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Abstract. This essay examines the idea and potential of a �compu-
tational approach to theory,� discusses methodological issues raised by such
computational methods, and outlines the problems associated with the dissem-
ination of computational methods and the exposition of computational results.
We argue that the study of a theory need not be conÞned to proving theo-
rems, that current and future computer technologies create new possibilities
for theoretical analysis, and that by resolving these issues we will create an
intellectual atmosphere in which computational methods can make substantial
contributions to economic analysis.
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The increasing power of computers presents economic science with new oppor-

tunities and potential. However, as with any new tool, there has been discussion
concerning the proper role of computation in economics. Some roles are obvious and
noncontroversial. Most will agree that computation is necessary in econometric anal-
ysis and offers some guidance in policy discussions. Theorists will admit that exam-
ples are useful in illustrating general results. However, the discussion frequently gets
heated when one raises the possibility of using the computer and computer-generated
�examples� instead of the classical assumption-theorem-proof form of analysis for
studying an economic theory. In economic terms, the Þrst roles for computation are
complements to and a useful ingredient in standard research activities; however, the
activity of computational theory appears to be a substitute for conventional theoreti-
cal analysis. In this essay, I will focus on the potential role of computational methods
in economic theory and their relation to standard theoretical analysis, asking �Are
they complements or substitutes?�
We should Þrst realize that the issues raised by the recent surge in the use of com-

putation in economics also arise in general science; in fact, economic science is far
behind most sciences. In the past, science proceeded in two fashions. First, there were
the observational and experimental modes wherein observations of actual phenomena
were used to determine general patterns. Second was the development of theories,
wherein formal models of nature were constructed and their logical implications ex-
plored through abstract mathematical reasoning. The objective of such an approach
is to summarize the implications of a theory in the form of some closed�form expres-
sion and/or some general statements, usually called theorems. I shall call that mode
of theoretical analysis deductive theory. However, the limitation of such an approach
is that only simple cases of any general theory can be completely examined in this
way. For example, in both classical and quantum physics the general n-body problem
can be solved only for n = 2. Science has always resorted to approximation methods
to extend its analysis, and as computational power has grown science has exploited
a wide range of numerical and computational methods to analyze its theories. I shall
refer to this activity as computational theory.1

1Since logic as practiced in economic theorizing is Þnitistic, computer proofs of theorems will
surely come to be important in the future. However, this essay ignores this application of computa-
tion and treats theorem-proving as an exclusively human activity.
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Economics is also undergoing the same transformation, following in the tracks of
physics, chemistry, astronomy, and other �hard� sciences. Below, I will give some ex-
amples of how we may learn from their experience and some common problems. How-
ever, economics does have idiosyncratic features which limits the value of studying
how other Þelds use computation. In particular, physical theories are very speciÞc,
such as the inverse square law of gravitation and Schrodinger�s equation, whereas
economic theories often make qualitative assumptions, such as concavity, and deduce
qualitative implications, such as efficiency of equilibrium. Furthermore, the physical
behavior studied in physics is presumed to be exact � God may or may not throw
dice, but physicists assume that God does not make any mathematical errors in the
execution of natural laws � whereas few economists really believe that their objects
of study, ordinary economic agents, are inÞnitely intelligent agents acting with inÞnite
precision. These differences have important implications generally; here they help us
interpret the errors which arise in any computational method. In the sections below
I will discuss ways in which computational methods can be used to analyze economic
theories.
While my main focus will be on the intellectual and scientiÞc potential value

of computational methods in theory, I must also discuss several institutional and
professional aspects of the economics community which will need to be adjusted if
we are to realize this potential. The use of computation has been increasing, as
indicated by the examples I cite and the much larger number of examples I do not
cite. In preparing for this talk, I did some literature search and was surprised at
the extent to which computation has become a common tool. The computational
literature is clearly growing rapidly.
However, the progress is uneven. The acceptance of computationally intensive

research varies across Þelds. Even where accepted, there is little agreement on how to
present computational results and techniques. Frequently, authors are not allowed to
publish the basic computational details of their work, even when the computational
innovation is of greater interest than the particular economic application, while others
are given substantial space for doing nothing more than reinventing the wheel. There
is also uneven awareness of computational methods; in some Þelds the typical author
is acquainted with the latest mathematical developments, whereas authors in other
Þelds use decades-old methods much less efficient than those currently available in the
mathematics literature. There is neither a common core of methods nor a language.
The vocabulary used by some economists is inconsistent with mathematical practice
and authors often do a poor job in describing their methods, making it difficult for
readers to understand the descriptions and for techniques to disseminate. These
problems keep computational economics from realizing its potential, particularly in
theoretical studies. I will attempt to discuss the issues and indicate ways we can



Computational Economics and Economic Theory: Substitutes or Complements? 4

increase the value and acceptance of computational work.
Before continuing, the reader should be warned that this is not meant to be a

precise, passionless, unbiased analysis of an economic question. This essay is intended
to be provocative, to highlight important issues, and to stimulate discussion. Many
of the assertions I make will be meant to highlight important issues; they are not
meant to be a fair and balanced treatment of the intellectual history of computational
economics. The topics and examples I discuss are also idiosyncratic, reßecting my
experience and limited awareness of the literature. Other commentators have taken
different positions on some of the issues; for example, Bona and Santos[11] present
a different perspective. I treat some of these issues in a more balanced, detailed,
and expansive way in Judd[39]. Interested readers should also consult Kendrick [?],
Pakes[57], Rust[63],[64], Marcet[54], Judd[38][40], and the forthcoming Handbook of
Computational Economics for other discussions of important issues. The purpose here
is to dramatize the issues so that we may work to improve the quality, soundness,
and appreciation of computational work in economic analysis.

