s Dilemma

game and shows that its equilibrium value set is a square plus two line segments. In

particular, the equilibrium value set is neither convex nor star-shaped, and does not equal

the closure of its interior. One suspects that equilibrium values sets are often difficult to

approximate in a Þnitistic, computable fashion in any reliable way. To make the problem

tractable, we allow public randomization, as in Cronshaw and Luenberger (1994). This is

advantageous since the resulting set of equilibrium values is convex and convex sets can

be approximated in several ways. The numerical methods presented use efficient ways

to approximate the set-to-set mappings used in APS and Cronshaw and Luenberger and

their Þxed points, and also compute actions and strategies which support equilibrium

values.

Any convex set is characterized by its boundary. We can therefore approximate a

convex set by approximating its boundary. We choose piecewise linear methods for this

approximation, and argue that they are the best possible approximations given the nature

of repeated games and our objectives. We develop two methods that can produce �lower

bounds� to the true solution, that is, convex sets that are contained in the true solution;

we call these inner approximations. We also present an efficient method for construct-

ing outer approximations, that is, supersets of the true set of solutions. The ability to

Computing Supergame Equilibria 3

produce both inner and outer approximations is valuable since these approximations will

allow us to prove that some values can be achieved in equilibrium and prove that some

other values cannot be achieved in equilibrium. There will always be some values for

which we cannot determine whether they are equilibrium values, but our inner and outer

approximations typically leave only small amounts of ambiguity. We also want to know

the actions and strategies that support equilibrium values. To do this, we use ray meth-

ods. The Þnal algorithm consists of three steps which accomplish three tasks: construct

an outer approximation of the equilibrium value set, construct an inner approximation

of the equilibrium value set, and use a ray method applied to an inner approximation to

construct strategies. The complete algorithm produces much of the information we want

about equilibria in a supergame.

Our algorithm has properties which are unusual for numerical methods. It produces

both upper and lower bounds for the set of equilibria. Furthermore, we show that these

bounds are tight in many familiar games. This property is much better than usual for

computational methods. For example, methods for solving nonlinear equations, such as

Newton�s method, the Scarf method (1967), and homotopy methods (e.g., Eaves, 1972),

will produce an inÞnite sequence of approximations which converge to a true solution.

However, in real computations one needs to stop this sequence at some Þnite point without

knowing how far that point is from the true solution. Few numerical algorithms can even

construct a set which deÞnitely contains the true solution. The fact that we often get

tight lower and upper bounds on the set of equilibrium values means that our algorithm

often produces a proof of whether or not a value can be achieved in equilibrium and does

this for nearly all values of interest.

Our algorithm has strong approximation properties because it exploits monotonic-

ity properties of the crucial set-to-set operator, generally denoted B(W), deÞning self-

generating value sets. However, it has those strong properties only because the algorithm

is carefully constructed to preserve monotonicity. The methods we use appear to be the

best possible methods given the objective of constructing upper and lower bounds. Other

methods which don�t preserve monotonicity may be faster, but they are unlikely to be

reliable since the underlying operator is not necessarily continuous. Our constructions can

handle any Þnite-action, Þnite-player game without making any continuity assumptions

about the dependence of equilibrium value sets on the parameters of the game. Also, the

Computing Supergame Equilibria 4

algorithm is robust in that it does not need good initial guesses, whereas many nonlinear

equation algorithms such as Newton and Gaussian solution methods typically need good

initial guesses.

There are three basic reasons why we want reliable and fast algorithms. First, the

only way to convincingly demonstrate comparative dynamic or comparative static propo-

sitions would be to calculate hundreds or thousands of examples. Slow procedures would

be of little value in this case, and algorithms will too often fail and make one question

all the results. Second, more efficient methods will be able to analyze more complex eco-

nomic models. Third, we want algorithms which can conceivably be used for econometric

estimation of the underlying nonlinear models.

Speed and reliability will be particularly important in extensions of this algorithm to

more complex games, such as games with state variables and combinations of strategic

and competitive players. Atkeson (1991) extended the APS method to a game with a

state variable in the context of international borrowing and lending. APS and Atkeson

analyze games with large players, i.e players whose actions affect the choices of other

players. Games between a large player and a continuum of small players, mainly in

macroeconomic contexts, are studied in Phelan and Stacchetti (1999) and Sleet (1996).

They show that such environments can also be analyzed using APS methods. In these

dynamic contexts, the APS operator is viewed as a mapping between correspondences, or

equivalently, between the graphs of correspondences. In the repeated setting, described

in this paper, lotteries are introduced to guarantee the convexity of the payoff sets. In the

dynamic settings, lotteries only guarantee that the candidate payoff correspondences are

convex-valued. Consequently, a method of approximating convex-valued correspondences

is required before the APS approach can be numerically implemented in the dynamic

setting. Two such methods that utilize set-valued step functions are provided by Sleet

and Yeltekin (2000), with applications to international lending and a bilateral insurance

game with storage.

Section 2 describes the theory of supergame equilibria and its extension to include

public randomization. Section 3 discusses the methods for approximating convex sets.

Section 4 describes desirable features for approximations of the B(W) operator which is

the focus of Abreu-Pearce-Stacchetti theory, algorithms for approximating B(W), and

algorithms for computing V . Section 5 applies our algorithms to familiar games and

Computing Supergame Equilibria 5

demonstrates the effectiveness of our algorithms and the importance of various details.

Section 6 concludes.

2. Supergames and Characterization of Equilibrium Payoffs

We examine an N-player inÞnitely repeated game constructed from inÞnite repetition of

a static stage game. The actions of player i in the stage game are in Ai, i = 1, · · · ,N.
Elements of A ≡ A1 ×A2 × · · · ×AN represent all possible combination of player actions

and are called action proÞles. Player i�s payoff in the stage game will be Πi : A → R.

Abusing notation in the standard way, we deÞne a−i ≡ (a1, · · · , ai−1, ai+1, · · · , aN). The
payoff to the best response of player i to his opponents actions, a−i, is

Π∗i (a−i) ≡ max
ai∈Ai

Πi(ai, a−i).

We make the following standard assumptions.

Assumption 1: Ai, i = 1, · · · , N , is a Þnite set.

Assumption 2: The stage game has a pure strategy Nash equilibrium.

These assumptions limit the range of games we examine, but this is a natural begin-

ning for computing supergame equilibria. If we were to allow continuous strategies then

some of our approximation methods would break down and we would lose some strong

approximation properties. Even if we were to allow continuous strategies, any compu-

tation would only be able to examine a Þnite number of actions. We make Assumption

1 here to avoid issues better discussed in later work1. Assumption 2 is standard in the

supergame literature.

We construct the supergame S∞. The action space of S∞ is A∞ ≡ ×∞i=1A. We assume
that player i aims to maximize his discounted payoff

1− δ
δ

∞X
t=1

δtΠi(at)

where at is the action proÞle taken in period t. DeÞne the minimum and maximum

payoffs: Πi ≡ mina∈A Πi(a), Πi ≡ maxa∈A Πi(a). The supergame payoffs are contained

1Cronshaw (1997) generalized Conklin and Judd (1993) by examining the case of continuous strate-

gies. We will later discuss the reasons why his continuous strategy procedure does not have the strong

approximation properties which our algorithm does.

Computing Supergame Equilibria 6

in the compact set W = ×ni=1[Πi , Πi]. Let V P ⊂ W denote the set of all equilibrium

supergame payoffs.

Constructing subgame perfect equilibrium values sets involve approximating V P which

may be extremely complex. Fortunately, we can take a dynamic programming approach to

the problem, pioneered by APS and adapted for complete information games by Cronshaw

and Luenberger. The dynamic programming approach is illustrated in a simple example.

Suppose that there are two players, each with two actions, and that the stage game payoff

matrix is

C plays 1 C plays 2

B plays 1 b11, c11 b12, c12

B plays 2 b21, c21 b22, c22

where bij (cij) is player B�s (C�s) payoff if player B (C) plays i (j).

The key insight is that each stage of the repeated game can be represented as a

static game with payoffs equal to the stage game payoffs augmented by future payoffs.

The present value of future payoffs is called the continuation value. In a supergame

equilibrium the continuation values depend on the current play. SpeciÞcally, at any point

in an equilibrium the situation is equivalent to a one-shot game where B (C) receives a

discounted payoff of uBij (u
C
ij) in the future if player B plays i and C plays j in the current

stage for some uBij (u
C
ij). Let δ

∗ = 1− δ. Then at any point in time, the repeated game is
equivalent to the static game

C plays 1 C plays 2

B plays 1 δ∗b11 + δuB11, δ
∗c11 + δuC11 δ∗b12 + δuB12, δ

∗c12 + δuC12

B plays 2 δ∗b21 + δuB21, δ
∗c21 + δuC21 δ∗b22 + δuB22, δ

∗c22 + δuC22

Let G(u) denote the game with these augmented payoffs.

Since we are interested only in subgame perfect equilibria, each Nash equilibrium of

S∞ is a sequence of static equilibria to games of the form G(u) where the continuation

values u are elements of V P . Therefore, if v ∈ V P , then there is some one-shot action
proÞle, a, and some continuation values, uij = (uBij , u

C
ij) ∈ V, i, j = 1, 2, such that a

is a Nash equilibrium of G(u) and v is the corresponding payoff vector. We exploit the

self-referential aspect of V P : if v ∈ V P , then there are continuation values in V such that
v is the payoff of some augmented game constructed from continuation values in V P .

Computing Supergame Equilibria 7

This feature leads us to the methods used in APS and Cronshaw and Luenberger. The

key to Þnding the subgame perfect equilibrium payoffs of supergames is the construction

of self-generating sets. Intuitively, a setW ⊆ RN is self-generating if each value inW can

be supported by continuation values which themselves have values in W . The concept of

self-generation can be formalized by the construction of a map, BP (W). Suppose that

W is the set of possible payoffs tomorrow. Let BP (W) denote the set of payoffs possible

today using pure strategies and consistent with Nash play in the augmented game G(u)

for some u ∈W . BP (W) is formally deÞned by

BP (W) =
[

(a,w)∈A×W
{(1− δ)Π(a) + δw | ∀i(ICi), i = 1, 2} (1)

where

ICi ≡ ((1− δ)Πi(a) + δwi)− ((1− δ)Π∗i (a−i) + δwi) ≥ 0

is the incentive compatibility condition for player i, and

wi ≡ inf
w∈W

wi

is player i�s minimum possible continuation value in W . A value b is in BP (W) if there is

some action proÞle, a ∈ A, and continuation payoff, w ∈ W , such that b is the value for
players 1 and 2 of playing a today and receiving the continuation value w tomorrow, and,

for each i, player i will choose to play ai because he believes that to do otherwise will

yield him the worst possible continuation payoff, wi. Cronshaw and Luenberger (1994)

show that the largest Þxed-point of the mapping BP (W) is V P .

While this deÞnition of V is elegant and intuitive, there are important difficulties

associated with computing V P . The main problem is that V P can be difficult to represent

in a computer. To deal with these problems, we follow Cronshaw and Luenberger (1994)

and alter the supergame by including public randomization. More precisely, we assume

that in each repetition of the game there is a lottery, ew(a), depending on the actions
chosen by the players in that period, that will determine which Nash equilibrium will

be played in the next period. Intuitively, this is like having a �sunspot� determine the

continuation value since the randomization is a public randomization. Since the payoff is

separable over time, the set of possible continuation values of the game is the convex hull

of the set of values which can be supported by pure strategies. The strategies are still

Computing Supergame Equilibria 8

pure; it is only the continuation value which is randomized. Cronshaw and Luenberger

(1994) showed that the critical map for deÞning self-generating sets of the game with

public randomization is

B(W) = co
¡
BP (W)

¢
(2)

Theorem 1 reviews some obvious properties for B(W).

Theorem 1. The maps B and BP are monotone; that is, if W ⊇ W 0 then B(W) ⊇
B(W 0) and BP (W) ⊇ BP (W 0)

Proof. See Cronshaw and Luenberger.

While the main motivation for adding lotteries is to make the computation easier, it

does generalize the notion of subgame perfect Nash equilibrium in an appropriate and

interesting fashion. Since one aim of this research is to see what is possible in the absence

of contracting, it is natural to add this public randomizing device. The addition of lotteries

will often be inessential. In particular, if the set of equilibrium values without lotteries,

V P , is convex, then V P will also be the set of equilibrium values with lotteries, and our

algorithm will approximate the set of equilibria without randomization.2

We will use B(·) to construct the set of all possible supergame payoffs, V , of the game
with lotteries. Our algorithms will focus on constructing V , not V P , because V is convex.

The key properties of V are summarized in the following theorem:

Theorem 2. V , the set of equilibrium payoff values under public randomization, is con-

vex and satisÞes

V = B(V) =
[

W⊆W
W⊆B(W)

W =
[

W⊆W
W=B(W)

W (3)

Proof. See Cronshaw and Luenberger.

3. Piecewise Linear Approximations of Convex Sets

We need efficient ways to approximate convex sets in the computer since the value sets

in our games are convex. We also want to use approximations which give us useful

and relatively precise information about the approximation error. For these reasons we

2One could also further generalize the analysis to correlated equilibria. We do not pursue that gener-

alization here.

Computing Supergame Equilibria 9

Figure 1: Inner approximations

approximate convex sets with piecewise linear approximations of their boundaries. This

approach allows us to use only a Þnite amount of information to approximate a convex

set. Our presentation and Þgures focus on approximating two-dimensional convex sets,

such as W in Figure 1. However, all of the ideas generalize to Rn.

We will use only convex polytopes since they can be represented in a Þnite fashion

and Þt in well with other aspects of our algorithms. There are two basic ways to describe

convex polytopes. First, if W is a convex polytope, then for some Þnite set of vertices Z,

W = co(Z), the convex hull of Z. We can use Z to represent the convex polytope co(Z).

Second, W is the intersection of a Þnite number of half-spaces and can be represented as

a collection of linear inequalities. In this case W = ∩L`=1{z | g` · z 5 c`} where g` ∈ RN
is the gradient orthogonal to the face ` of W, and c` ∈ R is a scalar which we shall call
a level since it is the value of g` · z for any point z on face `. We shall use both ways,
vertices and pairs of gradients and levels, of representing convex polytopes.

We refer to two kinds of convex polytope approximations of convex sets W . First,

we deÞne an inner approximation. Suppose that we are given m points in Rn, Z =

{P1, ..., Pm} in a convex setW . For example, let Z = {A,B,C,D,E, F,G,H} in Figure 1.
The convex hull of Z, co (Z), is contained inW and has a piecewise hyperplanar boundary;

Computing Supergame Equilibria 10

it is a convex polytope. In Figure 1, the polygon ABCDEFGH is the boundary of co(Z).

Since co(Z) ⊆ W , we will call co(Z) the inner approximation to W generated by Z. The

inner approximation is better as we use more points in W and as they are closer to the

boundary of W . For example, the error in approximating W by ABCDEFGH is the

dark shaded area in Figure 1. The four-point approximation ACEG has a larger error

equal to the dark shaded area plus the light shaded area in Figure 1. The convex hull

of Z is also the best possible inner approximation since any convex set which contains Z

contains co (Z) and co (Z) is the largest convex set which is surely in W if all we know is

that Z ⊂W .

DeÞnition 3. If Z ⊂ W ⊂ Rn is a set of m points, then the inner approximation to W

generated by Z is co(Z).

Second, we describe the concept of an outer approximation. Suppose we are given m

points on the boundary of W , Z = {z1, ..., zm}, and a corresponding set of subgradients,
G = {g1, ..., gm}; that is, the hyperplane zi · gi = z · gi is tangent to W at zi, and the

gradients are oriented so that gi ·w 5 gi ·zi for w ∈W . This is illustrated in Figure 2 where
we graph the tangent plane and normal for W at zi = (xi, yi) and several other points.

The boundary of W has a gradient, gi = (si, ti), at each zi = (xi, yi). Each tangent

hyperplane divides Rn into two pieces; call the half-space containing W the interior half-

space. The outer approximation of W generated by (Z, R) is the intersection of the

interior half spaces of the supporting hyperplanes. The outer approximation we deÞne is

also the most appropriate one since it is the smallest convex set which surely contains W

given the information contained in (Z,G). DeÞnition 4 presents this idea formally.

DeÞnition 4. If Z is a set of m points on the boundary of a convex set W ⊂ Rn and

G ⊂ Rn a set of m corresponding subgradients oriented such that
¡
z` −w¢ · g` > 0 for

w ∈W , then the outer approximation of W generated by (Z,G) is

cW = ∩m`=1{z ∈ Rn | g` · z 5 g` · z`} (4)

To compute inner and outer approximations of a setW we need to compute boundary

points Z and subgradients G. There are two basic ways to compute inner approximations.

The ray procedure is illustrated in Figure 1. In R2, such as in Figure 1, let θ be the polar

coordinate angle with origin at vN . To Þnd an inner approximation of W we choose a

Computing Supergame Equilibria 11

Figure 2: A convex set and supporting hyperplanes

set of θ angles and Þnd where each ray at angle θ intersects the boundary of W . This

problem is a linear programming problem if W is a convex polytope. For W ⊂ Rn more
generally, we would choose a set of points on a unit sphere to deÞne rays. For example,

in Figure 1, we would specify a circle such as A0B0C0D0E0F 0G0H 0 (which here lies inside

of W but that is not necessary) and Þnd where the rays
−−−→
vNA0,

−−−→
vNB0, etc., intersect the

boundary of W . In any case, the collection of boundary points is then used to compute

an inner approximation.

An extremal procedure can be used to compute both an inner and outer approximation.

For any subgradient g ∈ Rn, any point z0 (there may be many such points) which solves
the maximization problem

max
z∈W

z · g (5)

is a boundary point of W ⊂ Rn with subgradient g. The problem (5) is a linear program-
ming program if W is a convex polytope, and a convex optimization problem in general.

The tangent hyperplane at the solution z0 is the plane z · g = z0 · g. By repeating this for
a variety of subgradients g, we can compute a collection of point-gradient pairs, (Z,G).

The resulting collection of boundary points Z can also be used to construct co (Z), an in-

ner approximation. Such an inner approximation is illustrated in Figure 3(a). The lightly

shaded region is the inner approximation and the darkly shaded area is the approximation

Computing Supergame Equilibria 12

Figure 3:

error. As we add more subgradients, the inner approximation grows to equal the set W .

We can also use (Z,G) in (4) to deÞne an outer approximation. Figure 3(b) displays

such an outer approximation for the convex set in Figure 2 where G = {−1, 0, 1}2. The
outer approximation is the dark plus light shaded region, and the approximation error is

the dark shaded area. The error is reduced and the outer approximation converges to W

as we use more subgradients.

Computing the convex hull of a set of points efficiently is not an easy problem. Graham

(1972) presents a simple method for sets in R2. For any Þnite set A ⊂ R2, Graham�s scan
Þrst picks a point in co(V) to be the origin (the average could be used) and sorts all

the points lexicographically by polar coordinates relative to that origin. It then scans the

point in counterclockwise order, eliminating points not in co(A) and leaving the vertices of

co(V) in counterclockwise order. The scan begins with the point v1which is the rightmost

point of A and is certainly a vertex of co(V). The scan examines successive triples of

consecutive points. Consider, for example, v1, v2 and v3. If v2 is a vertex of co(V) then

v1v2v3 must deÞne a reßex angle, that is, the internal angle must be less than 180 degrees.