1. Computation and Science

There have been many important developments in the physical sciences which have
been made through computational methods. Some examples have a ßavor similar to
the problems encountered in economics. This section presents a few which I have
found to be intuitively valuable; reviewing them gives us an idea about what can be
done in computational economics.
One of the great mysteries in astronomy is Jupiter�s Red Spot. It is essentially a

hurricane, a common occurrence in our atmosphere, but the Red Spot is one which
has continued for centuries. Scientists have long wondered how the Red Spot could
remain stable for so long. A computer model of Jupiter�s atmosphere was run to see
if a hurricane of centuries-long duration would arise. The surprising result was that
nothing exotic was needed for such Red Spots to arise other than standard interactions
of the ßuid, gravitational, and energy properties of Jupiter. The importance of the
computational approach for this conclusion is obvious since only a computer model
could handle the turbulent interactions inherent in such phenomena.
An example a bit closer to home concerns the formation of the moon. Examination

of moon rocks showed them to be similar to, but not the same as, rocks here on earth.
A popular theory has always been that the earth�moon system formed as a result
of a large object colliding with earth. Computer modelling has shown that this is
indeed a plausible explanation, and that the differences in earth and moon rocks can
also be explained by the mechanics and chemistry of such a collision.
Astronomical and meteorological examples of computational modelling are appro-

priate for economists. Since astronomy, meteorology, and economics are all largely
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observational sciences, not experimental,2 they all have to take what they observe
and try to back out the causes. Computer modelling operates as a substitute for
experimentation in screening possible explanations for plausibility and consistency.
In fact, some of the successes of the computational approach in economics are

similar to these computational successes. Using computational methods, Kydland
and Prescott[47] showed that fairly simple dynamic general equilibrium models could
display the type of economic ßuctuations we observe in the macroeconomy. Prior
to that many argued that macroeconomic data were inconsistent with the standard
competitive model, just as many thought that the Red Spot was due to special causes.
While the full Real Business Cycle (RBC) research program remains controversial and
unÞnished, it is a major contender in the current intellectual battles and is an example
of research conducted in a largely computational manner.
These examples all use conventional methods of numerical analysis ways to com-

pute approximate solutions. Another way to generate such applications is to use
asymptotic and perturbation methods. The analysis of the helium atom is a good
example of perturbation methods applied in quantum mechanics. The basic prob-
lem is that the only atomic quantum systems which can be solved in closed-form are
those involving the interaction between a negatively charged particle and a positively
charged particle, the hydrogen atom. The helium ion with one electron can be solved
because it is basically a +2 nucleus and a single −1 electron. However, the helium
atom cannot be solved because of the repulsive forces between the two electrons. If
electrons did not repel, then a closed-form solution is the sum of two helium ion solu-
tions. The key perturbation idea is to take the closed-form solution without electron
repulsion, differentiate the result to Þnd out what happens when one adds a little
repulsion (economists call this �comparative statics�) and then extrapolate the result
to arrive at an approximation of the quantum mechanics solution for the helium atom.
This is just one example of the large variety of approximation strategies employed in
quantum theory.
General relativity theory uses a similar approach. The nonlinear system of partial

differential equations which describe general relativity theory have no general solution.
Closed-form solutions generally involve only one body with mass. The Þrst general
approach used to analyze general relativity begins with the degenerate case of a
universe with no mass; that is, a vacuum. The vacuum case has a simple solution;
actually, the solution is the special theory of relativity. One then perturbs the general
equations to develop a linear theory which can be analyzed. This sounds crazy

2The parallel is not exact. The nonexperimental nature of economics research is a political fact,
not inherent in the Þeld. If economic research were given a budget equal to that given to the search
for the Higgs boson, top quark, and other exotic particles, economics could also be an experimental
science.
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because the whole point of general relativity theory is to be a theory of gravity
whereas this method begins with a universe in which there is no gravity, but the
linear theory and higher-order approximations are the basic tools physicists use to
study the implications of general relativity theory.
The value of approximation methods, numerical and asymptotic, in the physical

sciences is undisputed. If theoretical physicists insisted on using only closed-form
solutions or proofs of theorems to study their models, they would spend their time
examining the hydrogen atom, special ions, and universes with one star, and ignore
most interesting applications of physical theories. These examples serve two functions.
First, they indicate the high cost of staying with closed-form solutions. Second, they
dispel any notion that staying with closed-form solutions and deductive approaches
to theoretical analysis is a requirement for doing respectable, rigorous science.

2. What Can Economists Compute?

The next point which must be made is that there is a wide range of economic models
which can be computed in reliable and efficient fashions. Some of this material is
old and standard, but the recent upsurge in interest in computational methods has
generated a large amount of new work, allowing us to solve models previously con-
sidered intractable. Any review of this literature indicates the substantial potential
of computational methods, and the breadth of available methods shows that all areas
of economic inquiry can proÞtably use computational methods.3

First, we should remember that the linear-quadratic approach to modelling pro-
duces computationally tractable analyses of models of dynamic choice in both compet-
itive and game-theoretic contexts, with and without perfect information. Even today,
progress is being made in improving the solution methods for the Ricatti equations
that arise in linear-quadratic control problems. The excellent manuscript by Hansen
and Sargent[29] presents many of these techniques. Despite the fact that these tools
are well understood, even this approach has been used relatively little in theoreti-
cal work. For example, consider industrial organization theory. The literatures on
imperfect competition, learning curves, investment, and informational asymmetries
are dominated by static (or nearly static) models which can never be reasonably cal-
ibrated to yield quantitatively sensible discussions of these phenomena. The other
common approach is to use supergame models in which nearly anything is an equi-
librium. Dynamic games are easily computed (see the papers by Kydland[46]), but
outside of few exceptions ([34], Reynolds[60], and Fershtman and Kamien[23]) this
approach is almost never taken in theoretical industrial organization. In contrast,