A reßex angle forms a �left turn;� otherwise it is a �right turn.� The determinant, ∆, of

the matrix

∆ =

¯̄̄̄
¯̄̄̄
¯
v21 v22 1

v11 v12 1

v31 v32 1

¯̄̄̄
¯̄̄̄
¯

tells us if v1v2v3 is a left turn. If ∆ < 0 the internal angle is a right turn and, because

we are scanning in the counter-clockwise direction, the point v2 is not a vertex and is

Computing Supergame Equilibria 13

eliminated. If v2 is eliminated Graham�s scan next checks v1v3v4. Otherwise, Graham�s

scan then checks v2v3v4 to see if v3 should be eliminated. If v3 is eliminated, Graham�s

scan then checks v1v2v4 to see if v2 should be eliminated because if v2v3v4 is a right

turn then v1v2v4 may also be a right turn, putting v2 inside the face v1v4. This checking

continues until all successive triples comprise left turns. A more precise description of the

algorithm is presented in Graham (1972) and Preparato and Shamos (1989).

There are other methods for approximating convex sets but they are not suitable for

our purposes. For example, one may consider Fourier approximation methods to approxi-

mate the boundary ofW ⊂ R2 such as in Figure 1. Using a point w ∈W , such as the point
vN in Figure 1, as the origin, we could use polar coordinates to express the boundary of

W . More precisely, let r(θ) be the distance from vN to each point P on the boundary ofW

where θ is the angleAvNP . Since the boundary ofW is continuous, r(θ) is a continuous pe-

riodic function of θ, and has a Fourier series representation,
P∞
n=1 (an sinnθ + bn cosnθ).

We could obtain a Þnite-dimensional approximation br(θ) by Þnding a Þnite number of
points on ∂W , use the data to estimate a Þnite number of Fourier coefficients an and bn

of r(θ), and use the Þnite Fourier sum br(θ) = PN
n=1 (an sinnθ + bn cosnθ) to approxi-

mate ∂W . Unfortunately, the Fourier approximation scheme would not be as useful as

a piecewise linear approximation. First, the set deÞned by r 5 br(θ) may not be convex.
Second, it would almost surely be neither an inner nor an outer approximation ofW since

Fourier approximation methods are designed to give approximations which are good on

average with the error r(θ)− br(θ) alternating between positive and negative values. The
same problems would arise for polynomial or spline approximations of r(θ). Fourier ap-

proximations and most standard approximation schemes are unsuitable for our algorithms

since the inner and outer nature of our approximations is crucial to various monotonicity

properties we exploit.

The methods we presented above are the most suitable ones for our purposes and make

the most efficient use of available information. If all you know is that Z is a subset of W ,

then all you can conclude is that co (Z) ⊂W ; no other inference is possible. Furthermore,
if you know that Z is a subset of ∂W with corresponding subgradients in G, then all you

can conclude is that the outer approximation based on (Z,G) contains W .

Computing Supergame Equilibria 14

4. Approximations of B (W) and V

We now combine our convex approximation ideas for sets to construct inner and outer

approximations of the B operator. Theory tells us that for any set W 0 ⊇ V , the sequence
of sets {Wk}∞k=0 deÞned by Wk+1 = B(Wk) converges to V . Direct application of this

technique, however, poses several computational issues. First, we must approximate the

convex sets to which we apply B(.). We focus on sets which can be approximated by the

methods discussed in the previous section. Second, we need to approximate B. Even if

W has a Þnite representation, its image B (W) possibly involves all pairings of actions

with all possible continuation values in W . Section 3 described efficient ways to represent

convex sets of inÞnite points. We now make use of that general discussion to choosing

how, given W , we construct B (W) efficiently.

Unfortunately, there is no reason to believe that B (W) is continuous in any topol-

ogy relevant for computational purposes. This implies that any procedure which tries

to approximate B or its Þxed points needs to proceed carefully to cope with possible

discontinuities. We Þrst deÞne useful kinds of approximation of B (W) which satisfy

desirable properties, and then provide details for constructing a few examples of good

approximations to B(W).

4.1. Monotone Approximations of B (W). The deÞnition of B (W) in (2) is not an

operational deÞnition since it examines an inÞnite collection of w ∈W . The critical prop-
erty of B for our purposes is that it maps convex sets to convex sets and that it is mono-

tone. In particular, B (W) maps the collection of setsW = {W ⊂ Rn|W convex, W ⊂W}
into itself. We are interested in two kinds of approximations of B(·) which preserve critical
properties. We deÞne inner and outer monotone approximations of the B(·) operator.

DeÞnition 5. A mapping BI :W→W is an inner monotone approximation of B if

1. for all W ∈W, BI (W) ⊆ B (W), and

2. for all W,W 0 ∈W, if W ⊆W 0 then BI (W) ⊆ BI(W 0)

DeÞnition 6. A mapping BO :W→W is an outer monotone approximation of B if

1. for all W ∈W, BO (W) ⊇ B (W), and

2. for all W,W 0 ∈W, if W ⊆W 0 then BO (W) ⊆ BO(W 0)

Computing Supergame Equilibria 15

The deÞnitions of inner and outer monotone approximations directly imply Lemma 7,

which states that BO and BI inherit some properties of B.

Lemma 7. Suppose BI(·) is an inner monotone approximation of B(·) and BO(·) is an
outer monotone approximation of B(·). Let V be the equilibrium value set. Then the

maximal Þxed point of BO contains V and V contains the maximal Þxed point of BI .

More precisely,

1. if W0 ⊇ V then BO(W0) ⊇ BO(BO(W0)) ⊇ · · · ⊇ V , and

2. if W0 ⊇ V then BI(W0) ⊇ BI(BI(W0)) ⊇ · · · , and V ⊇ ∩∞n=1(BI)n(W0).

Lemma 7 implies Lemma 8, which presents a sufficient condition for W ⊂ V . In

particular, if there is some inner monotone operator BI such that W ⊂ BI (W) then

W ⊂ V . This also gives us a sufficient condition for a point w to be an equilibrium value

since w is an equilibrium value if w ∈W for some W satisfying Lemma 8.

Lemma 8. Suppose BI is an inner monotone approximation of B. If W ⊂ BI(W) then
BI(W) ⊂ BI(BI(W)) ⊆ · · · ⊆ V.

The concepts of inner and outer monotone approximations deÞne the critical properties

we believe any Þnite-dimensional approximation to B (W) should satisfy. Lemmas 7 and

8 show that these properties are sufficient for computing reliable approximations to V .

We suspect that these properties are also close to being necessary since monotonicity is

the key property of B (W) used in theoretical analyses. We now present three examples

of approximations to B (W) which satisfy these monotonicity properties.

4.2. Hyperplane Outer Approximation Method. We Þrst use the tangent hyper-

plane approach to convex set approximations to construct outer monotone approximations

of B (W). Since we know that the value set V is convex and that B(W) is convex for

any W , we can restrict our analysis to convex W . The key to approximating B (W) is to

Þx some subgradients H ⊂ RN (we call them search subgradients) and locate boundary

points x of B(W) where the subgradient of B(W) at x is in H. The idea is to deÞne

an outer monotone approximation of B, BO : W→W, which takes convex polytopes as
input and produces a convex polytope which surely contains B(W). We then iterate

BO until successive iterates are close. By monotonicity, this iterate contains V . Since the

approximation of B(W) is distinct from the computation of V , we discuss them separately.

Computing Supergame Equilibria 16

Algorithm 1: Outer Monotone Approximation of B(W)

Parameters: Search subgradients: L subgradients H = {h1, ..., hL)} ⊂ RN

Input: Description ofW : Approximation subgradients, G = {g1, ..., gM)} ⊂ RN , and levels,
C = {cm|m = 1, ..,M} ⊂ R such that W ≡ ∩M`=1{z | gm · z 5 cm}.

Step 1: Find extremal points of B(W). For each h` ∈ H:

(a) For each a ∈ A, Þnd optimal feasible equilibrium value in the h` direction

assuming that action a is the current action proÞle; that is

c`(a) = maxw h` · [(1− δ)Π(a) + δw]
(i) w ∈W
(ii) (1− δ)Πi(a) + δwi ≥

(1− δ)Π∗i (a−i) + δwi, i = 1, ..,N

(6)

where c`(a) = −∞ if there is no w satisfying the constraints in (6).

(b) Choose best action proÞle a ∈ A, by computing c+` = max {c`(a)|a ∈ A}

Output: BO(W ;H) = W+, where levels are collected in C+ = {c+1 , · · · , c+L}, the set of
approximation subgradients for W+ is H, and W+ = ∩L`=1{z | g` · z 5 ck+1` }

Algorithm 1 presents the outer approximation hyperplane method for approximating

B(W). We Þrst specify the search gradients H which are parameters of the approxima-

tion. The approximation presumably improves as we use larger sets H but the algorithm

will take longer. The input of Algorithm 1 must be a Þnitistic description of W . For

this algorithm, this description is a list of gradients (which we will call approximation

subgradients since they approximate the inputted set W) and levels..

The key computation occurs in Step 1. SpeciÞcally, for each search subgradient h`

and action proÞle a, Step 1a Þnds a continuation value w ∈ W which makes a incentive

compatible and maximizes a weighted sum of player payoffs where the weights are given

Computing Supergame Equilibria 17

by h`; if there is no such w then we set the value of the problem to be −∞. Examination
of (6) shows that it is a linear programming problem. The objective is linear in w, the

choice variable. Since a is Þxed, the incentive compatibility constraints in (ii) are linear

in the continuation payoff w. Since the input W is a convex polytope, (i) is also a set of

linear constraints using the inputted approximation subgradients G and hyperplane levels

C to describe the constraint w ∈ W . Therefore, (6) is a linear programming problem.
This allows us to exploit existing linear programming code, which essentially checks a

Þnite number of vertices to Þnd the maximum. Therefore, the approximation error in

solving (6) is the same order as machine epsilon, which is about 10−16 on most current

machines using double precision arithmetic.

Step 1a is executed for each h` ∈ H and action proÞle a ∈ A. For each h` ∈ H, Step
1b picks that action proÞle, a∗` , which produces the largest weighted payoff, denoted c

+
` ,

in Step 1a. Suppose that w∗` is the continuation value supporting a
∗
` . The construction in

Step 1 implies that the hyperplane h`·z = c+` is tangent toB(W) at w = (1−δ)Π(a∗`)+δw∗` ,
and that every point in z ∈ B(W) satisÞes g` · z 5 c+` .
Step 1 constructs such a hyperplane for each search subgradient h` ∈ H. The output

step then collects the hyperplanes constructed in Step 1 to construct a description of

the output, W+. Since the set of search subgradients in Step 1 is H, the approximation

subgradient set for W+ is H. The hyperplane levels are collected in C+. The set W+

deÞned in Step 2 is the output BO(W ;H) and contains B(W). BO(W ;H) is clearly

monotone in W . Therefore, BO(W,H) is an outer monotone approximation of B(W). It

is also antimonotone in H in that if H ⊂ H 0 then BO(W ;H 0) ⊂ BO(W ;H). Lemma 9
summarizes the key properties of BO(W ;H).

Lemma 9. For any set of subgradients H ⊂ RN ,

1. BO(W ;H) is an outer monotone approximation of B(W);

2. if H ⊂ H0 then BO(W ;H 0) ⊂ BO(W ;H)

Proof. The equations deÞning Algorithm 1 show that it computes points on the

boundary of B(W) with subgradients H. Since Step 2 uses an outer approximation

construction, BO(W ;H) ⊃ B(W). If W 0 ⊂ W, the only part of (6) which differs for

W 0 6= W is the list of constraints implicit in (i). Since they are tighter for W 0 ⊂ W ,

the solution for W 0 will produce smaller c`(a) results, smaller values of c+` which in turn,

Computing Supergame Equilibria 18

since the approximation subgradients of W+ are unaffected, produce smaller output sets.

Therefore, BO(W ;H) ⊂ BO(W 0;H). Part 2 is similarly obvious.

We next use our B(W ;H) approximations in an algorithm to produce an outer ap-

proximation of V . Algorithm 2 displays the outer hyperplane procedure. Step 0 initializes

the problem by choosing a set of search subgradients H and an initial guess W 0.

Algorithm 2: Outer Hyperplane Algorithm for Approximating V

Step 0: Initialize elements and construct initial guess W 0 ⊃W

(a) Subgradients: Choose L search subgradients H = {h1, ..., hL)} ⊂ RN

(b) Points: Select boundary points Z0 = {z01 , · · · , z0L)} ⊂ RN .
(c) Levels: compute hyperplane levels c0` = g

0
` · z0` , ` = 1, .., L, and collect levels in

C0

(d) DeÞne W 0: W 0 = ∩L`=1{z | g` · z` 5 c0`}

Step 1: Construct Wk+1 = BO(Wk;H) where Ck+1 = {ck+11 , · · · , ck+1L } deÞne Wk+1 in

Wk+1 = ∩L`=1{z | g` · z 5 ck+1` }

Step 2: Stop if Wk+1 is close to Wk. SpeciÞcally, stop if max`
¯̄
ck+1
`

− ck
`

¯̄
< ²; else go to 1.

Step 0 constructs an initial guess which contains W which contains V . Step 1 is the

key iteration, computing successive iterates of B(W ;H). Algorithm 2 checks the stopping

criterion, which is a key part of any iterative algorithm. After the initial guess, each face

of each iterate has a normal in H, and each iterate will be of the form ∩L`=1{z | g` · z` 5
c`}. The stopping criteria in Step 2 measures the difference between Wk and Wk+1 by

computing the differences in the levels ck` . If the levels in C
k and Ck+1 are close then Wk

and Wk+1 are close in the Hausdorff metric since the faces of Wk and Wk+1 are parallel

and the differences between Ck and Ck+1 equal the distances between the parallel faces.

We stop the algorithm when the maximal change in the c` is small. In our examples

Computing Supergame Equilibria 19

below we set ² ≥ 10−5, choices which produce four-digit or greater accuracy. This may

be more demanding than some require, but our goal with these examples is to show the

reader the kinds of problems which this algorithm can accurately handle. Many possible

improvements on Algorithm 2 are suggested by nonlinear equation theory. For example,

we could use Gauss-Seidel methods and still maintain all features of the outer hyperplane

method. We leave the development of these ideas to future work.

Lemma 10 shows that the outer hyperplane approximation method does stop at some

Þnite time. This is an important property not true of many numerical methods, such as

Newton�s method.

Lemma 10. The outer hyperplane method will stop at some Þnite iteration and produce

a set which contains V .

Proof. Since H is the approximation subgradient set for all iterates, Algorithm 2

deÞnes a function Ψ : RL → RL mapping the hyperplane levels Ck for Wk to hyperplane

levels Ck+1 for Wk+1. The iterates of Algorithm 2 form a sequence of closed sets, each

iterate a closed subset of the previous iterate. Therefore, the sequence of sets converges

to a limit set in the Hausdorff norm. Similarly, the iterates Ck are monotone in that

ck` < ck+1` (ck` > ck+1`) ⇒ ck+1` < ck+2` (ck+1` > ck+2`) which in turn implies that each ck`

sequence converges monotonically to some limit. Therefore, for any ² > 0, the maximal

change in the c` levels will be less than ². The Þnal iterate contains V since the initial

guess contains V and BO(W ;H) is an outer monotone approximation of B(W).

We need to be clear about the proper uses of the outer hyperplane approximations of

V produced by the outer hyperplane algorithm. The Þnal iterate, W ∗, will contain V . It

may not be a good approximation of V sinceW ∗ may contain points not in V . Therefore,

we can only conclude that if w is not in W∗ then w is not an equilibrium value of the

supergame. We cannot say anything about any point in W ∗. The inner approximation

methods presented below are necessary to produce points which are equilibrium values.

A similar outer hyperplane approximation method is examined in Cronshaw (1997),

who generalizes Conklin and Judd (1993) by including continuous strategy spaces. The

generalization to continuous strategies is clear since the key optimization problem for each

Computing Supergame Equilibria 20

h` in Step 1 is really

c` = maxw,a h` · [(1− δ)Π(a) + δw]
(i) w ∈Wk

(ii) (1− δ)Πi(a) + δwi ≥ (1− δ)Π∗i (a−i) + δwi, i = 1, .., N
(7)

The optimization problem in (7) is nonlinear because a is free, but it is a linear program-

ming problem for a Þxed a. Our Step 1 exhaustively examines all possible action proÞles

a ∈ A and then picks the best result. This exhaustive procedure will Þnd the true solution
but is not possible with continuous actions. Therefore, the Cronshaw scheme may solve

(7) with some nontrivial error. Since the objective in (7) can be a complicated nonlinear

function of a, no optimization scheme can be relied on to Þnd the true solution. When

there is a continuum of actions a, solutions to (7) will have some numerical error. There-

fore, the approximation of B(W) may miss some points inside the true B(W), and violate

the outer monotone approximation property. This can be a particularly vexing problem

in games since there may be multiple local solutions to (7), forcing one to use global opti-

mization methods. There may be cases where one can reliably compute solutions to (7),

but that would necessarily rely on special properties of the game. Since we want to present

an algorithm applicable to any game and be sure that iterations of the approximation to

B(W) will always contain V , we stay with Þnite actions. Cronshaw also uses his algorithm

to compute equilibrium strategies. This is somewhat speculative since we only know that

the output contains V , not that the boundary points of the outer approximation are in

V . Therefore, Cronshaw�s computations of equilibrium actions and strategies may not be

valid. Since we want to compute some equilibrium values and actions, we next present

inner approximation methods.

4.3. Inner Hyperplane Approximation Method. We next use convex set approx-

imation methods to construct an inner approximation to B(W) for convex polytopes W

and an inner approximation to V . The main part of the algorithm is the same as the

outer approximation; the difference lies in the way the convex set is constructed in each

iteration and the information we need to record at each step. For the outer approxima-

tion, the faces of the outer approximation to B(W) are the tangent hyperplanes. For

the inner approximation, the approximation to B(W) is the convex hull of the boundary

points found in Step 1 of Algorithm 1, and the faces must be constructed by a procedure

Computing Supergame Equilibria 21

which constructs a convex hull. We then use inner approximations of B(W) to construct

an inner approximation of V .

Algorithm 3 deÞnes the monotone inner approximation BI(W ;H). We Þrst choose

the set H of search subgradients. The inputs for Algorithm are the inputs for Algorithm

1 plus a set of vertices Z such that W = co(Z). Step 1a of Algorithm 3 also solve (6) and

records both the maximized objective c`(a) and the maximizing choice of continuation

value, w`(a). Step 1b then Þnds that action which maximizes the h`-weighted payoffs,

and records both the maximizing action, a∗` , as well as the maximal weighted payoff, z
0
`.

Step 1c collects the z0` points into Z
0, which are all in B(W). Since we want an inner

approximation, we can only conclude that co(Z0) ⊂ B(W). Therefore, co(Z0) is our inner
approximation, which we call W+.

Step 1 describes W+ in terms of Z0. This is not an adequate representation since we

often need to describe W+ in terms of its faces. Therefore, Step 2 Þrst eliminates those

vertices of Z0 which are not vertices of W+. In R2 we use Graham�s scan to do this.

The result, Z+, is the set of vertices of W+. Step 2 then computes the approximation

subgradients, G+, and hyperplane levels, C+, which deÞne the faces of W+. In R2 this

is trivial once Graham�s scan has produced the vertices in counterclockwise order, but

is a more substantive problem in general. The output consists of the sets G+, C+, and

Z+. Algorithm 3 essentially takes input (G,C,Z) and produces output (G+, C+, Z+).

The input Z is not necessary for computing B(W ;H) but we keep the vertices since the

convergence criterion in Algorithm 4 needs them.