3The following is by far from a complete listing. I have focussed on numerical methods which
are currently on the efficiency frontier of computing. See Judd[39] for more complete listing of
alternative methods.
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these methods are used extensively in the international policy competition literature
and monetary policy games (see Fershtman[22]).
Second, there is the computational general equilibrium literature. This literature

took off with the development of Scarf�s algorithm thirty years ago; see Shoven and
Whalley[67] for a recent survey. Recent advances include the application of varia-
tional inequalities; see the book by Nagurney[56] and the papers of Rutherford (e.g.,
[65]) for recent work in this area and economic applications. Computational general
equilibrium is the most mature computational area in economics, but it focuses gen-
erally on policy-related research such as taxation, trade policy, regional development
and is usually weak on the intertemporal dimension. The recent work of Brown et
al.[14] and Schmedders[?] now makes it possible to compute general equilibrium with
incomplete asset markets.
Recent years has seen much work on developing numerical methods for nonlin-

ear dynamic problems. There has been much effort recently on computing dynamic
programming models. Rust[?] implemented sparse matrix methods to solve large
problems. Johnson et al.[32] has demonstrated the usefulness of the spline ideas ex-
posited in Daniel[19] and the polynomial ideas exposited in Kalaba et al.[7]. Judd and
Solnick[45] have demonstrated the usefulness of shape preserving splines to dynamic
programming problems.
Perfect foresight models have been developed in the past Þfteen years to study

intertemporal economic equilibrium. These models typically boil down to two-point
boundary value problems, a class of mathematical problems for which there is a wealth
of methods. The work of Auerbach and Kotlikoff[5], and Bovenburg and Goulder[12]
are typical examples of this class of models.
One of the most interesting problems in computational economics has been the so-

lution of rational expectations models. The Þrst work was by Gustafson [28]; Wright
and Williams[72][73] developed efficient methods to compute rational expectations
equilibrium even in the presence of frequently binding constraints. Tauchen[70] ap-
plied Fredholm integral equation methods to solve asset pricing models. Judd[37]
showed how to use projection methods to develop efficient schemes for solving com-
plete information rational expectations models. Laitner[48][49], Basar and Srikant[69],
Budd et al.[15], Bensoussan[8], Fleming[25], Fleming and Souganides[26], Judd[35],
and Judd and Guu[43] have solved for high-order Taylor expansions of rational ex-
pectations models, including dynamic games. Dixit [20], Samuelson[66], and Judd
and Guu[44] derived approximation methods for asset problems. Ausubel[6], Judd
and Bernardo[41], Bernardo[9] and Corb[17] have solved models of asymmetric infor-
mation much more general than the ubiquitous exponential-Gaussian example.
There has also been much success in developing algorithms for solving for Nash

equilibria of games. Lemke and Howson[50] computed Nash equilibria of two-person
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games, and Wilson[75] extended this to general n-person games. Wilson[76] also de-
veloped an algorithm to compute stable equilibria. Despite the large body of work on
this topic, I know of no application of these methods to a speciÞc problem. More re-
cently Maguire and Pakes[52] has applied computation methods to dynamic games of
entry and exit, Gowrisankaran[27] has numerically analyzed antitrust policy in those
models, and Judd[36], and Miranda and Rui[55] have applied polynomial approxi-
mation methods for computing Nash equilibria of general nonlinear dynamic games.
Cronshaw and Luenberger[18], Judd and Conklin [42] have developed methods for
Þnding all subgame perfect equilibria in inÞnite-horizon games, including problems
with state variables and asymmetric information.
These examples are general methods which solve general classes of problems.

Many others have developed solution methods for speciÞc problems; we will see some
in our discussion below. This quick review shows that we now have numerical meth-
ods for solving a wide variety of basic problems. In fact, it is difficult to think of a
problem in economic theory where there does not now exist a reasonable algorithm
to use. After reviewing the array of available methods, I am disappointed with the
relatively small role any of them, even the well-known old methods, play in theoret-
ical analysis of economic problems. I suspect that there are many reasons for this.
While part of the explanation is that many economists are unaware of these meth-
ods, the deeper reason is that even those who do know computational methods don�t
quite know how to use these tools in a way generally accepted by the profession, and
therefore, in many branches of economics, there is little incentive to learn numerical
methods. I will return to these issues, but Þrst I will discuss the methodological
issues.

3. The Advantages of Deductive Theory

Just as the last section focussed on what computation can do, we should note the
comparative advantages of deductive theory. There are many questions which only
deductive theory can address. Only deductive methods can prove the existence of
solutions as conventionally understood; I hedge now because I will return to this
issue below. More generally, only deductive methods can determine the topological
and qualitative structure of a model. For example, deductive methods tell us if
equilibrium depends on parameters in a continuous fashion. Deductive methods may
tell us if an agent�s equilibrium decision rule is increasing, continuous, and/or concave
in the agent�s state.
Deductive methods are also necessary for analyzing inÞnite-dimensional questions.

The utility functions, production functions, and other structural elements which go
into any computational analysis will generally be from some Þnitely-parameterized
family. In contrast, deductive methods can analyze models with an inÞnite number
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of parameters, such as analyses which derive properties about models with arbitrary
concave utility functions. Deductive methods are also useful in telling us if equilibrium
is efficient.