Computing Supergame Equilibria 22

Algorithm 3: Monotone Inner Hyperplane Approximation of B(W)

Parameters: Choose L search subgradients, H = {h1, ..., hL)}

Input: Description ofW : Approximation subgradients, G = {g1, ..., gM)} ⊂ RN , and levels,
C = {cm|m = 1, ..,M} ⊂ R such that W ≡ ∩M`=1{z | gm · z 5 cm}, and vertices
Z = {z1, · · · , zM)} such that W = co(Z).

Step 1: Find extremal points of B(W). For each search subgradient h` ∈ H:

(a) For each a ∈ A, solve

c`(a) = maxw h` · [(1− δ)Π(a) + δw]
(i) w ∈W
(ii) (1− δ)Πi(a) + δwi ≥

(1− δ)Π∗i (a−i) + δwi, i = 1, ..,N

(8)

where c`(a) = −∞ if there is no w satisfying the constraints. Let w`(a) be a

w value which solves (8).

(b) Compute value of best action proÞle a ∈ A and corresponding continuation

value:

a∗` = argmax {c`(a)|a ∈ A}
z0` = (1− δ)Π(a∗`) + δw`(a∗`)

(c) Collect set of vertices of convex hull: Z
0
= {z0`|` = 1, ..., L}, and deÞne W+ =

co(Z0).

Step 2: Compute Z+ = {z0 ∈ Z0 |z0 ∈ ∂W+}, and Þnd subgradients G+ = {g+1 , ..., g+M+}
and constants C+ = {c+1 , ..., c+M+} such that co(Z+) = ∩M+

`=1{z | g+m · z 5 c+m} =W+

Output: The result BI(W ;H) = W+ is represented by approximation subgradients, G+,

levels C+, and vertices Z+.

Computing Supergame Equilibria 23

Lemma 11 presents the basic properties of Algorithm 3. The operators BI(W ;H) and

BO(W ;H) are similar except that BI(W ;H) is monotone increasing in H.

Lemma 11. For any set of subgradients H ⊂ RN ,

1. BI(W ;H) is an inner monotone approximation of B(W);

2. if H ⊂ H0 then BI(W ;H) ⊂ BI(W ;H 0)

Proof. Part 1 follows from the same arguments made in Lemma 9. Part 2 follows

from the observation that increasing the number of search gradients in Algorithm 3 in-

creases the number of vertices computed, which enlarges the convex hull of the computed

vertices.

Our inner approximation algorithm for approximating V is presented in Algorithm 4.

It Þrst Þxes the search subgradients H and then iterates BI(W ;H). As in Algorithm 2,

we need to deÞne a concept of two sets being close for a stopping rule, but we cannot

just look at the Ck sets since the approximation subgradients for Wk and Wk+1 can be

different. We use a norm based on the vertices. If Wi = co(Zi), i = 1, 2, where the Zi are

Þnite sets, then the distance between W1 and W2 is deÞned to be

d(Z1, Z2) = max

½
max
z1∈Z1

min
z2∈Z2

kz1 − z2k , max
z2∈Z2

min
z1∈Z1

kz1 − z2k
¾

The Hausdorff distance between co(Z1) and co(Z2) is bounded above by d(Z1, Z2) because

each face of co(Zi) is a convex combination of the vertices in Zi. Therefore, two sets close

in d(., .) is be close in the Hausdorff metric. The details of the algorithm for the inner

approximation are in Algorithm 4.

Computing Supergame Equilibria 24

Algorithm 4: Inner Hyperplane Approximation Algorithm for V

Step 0: Initialize elements:

(a) Search subgradients: Choose L search subgradients H = {h1, ..., hL)}.
(b) Vertices: Select vertices, Z0 = {z01 , · · · , z0M}, for initial guess W 0 ≡ co(Z0).

(c) Hyperplanes: DeÞne the gradients, G = {g01, ..., g0M)}, and levels, C0 = {c0m|m =

1, ..,M}, which deÞne W 0 in W 0 = ∩M`=1{z | g0m · z0m 5 c0m}.

Step 1: Construct Wk+1 = BI(Wk;H) with vertices Zk+1 = {zk+11 , · · · , zk+1M }.

Step 2: If d(Zk+1, Zk) < ², set W I∗ =Wk+1 and stop; else set k = k + 1 and go to Step 1.

Lemma 12 states the key properties of the inner hyperplane method.

Theorem 12. The inner hyperplane method for V will stop at some Þnite iteration. The

limit point of the iterations Wk+1 = BI(Wk;H) is a subset of V .

Proof. The Þrst claim follows from the same arguments used in Theorem 10. The

second claim is true since the limit of
¡
BI
¢k
(W ;H) is a Þxed point of BI(W ;H) and

BI(V ;H) ⊂ B(W).
The result for the inner hyperplane method is not as good as it was for the outer

hyperplane method since the output of Algorithm 4 may contain points not in V . This is

not satisfactory since we want to construct a set which we can prove to be a subset of V .

Corollary 13 presents a computable sufficient condition for Wk ⊂ V for some k in Step

1 of Algorithm 4. It follows from Lemmas 8 and 11 and will be used below to construct

subsets of V .

Corollary 13. Consider the sequence Wk+1 = BI(Wk;H). If for some k Wk ⊂ Wk+1,

then for all k0 > k, Wk0 ⊂ V .

Computing Supergame Equilibria 25

4.4. Inner Ray Approximation Method. The hyperplane procedures produce in-

ner and outer approximations of the equilibrium value set, but they produce limited

information about the actions and strategies which support those values. We often want

to know equilibrium actions and strategies that support particular points in V to under-

stand an equilibrium, information not provided by the hyperplane procedures. Also, we

used a public randomizing device to make the equilibrium value sets convex. We often

want to know if the lotteries are part of an equilibrium or if an equilibrium value can be

supported without randomization.

We introduce a ray procedure which takes a set W and produces an inner approxima-

tion, W 0, of B(W) together with information about the actions a ∈ A and continuation
values inW which will support particular values of interest inW 0, not just at the vertices

if W 0. Our ray procedure begins with an a priori known value w0 ∈ B(W); a natural
generic choice would be a Nash equilibrium value vN , but the geometry of B(W) may

suggest better choices for particular games. This is the weakness of the ray method since

it may be difficult to Þnd a good choice for w0 which allows B(W) to be approximated

efficiently. The hyperplane approach is better in this regard. However, the ray method

will be able to Þnd actions and strategies corresponding to particular points on ∂B(W),

a task which hyperplane methods do not accomplish. Therefore, we need to develop both

methods.

The ray procedure uses the fact that any ray originating from w0 ∈ B(W) intersects
the boundary of B(W) exactly once. Algorithm 5 presents the inner ray procedure for

approximating B(W). We want to approximate B(W) in the same way that W is ap-

proximated in Figure 1, where w0 here plays the role of vN in Figure 1. Therefore, the

Þrst step chooses the parameters w0 and the points M on a sphere which deÞne the rays,

just as the points A0, B0, etc., deÞned rays from the origin vN in Figure 1. The inputs for

Algorithm 5 are the same as for the inner hyperplane approximation method in Algorithm

3.

Computing Supergame Equilibria 26

Algorithm 5: Inner Ray Approximation of B(W)

Parameters: Origin, w0 ∈ B(W), and M points, Θ ⊂ RN , on the unit sphere.

Input: Description ofW : Approximation subgradients, G = {g1, ..., gM)} ⊂ RN , and levels,
C = {cm|m = 1, ..,M} ⊂ R such that W ≡ ∩M`=1{z | gm · z 5 cm}, and vertices
Z = {z1, · · · , zM)} such that W = co(Z).

Step 1: Find extremal points of B(W). For each θ` ∈ Θ:

(a) For each action proÞle a ∈ A solve

λ`(a) = maxλ,w λ

(i) w = δ−1[(w0 + λθ`)− (1− δ)Π(a))] ∈W
(ii) (1− δ)Πi(a) + δwi ≥ (1− δ)Π∗i (a−i) + δwi, ∀i
(iii) λ ≥ 0

(9)

where λ`(a) = −∞ if there is no w satisfying the constraints.

(b) Set λ∗` = maxa∈A λ(a), a∗` = argmaxa∈A λ(a), and z
0
` = w

0 + λ∗`θ`.

(c) Collect set of vertices of convex hull: Z
0
= {z0`|` = 1, ..., L}, and deÞne W+ =

co(Z0)

Step 2: Compute Z+ = {z0 ∈ Z0 |z0 ∈ ∂W+}, and Þnd subgradients G+ = {g+1 , ..., g+M+}
and constants C+ = {c+1 , ..., c+M+} such that co(Z+) = ∩M+

`=1{z | g+m · z 5 c+m} =W+

Output: The result BI(W ;H) = W+ is represented by approximation subgradients, G+,

levels C+, and vertices Z+. The point z0` ∈ Z+ on the ray
−−→
w0θ` is supported by

action proÞle a∗` and continuation value δ
−1[z0` − (1− δ)Π(a∗`)].

Step 1 in Algorithm 5 examines, for each θ ∈ Θ, the direction −−→w0θ. It Þnds the
intersection of

−−→
w0θ with ∂B(W) by maximizing λ along the line w0 + λθ` subject to

λ ≥ 0 and the constraints in (9). If w0 ∈ B(W) equals w0 + λθ` and is supported by a
current action a and continuation value w, then w = δ−1[(w0 + λθ`) − (1 − δ)Π(a))] is

Computing Supergame Equilibria 27

a linear restriction on w and λ. Since the input describes W as an intersection of half-

planes, the condition w ∈W is described by set of constraints linear in w. The incentive

compatibility constraints in (ii) are linear in w. Therefore, (9) is a linear programming

problem. For some a there will be no solution since no promise w ∈ W can support

action a today; in those cases we set λ`(a) = −∞. Since w0 ∈ B(W) there will always
be some a such that (9) has a meaningful solution (even if it is λ = 0). Step 1b Þnds

the a ∈ A yielding the maximal λ`(a), denoted λ
∗
` , along with a supporting action a

∗
`

and a point z0` in B(W). We do this for each direction θ` ∈ Θ. Step 2 then deÞnes the
next iterate to be the convex hull of the z0` points constructed in Step 1, and records

the actions and supporting continuation values. After the vertices are determined, the

inner ray approximation proceeds by Þnding the piecewise linear functions that deÞne the

boundary of the new set.

Iterations of the ray procedure in Algorithm 5 can be used to produce an inner ap-

proximation to V . The procedure follows Algorithm 4 except to use the ray method in

Algorithm 5 for BI(W ;H) instead of the inner hyperplane method of Algorithm 3; we

will call this the inner ray approximation algorithm for V . Since the details are clear, we

do not present a formal listing here. This was the method initially developed in Conklin

and Judd (1993).

4.5. Computing Actions and Strategies. The ray method for computing an inner

approximation has the additional advantage of also providing the actions and continuation

values for any point of B(W). We now indicate precisely how we derive actions and

strategies once we have found an inner approximation. Suppose that we have found

W I ⊂ V and want to determine how a certain point x ∈ ∂W I is supported. We then

choose some point w0 in the interior of W I and apply Step 1 of Algorithm 5 using the

ray deÞned by w0 + λ(x− w0) for λ > 0, and record the action proÞle and continuation
value that yields the weighted maximum payoffs to the players. If the maximal point is

x, then x is supported by a pure strategy; otherwise, x ∈ ∂W I because it is a convex

combination of vertices of W I which are supported by pure strategies. Of course, there

may be multiple solutions; our programs make no attempt to list all strategies. Since

one can also identify the actions associated with worst punishment payoffs, strategies can

be constructed. In the subsequent sections with speciÞc application of our algorithms to

familiar games, we also provide sample action paths and strategies constructed in this

Computing Supergame Equilibria 28

manner.

The inner hyperplane method can also determine action choices at the vertices of

B(W ;H). As in the ray method one simply keeps record of the action pair that yields the

highest discounted payoff, weighted by the normal vector. However, the equilibrium values

determined by the hyperplane method are solutions to linear programming problems and

these solutions always correspond to the vertices of the polygon being estimated. There-

fore even for different search subgradients, or weights on players discounted payoff, the

equilibrium values computed are often the same, rendering it difficult to examine actions

associated with points on ∂B(W ;H) other than the vertices. For example, with the ray

method we are able to identify the actions that correspond to the symmetric equilibrium

value on the efficient frontier of a value set (that is, the point on ∂B(W ;H) on the 45

degree line), whereas the hyperplane method can do this only if that point is a vertex

of B(W ;H). It is therefore advantageous to use the ray method for determining sample

action paths and strategies.

The ray procedure has two problems. First, it requires that we know a point in V . This

is not a problem for the static games we consider here, but it is a problem for extensions

such as games with state variables where computing any dynamic Nash equilibrium may

be as difficult as solving for the equilibrium value set of all Nash equilibria. Second,

the one point which we know to be in V may be a poor choice around which to build

an approximation of V . For example, if vN is the minmax value, then vN will lie on

the boundary of V and many rays from vN to ∂V will have length zero, and Step 1 in

Algorithm 5 will be pointless for many rays θ ∈ Θ. For these reasons, we emphasize the
role of inner and outer hyperplane approximations of the set V and focus on the role of

the inner ray procedures for computing equilibrium actions and strategies.

4.6. Algorithm for Approximating V and Equilibrium Strategies. We have

discussed three algorithms which accomplish three distinct tasks. The convex polytope

algorithm in Algorithm 6 integrates these three simple algorithms into a complete convex

polytope algorithm for approximating V . We useW, the largest possible set of equilibrium
values, as our initial guess. We next choose the search subgradients, H, used by the outer

and inner hyperplane approximations of B(W). We use a uniformly distributed set of

gradients since we do not know have any information indicating any particularly useful

subgradients. We also choose a stopping criterion; one should try a loose criterion Þrst and

Computing Supergame Equilibria 29

then tighten it if the Þnal error bound exceeds some acceptable level. Step 2 computes the

outer approximation, WO, by iterating BO(W ;H) until the stopping criterion is satisÞed.

We then useWO as the initial guess for iterations of BI(W ;H) until the stopping criterion

is satisÞed. The result, W II , is not necessarily an inner approximation since the iterates

of BI(W ;H) may never have satisÞed Corollary 13. We then execute a �bounce step,�

looking for a set which satisÞes the assumptions in Lemma 8. We do this by reducing

W II and then see if it bounces back when we compute B(W II). This is the one place

where there is no sureÞre way to proceed. We were successful in all of our examples, but

this may have been a matter of luck. In particular, we shaved off a small area in the

southeast and/or northwest corners of the Pareto frontier of W II to construct a slightly

smaller set, W 0, and found that BI(W 0;H) ⊃W II . Our experience indicated that a key

factor in Þnding a good W 0 was keeping the threat points of W II . Step 6 then iterates

an inner approximation method until the stopping criterion is satisÞed. The result, W I ,

is an inner approximation of V . Step 7 then chooses some set W 0 in W and uses the ray

method to Þnd strategies supporting those points.

Computing Supergame Equilibria 30

Algorithm 6: Convex Polytope Algorithm for V

Step 1: Initial Guess: Choose W 0 =W.

Step 2: Parameters: Choose search subgradients H and stopping criterion ².

Step 3: Outer Approximation: Iterate Wk+1 = BO(Wk;H) until convergence criterion is

satisÞed. Output is the outer approximation WO.

Step 4: Intermediate Inner Approximation: Set W 0 = WO. Iterate Wk+1 = BI(Wk;H)

until convergence criterion is satisÞed. Output is W II .

Step 5: Bounce Step: Find some W 0 ⊂W II such that BI(W 0;H) ⊃W II .

Step 6: Inner Approximation: SetW 0 =W 0. IterateWk+1 = BI(Wk;H) until convergence

criterion. Output is W I .

Step 7: Compute Strategies: Pick some pointsW 0 ⊂W I and use the ray method to compute

strategies supporting W 0.

Algorithm 6 produces a Þnal result similar to that displayed in Figure 4. If V is the

true solution to a game, then WO is like the polygon ABCDEFGH and contains V , and

W I is like the polygon abcdefgh inside V . The dark shaded region between WO and W I

represents a region of uncertainty since we do not know if a point there is in V or not,

but is also represents an error bound on our approximations to V since we know that the

boundary of V is somewhere in WO/W I .

The results of our convex polytope algorithm include outer and inner approximations of

V , an error bound,WO/W I , and actions which support points in the inner approximation.

Other procedures do some of these tasks but not all. For example, Cronshaw (1997) only

computes an outer approximation.3 We know of no work which discusses an error bound.

In summary, our convex polytope method offers an integrated approach that performs

several useful tasks.
3Others have also discussed computational methods for similar problems but the paucity of details

offered in their papers make it difficult to ascertain what they do, and impossible for us to compare our

algorithms with theirs.

Computing Supergame Equilibria 31

A

BD

E

G

F

H

C

a

b
c

d

e

f

g h

V

Figure 4: Typical error bounds

5. Applications

We now apply our algorithms to some familiar games to illustrate our algorithms� critical

features. Since these games are simple, we can ascertain their value sets without using our

algorithms and then compare the results of our algorithms to what we know about the

value sets. This allows us to demonstrate the high quality approximations produced by

our convex polytope methods and indicate how much effort is necessary. This follows the

standard approach in numerical analysis of testing an algorithm by applying it to known

solutions of well-understood problems4. We examine Prisoner�s Dilemma, Battle of the

Sexes, Cournot duopoly, and Bertrand duopoly. Our primary aim is to quantitatively

demonstrate the properties of the recursive value set algorithm, including monotonicity of

the B(W) operator stated in Theorem 1, and the dependence of V on the discount factor

δ. We also demonstrate how the precision of our approximation is affected by the Þneness

of the approximation and the stopping criterion.

4Some readers may prefer to see the results of our algorithm applied to more interesting games. We

invite them to get our programs from us and apply them to their favorite games. In this paper, it is more

appropriate for us to use familiar games to demonstrate the properties of our algorithms.

Computing Supergame Equilibria 32

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Payoff to Player 1

P
a

yo
ff

to
P

la
ye

r
2

iter=0

iter=1
iter=3

iter=7

V

Figure 5: Prisoner�s Dilemma: Convergence

5.1. Prisoner�s Dilemma. Our Þrst example is a Prisoner�s dilemma game. Each

player chooses either cooperate (C) or defect (D) and payoffs are

Player 2:

C D

Player 1: C 4,4 0,6

D 6,0 2,2

We Þrst use this game to demonstrate the monotonicity of our outer approximations to the

B(W) operator. Figure 5 assumes the discount rate δ = .8 and displays some early iterates

Wk from the outer hyperplane approximation of B(W) along with the Þnal solution V .

The iterates are nested and become smaller, converging to V . The rate of convergence is

similar to the discount factor δ = .8; larger δ implies slower convergence here just as it

does in the related value function iteration method for dynamic programming.

Polygon ABCDEF in Figure 6 represents both the inner and outer approximations

to our prisoner�s dilemma game with δ = .8. It was generated using with 72 uniformly

distributed subgradients, and the difference between the inner and outer approximations

cannot be seen in Figure 6. If the set of gradients is too small, there may be large errors.

Figure 6 depicts the outer approximation of V with three different sets of gradients. The

Computing Supergame Equilibria 33

2 3 4 5 6

2

3

4

5

6

Payoff to Player 1

P
ay

of
ft

o
P

la
ye

r
2

L=8
L=24

L=72

(4,4)

A

B

C

D

F

E

Figure 6: Prisoner�s Dilemma using different subgradients.

outermost lines represent the value set after convergence of the outer hyperplane method

when we used 8 equispaced gradients, and the set of lines slightly outside of the solution

ABCDEF represents the case of 24 gradients. The outer approximation with only 8

gradients includes many values which are not part of the 24- and 72-gradient cases, and,

hence, are not part of the equilibrium. Since there is no good rule for determining how

many gradients are necessary, we should continue to add gradients until the differences

between the inner and outer approximations are small. In this case we knew that the

L = 8 and L = 24 outer approximations were not adequate because they were too far

from the inner approximations (not illustrated here). We continued to increase L until

the outer and inner approximations were indistinguishable in Figure 6. More precisely,

the difference between the Þnal inner and outer approximations were less than 10−3.