4. Theoretical Analysis versus Proving Theorems

The comments above indicate that deductive methods and computational methods
have very different strengths. In this section and the next, we begin to be more precise
about what we mean by theoretical analysis, argue that theory is not synonymous
with theorems, and argue that computations may contribute to an analysis of a theory.
One role of computation in theoretical study is noncontroversial and common.

When beginning a study of a theory, one may study computed examples. These
computations hopefully reveal patterns which suggest theorems. However, these ex-
amples are regarded as strictly subordinate to the deductive theory imperative to
produce theorems. The theorems are just as true and publishable without examples;
therefore, the patterns discovered with computations are not given any independent
value since they are not validated until there is a general theorem, in which case the
examples have no further logical value. Contrary to standard practice, I argue that
these examples do have value even in the absence of any validation by some theorem.
To argue that, I must be clearer about what constitutes a theory and its development,
and distinguish it from theorem-proving. This will allow us to appreciate alternative
computational approaches analyzing theories.
I want to argue that �theoretical analysis� does not necessarily involve the state-

ment and proof of theorems. A theory, as generally understood in mathematics and
science, is a collection of concepts, deÞnitions, and assumptions. The focus of a theo-
retical study is to determine the implications of a theory. This is conventionally done
through proving theorems. Occasionally, we can prove general theorems, such as the
existence and welfare theorems of general equilibrium theory. The more common
situation Þnds us unable to prove general results, in which case we turn to special
cases which are tractable. The main point is that these special cases are also just
collections of examples of the theory, albeit of greater cardinality, that they do not al-
ways indicate the true general patterns, and that computational methods can provide
insight by examining collections of examples which would otherwise be ignored.
This may sound heretical, but that is partly due to the intellectual history of

modern economic analysis. While all of science uses the theorem-proof approach to
some extent, the emphasis in economics on theorem-proving is not typical. For exam-
ple, much of conventional economic theory focuses on existence theorems. Existence
results are important for any theory since they establish internal, logical consistency.
Much of the effort in economic theory has been on existence proofs, and the pro-
fessional rewards in that area can be great. For example, when we discuss general
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equilibrium theory, the names of Arrow, Debreu, and McKenzie come to mind, not
because they formulated the basic concept of general equilibrium but rather because
of their contributions to existence theory. The activity of providing such proofs is not
as well rewarded in physics. For example, when we think of general relativity theory,
the name Einstein comes immediately to mind. His contribution was to list the ba-
sic concepts, assumptions and equations, and derive some implications of relativity
theory. However, he did not demonstrate the logical consistency of general relativity
theory by proving the existence of nontrivial solutions to the critical equations. That
was done later by Schwartzschild, Gödel, etc., names which are much less honored
within physics.
The priorities of economic theory reminds one not of the physical sciences but

of the Bourbaki school of mathematics, a movement which insisted on reducing ev-
erything in mathematics to pure logic. This is not the approach taken in physical
sciences. In physics, there is a sharp distinction between theoretical physics and
mathematical physics. Theoretical physics often uses mathematical techniques which
are not logically complete. For example, physicists used the elements of distribution
theory, such as the Dirac delta function, long before Schwartz developed distribution
theory. Asymptotic methods are often used without complete, formal foundations.
These ad hoc and informal methods have often stimulated mathematicians to provide
the formal foundation.
We should also use the same distinction between mathematical economics and eco-

nomic theory. When mathematical methods were introduced into economics, it was
perhaps desirable that a pure, Bourbaki kind of approach be used since economists
were not well-acquainted with mathematics. However, now that the profession has
matured, an approach closer to that of theoretical physics is perhaps more desirable,
particularly given the power of these tools.
Another important distinction is the architecture of a theory. Pure mathematics

is a cumulative activity where the result of one theorem is used in proving many
others. The path from deÞnitions and assumptions to Þnal proof is very long for
most of mathematics. When the structure of a theory is so deep, it is imperative that
the foundations and intermediate development be completely justiÞed. It is under-
standable why theorem-proving is and will remain the dominant mode of analysis in
mathematics.
This is not the case in economics. The economic portion of any economic theory

is a �shallow� layer at the top in terms of its logical development. The usual proof
of an economic theorem relies little on previous economic theorems. There may be
similarities across proofs, but each proof uses few if any economic theorems, relying
far more on mathematics with a deep logical foundation. Therefore, the errors and
imprecision of computational methods in one economic analysis have much less chance
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of contaminating and undermining later work.
These observations all emphasize the main point that economics is not mathemat-

ics. While many of us would have preferred being pure mathematicians, we should
not try to turn economics into a branch of pure mathematics.

5. The Excessive Simplicity and Quantitative Irrelevance of
Tractable Theoretical Models

Some might wonder why we would ever consider using computation except in the con-
text of empirical analysis. This is an important issue for computational economics
since if the primary application is empirical analysis then the focus should be on
problems where good data is available in sufficient quantities to make empirical anal-
ysis feasible. Computational approaches to theory substantially broaden the variety
of problems to which computational solutions would be needed.
The major reason for a computational approach to theory is the excessive sim-

plicity of currently tractable theoretical models. I refer here not to the �high� theory
of equilibrium existence theory, but rather to the parametric modelling typical of
theoretical analysis in the applied Þelds. Theoretical models often make simplifying
assumptions so that they can get clear, substantive results. These models are also
used to interpret empirical results. The results are often unrealistic since the elements
which are sacriÞced in the interest of simplicity are often of Þrst-order importance.
An excellent example of this occurred recently in the economic literature on exec-

utive compensation. Jensen and Murphy[31] in their study of executive compensation
found that management earned, at the margin, only three dollars per thousand dol-
lars of proÞts. They argued that this was far too small to create the proper incentives
for managers. They made reference to the fact that risk-neutral managers would earn
all the residual proÞts under the optimal contract, and argued, without making any
computations, that observed incentives were too small to be consistent with manager
risk-aversion. In response, Haubrich[30] actually computed some optimal contracts
and showed that with reasonable estimates of risk aversion the optimal contract
would give managers much less marginal incentive; in fact, he showed that for many
of the examples in Jensen and Murphy, the marginal incentive would be three dollars
per thousand! The use of the theoretically simple benchmark model, the risk neutral
manager, produced a strong implication (that manager pay should be strongly tied to
performance) which was completely reversed by the use of a computational approach
to a more sensible model.
This is not atypical. I am sure that there are many other such examples yet to

be exposed. The unrealistically simple nature of analytically tractable theoretical
models is also a problem for empirical work. The ability of computational methods
to explore more realistic cases of a theory is its great value.
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6. The �Black Box� Criticism

While most will agree that most theoretical models are too simple, they will also
claim that a computational analysis is not a good alternative. Many argue that the
results of a computational study are unintuitive and incomprehensible because the
computer program which generates the result is essentially an impenetrable �black
box�.
These criticisms are valid, but not damning. I will give two responses in this

essay. First, the black box criticism is more a comment on the poor fashion most
computational work is exposited and the general lack of sensitivity analysis. When
a computation gives an answer, we do want to know which economic forces and
considerations determined the answer. To some extent, the only way to address this
is to conduct several alternative computations. I will expand on this point in later
sections.
The second response is to recall Einstein�s recommendation � a model should be

�as simple as possible, but not simpler�. We need to remember that we are studying
complex questions, a fact which is true if we are macroeconomists or tax economists
studying national economies and their policies, microeconomists studying Þrms, or
labor economists studying decisionmaking in a family. This consideration is often
ignored in modern applied theory where unicausal analyses dominate. For example,
the industrial organization literature is Þlled with models which explore one interest-
ing feature of economic interaction in isolation. A typical model may study moral
hazard or adverse selection, or entry or investment or learning or R&D, or asymmet-
ric information about cost or demand, or sharing information about cost or sharing
information about demand, or etc. To see how limiting this is, suppose meteorolo-
gists took this approach to studying the weather; they would ignore complex models
and their �black box� computer implementations, and instead study evaporation or
convection or solar heating or the effects of the earth�s rotation? Both the weather
and the economy are phenomena greater than the sum of their parts, and any analysis
which does not recognize that is inviting failure.
This is not to say that the simple focussed studies are unimportant. They do give

us much insight. But they can only serve as a step in any substantive analysis, not
the Þnal statement. Once we leave simple models, computation is often the only way
to get any answers. The issue is not whether we should go to computational methods,
but how best to use them.

7. The Real Issue: Where to Approximate, not Whether

When we face up to the complexities of what we are ultimately trying to study in
economic theory, we see that the issue is not whether we use approximation meth-
ods, but where in our analysis we make approximations, what kind of approximation
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errors are we going to tolerate and which ones we try to avoid, and how to determine
approximation errors to the extent possible. Simple, unicausal models make approx-
imation errors by ignoring all but one feature of the real world. While we may be
able to prove theorems in those one-dimensional models, the results have only ap-
proximate, if any, validity concerning the real world. Computational methods can be
much more realistic, but bring with them approximation errors of a numerical kind.
We are generally presented with a trade-off: achieve logical purity while sacriÞcing
realism, or bring many elements of reality to the analysis and accept imprecision due
to numerical error. The proper choice will depend on the context.
Our purpose in these last sections was to argue that neither the purely deductive

nor the purely computational mode of analysis is the correct one. Both have much
to offer and both have weaknesses. We will now discuss some of the interesting ways
in which computational methods and conventional economic theory interact.

8. Partners in Analysis: Strong Complementarities

We now turn to the many ways in which computation and theory can interact. The
Þrst way in which computation and theory interact is as strong complements. The
goal of theoretical analysis in economics is to describe the nature of equilibrium.
A complete characterization is often impossible. However, theoretical analysis can
often provide a partial characterization, which can then be used by computational
methods to produce efficient numerical approaches, which then produce economically
substantive results.
A particularly good example of this kind of partnership is in the literature on

dynamic contracts. Spear and Srivastava[68] studied a moderately general model of
dynamic principal-agent contracting under repeated moral hazard. A closed-form
solution for the optimal contract was not computed. Initially, the problem appears
intractable from both a theoretical and computational view. One can express a con-
tract as a payment conditional on the output history of a worker, but that approach is
extremely complex since the history of a worker grows in complexity over time. Both
theoretical analysis and brute force computation are able to compute the nature of
such contracts only for short horizons.
Spear and Srivastava came up with an ingenious insight which reduced the problem

to a one-dimensional, dynamic programming problem. This reduction did not make
pure theory much easier, but it drastically simpliÞed the computational problem. At
that point, Phelan and Townsend[58] computed example contracts and illustrated
many important properties of those contracts.
Theory can be very useful in reducing extremely complex problems to equivalent

problems with a much simpler structure. Theory can also prove qualitative properties
of the solution, such as differentiability and monotonicity, which can be exploited to
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develop efficient computational approaches. In this way, deductive analysis which
only partially characterizes the solution can be extremely useful if it indicates an
efficient computational approach.