Next we examine how the algorithm performs as we change the discount factor, δ.

This game has simple properties�e.g., the unique one-shot Nash equilibrium is also the

minmax payoff for both players� that allow us to determine some things directly. In

our Prisoner�s Dilemma game we know that cooperation, (C,C), cannot be sustained for

discount factors less than 0.5. Our algorithms easily Þnd this, collapsing to the singleton

set consisting of the Nash value after only a few iterations. The minimum discount factor

Computing Supergame Equilibria 34

required to sustain combinations of cooperation at (C,C) and asymmetric plays at (C,D)

is less obvious. Direct computations show that for δ > 0.5 asymmetric outcomes such as
(5,2) and (2,5) can be supported. For example, (5,2) can be supported by playing (D,C),

repeating (D,C) until the incentive compatibility condition of Player 2 binds, and then

switching to (C,C) forever. This is a good test for the inner approximation step since

for δ just barely above 0.5 the inner approximations may miss some critical point on the

boundary of V and collapse to the Nash equilibrium. Even for a discount factor as low as

0.501, our inner approximation algorithms, using 8 or more subgradients did not collapse

and did Þnd the strategies which support the vertices (5,2) and (2,5).

5.2. Battle of the Sexes. We next examine a 2 × 2 Battle of the Sexes game with
payoffs

Player 2:

B P

Player 1: B 8,5 3,3

P 0,0 5,8

The players want to coordinate their choices by both choosing B or both choosing P, but

disagree over how to coordinate. Figure 7 displays the computed equilibrium value sets

for Battle of the Sexes for δ = 0.8 and 0.571.

V obviously includes the line between (5,8) and (8,5), the two pure-strategy one-shot

Nash equilibria. If δ ∈ (4/7, 1], the minmax value for each player is 5, because in some
equilibria, with public randomization, the payoff of (5,5) can be realized using convex

combinations of (3,3) along with (5,8) and (8,5). With sufficient patience each player is

willing to mete out or accept punishments that yield an average present value of (5,5).

We can verify these computations analytically. The minmax point (5,5) is supported by

a strategy starting with the action proÞle (B, P). (B, P) gives a one-shot payoff of (3,3).

Given that the maximum either player can get from deviating is 5, we can compute the

implied continuation value promise offered to the players by the incentive compatibility

constraint, (1−δ)3+δvi ≥ (1−δ)5+δ5, implying δ(vi−3) ≥ 5−3. The greater vi is, the less
δ needs to be in order to make (5,5) a punishment value that both players will participate

in. The biggest such continuation promise we can make to both players is (6.5,6.5). Hence,

the smallest value of δ that supports the (5,5) punishment is δ(6.5−3) = 2 or δ = 4/7. The

Computing Supergame Equilibria 35

5 6 7 8

5

6

7

8

Payoff to Player 1

P
a

yo
ff

to
P

la
ye

r
2

A B

C

δ=0.8

δ=0.57

Figure 7: Battle of the Sexes with different δ values.

monotonicity of B(W) in δ tells us that V gets smaller as the discount rate δ decreases.

In this example the monotonicity is rather abrupt: the equilibrium value set is deÞned by

the triangle ABC in Figure 7 for δ ∈ (4/7, 1), but is reduced to the line segment BC for
δ ∈ (0, 4/7). Again, our algorithm was able to correctly compute the V for values of δ,

even ones close to the critical value δ = 4/7.

5.3. Bertrand Duopoly. We next examine a Bertrand duopoly game with imperfect

substitutes. The demand functions are

q1 = max {1− ap1 + bp2, 0}
q2 = max {1− ap2 + bp1, 0}

where qi is Þrm i�s sales and pi is Þrm i�s price, i = 1, 2. Each Þrm has per-unit costs

of c and one-period proÞts are Πi(p1, p2) = (pi − c)qi. The static Bertrand solution is
pBert = (1 + ac)/(2a− b) and the collusive solution is pcoll = ((b− a)c− 1)/(2(b− a)). If
a = 0.5, b = 0.25, and c = 0.1 then pBertand = 1.40 and pcollusion = 2.05. The Bertrand

game usually involves continuous choices for prices, but our algorithm allows only a Þnite

number of possible actions. This Bertrand example shows how to apply our algorithm

to approximate solutions to problems with continuous strategic choices. We assume that

Computing Supergame Equilibria 36

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Payoff to Player 1

P
a

yo
ff

to
P

la
ye

r
2 L=36, outer

L=72, outer
L=72, inner

L=36, inner

Figure 8: Bertrand Duopoly: Outer and Inner Approximations

the Þrms may choose among twelve prices, uniformly chosen between 0 to 6.6. The value

set appears in Figure 8. The payoffs from price competition are never zero in equilibrium

since players can always generate some proÞt. Hence, their minmax payoffs are positive

and the lower bound on V in both dimensions is positive.

We next show the importance of doing both inner and outer approximations. Figure 8

displays the inner and outer solutions to Algorithm 6 when we use L subgradients for L =

36, 72. Note that there is a substantial region between the inner and outer approximations

when 36 gradients are used, but that there is virtually no difference between the inner and

outer approximations when we use 72 gradients. A more precise examination shows that

the maximum difference between the two sets in the 72-gradient example is 0.8×10−3, or
0.16% of the players� minmax payoffs. This is an example of where we cannot rely solely

on outer approximation methods even for a simple, standard game. In this example, it

was the outer approximation which was bad when we used 36 gradients; it is clear that we

could also construct examples where the inner approximation was inferior. In this example

the differences became small when L = 72 but there is no reason to believe that L = 72

will always work. The only way to get a good approximation on the equilibrium value

set, or even just the Pareto frontier, is to compute both inner and outer approximations.

In particular, this example shows the danger of following Cronshaw (1997) and using

Computing Supergame Equilibria 37

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Payoff for P1

P
ay

o
ff

fo
r

P
2 Initial W

Iter 1

Iter 2

Iter 15

Iter 43

Figure 9: Bertrand Duopoly with a small initial value set.

an outer approximation to compute equilibrium values and strategies since many of the

points on the Pareto frontier of the L = 36 outer approximation are not close to any true

equilibrium value.

Figure 9 displays a different use of inner monotone approximations of B(W). We set

the initial guess W 0 equal to a circle of radius 0.5 centered on (1,1). This circle contains

the Nash equilibrium of (1.4,1.4) but also many Pareto inferior points which can be used

as punishments. We then compute Wk+1 = BI(Wk;H) for k < 44. We found that

W 0 ⊂ W 1. Lemma 8 then tells us that the Wk sequence is monotone increasing and

Wk ⊂ V for all k. The 43�rd iterate displayed in Figure 9 is indistinguishable from the

72 gradient inner approximation displayed in Figure 8. Therefore, we have computed a

very good approximation to V just by Þnding a W 0 which can be proven to be in V by

the Lemma 8 criterion, and then iterating BI several times. We may get lucky, as in this

case, and Þnd a W 0 for which this works without too much work. In general, the bounce

step of Algorithm 6 does this in a more systematic fashion since it searches for W0 sets

slightly smaller than an outer approximation.

5.4. Cournot Duopoly. We next present solutions to some Cournot duopoly games.

This example also shows how to apply our methods to games with a continuous strategy

space. We assume qi is Þrm i�s sales, ci is Þrm i�s unit cost, pi is Þrm i�s price, andΠi(q1 , q2)

Computing Supergame Equilibria 38

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Payoff to Player 1

P
a

yo
ff

to
P

la
ye

r
2

cost=(0.6, 0.6)

cost=(0, 0)

cost=(0.6, 0)

Figure 10: Cournot oligopoly: different costs

is Þrm i�s proÞts. We assume a linear demand function, p = max {6 − q1 − q2, 0}, and
the proÞt function Πi(q1, q2) = qi(p− ci). Our approach is limited to Þnite action games;
to accommodate the Cournot duopoly game, we discretize the action space over qi. As

the lumpiness in quantity decisions is reduced, the game resembles its continuous action

counterpart. We did runs with 5, 10 and 15 permissible quantities in [0, 6]; the solutions

we present below used the 15-move speciÞcation. We assume the discount rate δ = 0.8.

Figure 10 shows V for cases where Þrms� costs are either 0.6 or 0. In all cases, the

inner and outer approximations are indistinguishable at the resolution of the Þgures. If

both Þrms have zero costs, a Cournot-Nash equilibrium output is (2, 2) with payoffs equal

to (4, 4). Monopoly output is 3, monopoly proÞts are 9, and the symmetric monopoly

payoff, labelled �*� in Figure 10, is (4.5, 4.5). Figure 10 also shows the case where the

Þrms� costs are identical with ci = 0.6, i = 1, 2, and the Cournot-Nash output is (1.8,

1.8) with discounted proÞts (3.24, 3.24) labeled by �o�. The set of equilibrium values is

quite large in both cases. The point (0,0) is a Nash equilibrium value in the zero cost

case because playing (6,6) forever is a Nash equilibrium. However, (0,0) is still in V when

c1 = c2 = 0.6 and the unique static Nash equilibrium is (1.8,1.8). In the positive cost case

the threats are severe, far worse than Nash-Cournot reversion, and the equilibrium value

set is large.