9. Setting Priorities: Quantitative Tests for Importance

One potential role for computation in theoretical analysis is testing if the implica-
tions of a theory are quantitatively important. This is distinct from empirical work:
empirical research asks whether the data from actual economies are consistent with
the theory in some precise statistical fashion, whereas computational analyses can in-
dicate if the phenomena being investigated by a theory is important for any plausible
parameters of the critical parameters. As noted above, the real business cycle litera-
ture frequently evaluates theories on the basis of their ability to match quantitative
as well as qualitative features of the real world; however, these exercises also have an
empirical ßavor in that they are attempting to match a few real world examples.
Numerical examples can more generally help us identify what is important and

what is not.For example, consider the theoretical model in Fischer[24]. He investi-
gated a Brock-Sidrauski model of money demand and studied whether it displayed
the Tobin effect; that is, whether inßation affected growth by encouraging agents to
save through real investment instead of monetary assets. He showed that a Tobin
effect existed in that model. However, I once computed the Tobin effect in his model
for a large range of empirically reasonable values for the critical parameters in a gen-
eralization of Fischer�s model and found that increasing annual inßation from zero to
one hundred per cent would increase net investment by at most one-tenth of a per-
cent. An effect that small would not seem worth studying and would be undetectable
in the data. Also, if we found a relation between inßation and growth in real-world
data, these quantitative results tell us that the explanation does not lie in the ele-
ments of Fischer�s model. In light of this, do we consider the Fischer[24] a success?
Qualitatively, it does deliver the desired result, but not in a quantitatively signiÞcant
fashion. This observation leads one to ask if it should even have been published4,
particularly in such a high quality journal? I shall return to this question below.
Another example occurs in the theory of equilibrium with adverse selection. Wil-

son [74] argued that there may be multiple equilibria in an Akerlof-style adverse
selection model. However, Rose[61] showed, via an extensive computer search, that
multiple equilibria was highly unlikely when the critical probability distributions were
taken from conventional families. He showed that most familiar (and quantitatively
reasonable) probability distributions implied unique equilibria, and that only a few

4I doubt that this paper is any worse than most papers. In fact, it is the clarity of the writing
and analysis which makes it an excellent example to use here.



Computational Economics and Economic Theory: Substitutes or Complements? 15

extreme cases using the normal distribution lead to multiple equilibria.
Papers like Rose�s are unusual. The theory literature is full of qualitative analyses

which never consider the quantitative importance of their results. These analyses are
valuable in providing basic insight and illustrating new concepts. However, many of
these papers also claim real-world relevance and proclaim success when their model
produces the desired qualitative correlation only, and totally ignore the question of
whether the analysis is quantitatively plausible. Rather little of the theoretical lit-
erature is subjected to any such quantitative testing. It will be interesting to see
how much of it survives the kind of scrutiny which computational methods now make
feasible.
The division of labor is relatively clear. Deductive theory can establish qualita-

tive features of a general theory, whereas computational methods can investigate the
quantitative properties of speciÞc instances of a theory. We now ask how these tools
are related to our notion of theoretical analysis.

10. Theory as Exploration

As I asserted earlier, theory is the exploration of implications of a collection of as-
sumptions. The claim of this essay is that both conventional deductive analysis and
computational methods can, for many theories, explore these implications with equal
validity. In this section, we try to understand how conventional deductive analysis
and computational analysis are related.
To highlight the relation between deductive and computational methods, I will

use the analogy of exploration. Theoretical analysis of a model is similar to exploring
unknown geographical territory. In the case of a scientiÞc theory, the �territory� is
deÞned by the deÞnitions and assumptions of the model. How does conventional,
deductive theory proceed? Deductive theory usually formulates a proposition. Some-
times, the validity of the proposition can be established without further restrictions;
existence results and welfare theorems of general equilibrium are examples of these
results. For many propositions, however, the analyst then adds assumptions (such
as linear demand, constant costs, etc.) to the basic ones in order to make a proof
of the proposition possible. With these auxiliary assumptions, one can prove precise
statements concerning the implications of the augmented theory. It is not that we
believe that these added assumptions are true, but we proceed in the belief (or, more
precisely, hope) that the results we get are actually robust.
Explorers of unknown geographical territory use a similar strategy. In the case of

geographical exploration, the initial explorers of an unknown territory do not examine
the entire territory nor take a random path, but instead follow a path in that territory
which can be easily traversed. For example, one way to explore a region is by ßoating
down (or rowing up) a river which cuts through it. These explorers report how their
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view of the unknown territory changes as they move along this path. This is a risky
strategy since the path is chosen for its convenience and not likely to be representative
of the total region. Similarly, deductive theory can sometimes say how the results
vary as we move within the narrow, augmented theory. However, the results in this
limited examination are not necessarily robust.
In this exploration activity, computational methods have substantial advantages

because they can approximately solve an arbitrary example of the basic theory, and
determine the nature of any individual point in the territory being explored. The ad-
vantage arises because computational methods do not need as many, if any, auxiliary
assumptions to compute the equilibrium; computational methods are not restricted
to the easily traversed paths. The supposed weakness is that they can do this only
one example at a time with error, and in the end can examine only a Þnite number of
points. Computational methods are similar to a satellite: it can take a picture of any
location, but the picture may be fuzzy and there is not enough Þlm to photograph
each location.
There are many who will argue that computational methods add little to what is

available from deductive theory. We shall take up some of these criticisms now and
consider them in the context of this exploration metaphor.
Some will argue that deductive theory is better because its results are error-free.

Where deductive theory provides an answer then it will provide a more precise an-
swer. The problem is that deductive theory is limited to the small subset of examples
which obey the conditions imposed to make the analysis tractable. If one graphed
the tractable territory of a theory, the typical picture is that deductive theory can
analyze only a piecewise connected continuum of cases within the space of all models,
and that these cases are not dense in the space of all models; just like little rivers.
Figure 1 displays such a picture for, say, growth theory. One thread is the linear-
quadratic cases, another thread is the linear production cum isoelastic utility cases,
and the third is the log utility and Cobb-Douglas production case. If one wanted to
understand growth and asset pricing issues, then one could restrict the study to these
cases, but that would be dangerous and very limiting. While computational meth-
ods often involve error, their ability to look where deductive methods fail offers an
important advantage. Even a fuzzy picture of unknown territory is more informative
than no picture.
Deductive theorists often say that their methods will provide a guide to the im-

portant principles which are robust. In fact, the only reason for analyzing the simple
cases is the possibility of gaining general insight. This approach produces candidates
for robust principles, but one is just guessing when claiming that these principles
actually are robust. The results from special tractable cases may be unrepresentative
just as the view from ßoating down a river may not give a true picture of a territory.
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Figure 1: Typical pattern of tractable cases

To establish robustness claims, we need either to tackle the intractable or to use
computational methods. In many cases, the supposed basic results break down when
analysts begin to examine more general cases. For example, in his work on nonlin-
ear pricing, Wilson[77] argues that the principles of the one-dimensional theory are
practically useless when one moves to two-dimensional problems, which he examines
numerically.
Theorists may make a great deal about how they can solve whole continuous

classes of cases instead versus the Þnite number of cases which the computational
method can deliver. This is an empty claim in many economic theories. In many
cases, the important elements of a theory, such as an equilibrium relation between
parameters and equilibrium values, are continuous or piecewise continuous functions.
Proving such topological properties of models is something at which theory is very
good. In cases where theory tells us that these relations are piecewise smooth, the
cardinality of the cases deductive theory can analyze is a substantively empty measure
of value since piecewise continuous functions can be arbitrarily well approximated by
a Þnite number of cases. It is well known in approximation theory that the best
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way to approximate continuous functions is to have data at a well-dispersed set of
points and that Þnite collections of well-chosen points can do a very good job of
approximating a function even in the presence of error. Knowing a function at each
point on a continuum is of little marginal value. Egoroff�s theorem supports a weaker
formulation of the same assertion for measurable relations. Purely deductive methods
are clearly dominant only in the rather exotic case of nonmeasurable relations between
structural parameters and equilibrium outcomes, and in such cases one would not dare
make the claim that the thread of tractable cases is representative of the general cases.
The excessive simplicity of analytically tractable theoretical models make it im-

perative that economists explore models which are not analytically tractable. We
next discuss distinct ways in which computational methods will help theory move
beyond the tractable and focus its energies on important issues.

11. Perturbation Methods: Common Ground

Deductive theorists generally want proofs concerning the nature of a theory�s impli-
cations. Some computational methods fulÞll the demands of the deductive theorist,
but are computational methods in that the computer can do the work and the result
can be used as numerical approximations. These are called asymptotic methods, also
known as perturbation methods. For many economic models, equilibrium can be ex-
pressed as the solution to an equation f(x, δ, ²) = 0 where ² and δ are parameters of
the model. The equation f(x, δ, ²) = 0 implicitly deÞnes the equilibrium correspon-
dence x(δ, ²). In particular, ² is a parameter such that the equation f(x, δ, 0) = 0 can
be solved for x in closed form for arbitrary δ. The result is a parameterized solution
set x(δ, 0) for the special subclass where ² = 0. Theoretical analysis will often be able
to tell us that the solution manifold x(δ, ²) for general ² is smooth for small ² and all
δ, but theory may be unable to solve f(x, δ, ²) = 0 for small nonzero ².
In such cases, perturbation methods can often take this smoothness information

and compute an approximation of the form

x(δ, ²) ∼ x(δ, 0) + x(δ, 0)²ν1 + x(δ, 0)²ν2 + · · ·
for some increasing sequence ν1 < ν2 < · · ·. The case of νi = i is the common Taylor
series method, but we are not restricted to that special sequence. The advantage of
this method is that any property of the series which holds as ²→ 0 holds for the true
solution manifold x(δ, ²) for sufficiently small ². One can thereby solve any case for
sufficiently small ² and construct proofs concerning the nature of the solution. This
is a computational method since the series can be used as an approximation.
Perturbation methods provide a very useful tool for most theoretical applications

of quantum mechanics and relativity theory, theories which are generally intractably
complex in structure, but relatively easily analyzed through perturbation methods.
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For example, the only quantum system which can be solved in closed form is the
hydrogen atom. Conventional closed-form analysts would spend their time studying
the hydrogen atom and trying (in vain) to Þnd closed-form solutions for other atoms.
Perturbation methods are extensively used throughout applied physics and mechan-
ics. Of particular relevance to economics, perturbation methods are frequently used
in control theory, nonlinear Þltering theory, and statistical theory.
Economists do use these methods, but often in an ad hoc fashion. The quadratic

loss function for taxation is an example of such an approximation. The single-good
version states that the welfare loss of a tax on a good approximately equals the one-
half the product of the square of the tax and the elasticity of demand (assuming
constant cost). It is valid for small tax rates, and accurately indicates the direction
of tax effects and costs as the revenue needs increase from zero. The multiple good
versions of this approximation can be used to solve for the optimal tax structure for
small revenue needs. These quadratic approximations also work in practice as good
approximations for moderate revenue cases.
Perturbation methods are explicitly used in dynamic public Þnance.5 For exam-

ple, let C(k, σ2) denote aggregate consumption when the capital stock is k and the
variance of the productivity shock is σ2. It is easy to compute the steady state
capital stock, denoted k∗, and steady state consumption of the simple one-good
representative-agent deterministic growth model with a constant income tax; C(k∗, 0)
denotes that consumption level. It is not easy to compute the consumption policy
function for general k and general σ2. Perturbation theory focuses on capital stocks
close to k∗ and small values of σ2, and computes the linear approximation of the
consumption function