Computing Supergame Equilibria 39

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Payoff to Player 1

P
ay

of
ft

o
P

la
ye

r
2

26

32

44
45

46 47 48

66

65
60

67

10
35

Figure 11: Cournot paths

We use the inner ray step of Algorithm 6 to compute strategies and understand

V . Figure 11 and Table 1 describes the actions which support the Cournot game with

c = (0.6, 0.6). Figure 11 illustrates the relation between current values and continuation

values. The �*� points are at the end of equiangular rays centered on the Nash equilibrium

at (3.24, 3.24). Each point ` is supported by some action proÞle and some continuation

value where the continuation value, represented by an �◦�, is indicated by an arrow begin-
ning at point `. Table 1 displays precise information for 7 points from Figure 11. In Table

1, each ` corresponds to the point marked ` in Figure 11, vi(`) is player i�s equilibrium

value at point `, v̄i(`) is his continuation value, qi is his current output, and Πi(q1, q1) is

player i�s current period payoff.

Figure 11 and Table 1 shows us that points on southern (and western) extreme points

of V , the punishment points, usually involve �going along with your own punishment�.

This reßects results from Abreu (1988), and demonstrates the connection between �simple

paths� and the value set approach to repeated games. Players go along with their pun-

ishment here by producing so much that one player (and at point 45, both players) make

losses in the current period. This is rational for each player because of the promise in the

future that he will make higher proÞts. This logic and the information in Table 1 explains

Computing Supergame Equilibria 40

why (0,0), point 46, is in V . At point 46, both Þrms produce q = 5.1 which produces

immediate losses of -3.0 for each, but each Þrm enjoys an expected continuation value

equal to 0.7714. Table 1 also shows that asymmetric harsh punishments yield equally

asymmetric continuation values; for example, point 60 gives positive value to Þrm 1 but

zero to Þrm 2. Table 1 shows that this is implemented by both making negative proÞts

initially but large proÞts in the future for Þrm 1 and small future proÞts for Þrm 2. Point

60 is also the point which punishes Þrm 2 if it deviates from cooperation.

Table 1: Actions, promises, and threats on the boundary of V , c = 0.6

` (v1(`), v2(`)) (v̄1(`), v̄2(`)) (q1, q2) Π(q1, q2)

2 3.97 3.30 3.75 3.52 1.7 0.9 4.8 2.4

8 3.71 3.57 3.72 3.55 1.3 1.3 3.6 3.6

10 3.64 3.64 3.64 3.64 1.3 1.3 3.6 3.6

27 0.29 6.76 0.36 6.65 0.0 3.0 0.0 7.1

46 0.000 0.00 0.77 0.77 5.1 5.1 -3.0 -3.0

60 4.75 0.00 6.71 0.32 5.1 2.1 -3.0 -1.3

Figure 10 also displays the asymmetric cost case with c1 = 0.6 and c2 = 0.0. The

asymmetry in costs causes V to be asymmetric. Figure 10 shows that an increase in

costs for Þrm 1 can improve equilibrium payoffs to Þrm 2 since Þrm 2�s maximum payoff

is greater when c1 increases from zero to 0.6, holding Þrm 1�s costs constant at zero.

However, the primary effect is that Þrm 1�s maximum possible payoff is reduced from

almost 9 to about 7. Figure 10 displays results like comparative statics � as a Þrm�s costs

rises, the set of equilibrium values shifts in favor of the other Þrm � but the large number

of equilibria limits the precision.

5.5. Timing Examples. Our presentation focussed on describing the steps of our

algorithm and deriving error bounds for the computed value sets. An algorithm also

needs to be practical, running in reasonable time on widely available machines using

standard software. We next report some running times for the Cournot game studied in

the previous section.

We report the run times for different choices of the number of search gradients and

the number of actions per player. We used a compiled Fortran program on a 500 MHz

Pentium PC. The run times reßect the total amount of time for all the steps in Algorithm

Computing Supergame Equilibria 41

6, computing an outer approximation, an inner approximation, executing the bounce test,

and constructing equilibrium actions and continuation values. The initial set is W. We
choose two convergence criterion: ² = 10−5, 10−7. These are more demanding than typical

in economics, and used here to indicate an upper bound on run time.

Tables 2 and 3 display the running times. More time is typically spent on the Þrst step

of computing an outer approximation since that step has a crude initial guess. Since the

outer approximation is used to create the initial guess for computing the inner approxi-

mation, the inner approximation step takes less time. Table 2 shows how running time

is affected by the discretization we use. Increasing the number of possible actions per

player increases the number of action proÞles which need to be checked. Since we have

two players, the action proÞles is the square of the number of actions per player. Accord-

ingly, as we increase the number of actions, the running times go up roughly quadratically.

The running times go up as we increase the number of search subgradients. Using more

subgradients increases the running times for two reasons. First, we check more direc-

tions in each iteration. Second, each polytope is approximated using more subgradients,

increasing the number of constraints in the w ∈W condition.

Table 2: Run times: Actions versus Gradients

² = 10−5, β = 0.8

Search Gradients

Actions per player 16 32 72

5 8s 36s 4m 57s

10 28s 1m 34s 17m 7s

15 63s 4m 46s 44m 53s

The choice of stopping criterion also affects running time. Table 3 shows that as we

move from ² = 10−7 to ² = 10−5 running times are cut in about half. This is somewhat

surprising since it tells us that just doubling the effort improves accuracy by a factor

of 100. Table 3 also indicates how the discount factor can affect running time. As β

increases, we expect running times to increase, and they do. Table 3 shows that the

increase is moderate, with running times at most doubling when we go from β = 0.8 to

β = 0.9.

Computing Supergame Equilibria 42

Table 3: Run times: Stopping Criterion and Discount Factors

16 Search Subgradients

Actions per player ² = 10−7, β = 0.8 ² = 10−5, β = 0.8 ² = 10−5, β = 0.9

5 15s 8s 11s

10 50s 28s 45s

15 1m 59s 63s 1m 54s

6. Conclusion

This paper has described and implemented a computer algorithm to solve discounted

supergames with perfect monitoring. Key assumptions are restriction to pure strategies

and the inclusion of public randomization. We represent the key object in the dynamic

programming approach to supergames, the value set, by its boundary. This parsimonious

representation of the value set allows us to compute an approximations of the set along

with error bounds, and do so more rapidly than would be possible using �brute force�

methods such as exhaustive search.

We demonstrate the algorithm for a variety of games with two players: the prisoner�s

dilemma, the battle of the sexes, and Cournot and Bertrand competition. Example com-

putations are consistent with the theoretical results of Cronshaw and Luenberger, and

Abreu, Pearce and Stacchetti, and show that our algorithm can compute values sets with

high accuracy. We also see how large value sets can be, and how the worst punishments

(optimal penal codes in the language of Abreu (1988)) can be much worse than Nash

reversion. In the Cournot example this is especially clear, since the Cournot-Nash point

is in the interior and far away from the worst punishment.

The procedures described here can clearly be extended to a variety of other contexts.

For example, the authors have extended it to dynamic games with state variables, such as

investment capacity. The themes of outer and inner approximations will be central to any

computational attempt to solve supergames which can be expressed using the dynamic

programming approach.

References

[1] Abreu, Dilip. �On the Theory of InÞnitely Repeated Games with Discounting,�

Econometrica 56 (1988), 383�396.

Computing Supergame Equilibria 43

[2] Abreu, Dilip, David Pearce, and Ennio Stacchetti. �Optimal Cartel Equilibria with

Imperfect Monitoring,� Journal of Economic Theory 39 (1986), 251�269.

[3] Abreu, Dilip, David Pearce, and Ennio Stacchetti. �Toward a Theory of Discounted

Repeated Games with Imperfect Monitoring,� Econometrica 58 (1990), 1041�1063.

[4] Atkeson, Andrew . �International Lending with Moral Hazard and Risk of Repudia-

tion,� Econometrica 59 (1991): 1069-1089.

[5] de Berg, M., M. van Kreveld, M. Overmars and O. Schwarzkopf . Computational

Geometry: Algorithms and Applications., Springer-Verlag, Germany. 1997.

[6] Conklin, James, and Kenneth Judd. �Computing Supergame Equilibria,� mimeo,

Hoover Institution, 1993.

[7] Cronshaw, Mark. �Algorithms for Finding Repeated Game Equilibria�, Computa-

tional Economics 10 (1997): 139-68

[8] Cronshaw, Mark and David G. Luenberger. �Strongly Symmetric Subgame Perfect

Equilibrium in InÞnitely Repeated Games with Perfect Monitoring and Discounting,�

Games and Economic Behavior 6 (1994): 220 � 237.

[9] Eaves, B. C. �Homotopies for Computation of Fixed Points�, Mathematical Program-

ming 3 (1972):1�22.

[10] Goodman, Jacob and Joseph O�Rourke, ed.: Handbook of Discrete and Computa-

tional Geometry.CRC Press, 1997.

[11] Graham, R. L.. �An Efficient Algorithm for Determining the Convex Hull of a Finite

Planar Set,� Info.Proc. Lett. 1 (1972), 132-133.

[12] Judd, Kenneth L. Numerical Methods in Economics, MIT Press, 1998.

[13] Phelan, Christopher and Ennio Stacchetti. �Subgame-perfect Equilibria in a Ramsey

Tax Model.� Unpublished paper, Federal Reserve Bank of Minneapolis, 1999.

[14] Preparata, Franco and Michael I. Shamos. Computational Gemetry: An Introduc-

tion.Springer-Verlag, New York, 1989.

Computing Supergame Equilibria 44

[15] Scarf, H. E. �The approximation of Þxed points of a continuous mapping�, SIAM

Journal of Applied Mathematics, 15 (1967): 328-343.

[16] Sleet, Christopher. �New Recursive Methods for Macroeconomic Policy Games.�

mimeo. Stanford University, 1996.

[17] Sleet, Christopher and Sevin Yeltekin. �On the Computation of Value Correspon-

dences,� mimeo, KGSM-MEDS, Northwestern University, 2000.

[18] Sorin, Sylvain. �On repeated games with complete information,� Mathematics of

Operations Research 11 (1986), 147-160.