C(k, σ2) ∼ C(k∗, 0) + Ck(k∗, 0)(k − k∗) + Cσ2(k∗, 0)σ2 · ··

where Ck(k
∗, 0) and Cσ2(k∗, 0) are easily computed derivatives. If one wanted greater

accuracy (as demonstrated in Judd and Guu), one just takes higher-order Taylor
series.
Figure 1 displays the typical value of perturbation methods. We begin with one

of the threads of analytically tractable models. Perturbation theory will then solve
models close to those threads, generalizing the analysis to an open set of models
around the �measure zero� set of cases solved by analytical methods. Perturbation
methods can be used to test robustness of the principles derived in the simple cases
which direct theory can handle. This approach can be used in growth models6, with

5See Judd[40] for more discussion and citations.
6These methods could be used in RBC theory, but RBC macroeconomists eschew this formal

approach, using less general methods. This is clear in the expansion of C(k,σ2) above, which is



Computational Economics and Economic Theory: Substitutes or Complements? 20

and without distortions, in dynamic game models (see Judd[33], Budd et al.[15], Basar
and Srikant[69]), sunspot theory (Chiappori et al.[16]), and in asset market analysis
(Samuelson[66], Judd and Guu[44]). Brock [13] outlines their use in economic models
of complex economic systems with local interactions.
Some think of these perturbation methods as theoretical methods. That may

be, but they can be automated. In some sense, theorems concerning local behavior
can be computer generated since they follow clear, straightforward applications of
basic formulae. Whether we think of perturbation methods as a theoretical tool or
computational tool, there value here in theoretical analysis is clear but it is underused
in economic analysis.

12. Computational Analyses in the Absence of Theorems

The most controversial use of computers in economic theory would be the use of
computations instead of proofs to establish general propositions. One example is not
a proof of a proposition; neither does a million examples constitute a proof. However,
the latter is far more convincing than one example. Also, what is the marginal value
of a proof once we have a million conÞrming examples? In some cases, that marginal
value is small, and may not be worth the effort.
In some cases, there may not be any comprehensible theorem. A problemmay have

a very complicated pattern of results which deÞes summarization in a tidy theorem.
What are we to do then? The following is a good example of what is probably not
an unusual situation.
A paper by Herman Quirmbach[59] is an example of what computation can do and

displays what I think will become more common. He asked a very basic and important
question in the economics of innovation and antitrust policy. Suppose that several
Þrms can expend R dollars to Þnance a research and development project which will
have a probability of success equal to τ , independent across Þrms. The successful
Þrms then all produce the new product (patenting is presumed unavailable). The
issue is how the market structure and conduct of the post-entry market affects the
ex ante R&D effort and net expected social welfare. For example, some might argue
that excessive ex post competition will reduce proÞts among the successful innovators,
and discourage ex ante R&D effort. This line of argument may lead to the conclusion
that antitrust policy should be lax when it comes to high tech industries. The basic
question addressed by Quirmbach is what form of ex post oligopolistic interaction
and regulation will lead to the greatest social welfare.

not certainty equivalent, whereas the approximation developed in Magill and used by Kydland and
Prescott[?] and others, are certainty equivalent approximations, and thereby not asymptotically
valid. For a more detailed discussion of these issues see Judd[?].
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Figure 2: Welfare and market structure

In the typical industrial organization paper, one would make highly speciÞc as-
sumptions for the demand function, for the cost function, and for the speciÞcation
of imperfect competition. In particular, the typical paper has a Þnite number of pa-
rameters in the model and makes very special functional form assumptions. There is
seldom any attempt to generalize the results for general tastes, technology, or mode
of competition. Given the Þnite- and low-dimensional nature of the class of models
explored, computation has a chance to be as complete as the typical paper adopting
the deductive approach.
Instead of attempting to prove a theorem ranking the ex post market structures,

Quirmbach computed the social welfare at a wide collection of values for the critical
parameters. Figure 2 displays one of his graphs. The one graph I reproduce here
illustrates many critical facts. First, there are no �theorems� if by �theorem� we
mean a precise, compact, and understandable statement summarizing the results.
Note that each market structure dominates the others at some parameters. It is not
even possible to give ranks conditional on τ since Bertrand and Cournot ranks switch
due to discontinuities in the Bertrand performance. Any �theorem� which tries to
summarize the results just in Figure 2 would be a long, twisted, and incomprehensible
recitation of special cases.

Second, despite the absence of simple theorems, there are important and robust
Þndings illustrated in Figure 2 and its companions. Even though we cannot rank the
market structures absolutely, it is clear that perfect collusion is usually much worse,
and that even when it outperforms Bertrand and Cournot the differences are not
signiÞcant. Even though the results are muddled, and no simple theorem can sum-
marize these facts, these pictures contain much economic content and clearly reject
the argument that collusion should be tolerated because of innovation incentives.



Computational Economics and Economic Theory: Substitutes or Complements? 22

Quirmbach produced many such graphs, exploring various values for the parame-
ter R, alternative demand curves, and alternative R&D games. Other graphs designed
to address other questions also showed that there were few if any simple theorems.
A total of Þfteen graphs were used to illustrate the results of the computations, all
presenting economically interesting patterns, but also demonstrating the absence of
any general theorems.
I suspect that the true answers to many important questions in economics look

like Figure 2. The normal approach of Þnding a model simple enough to come up
with a clean result can do great violence to the real truth.

13. Computational Considerations in Modelling Rationality

My focus so far has been on using computation to solve conventional economic mod-
els wherein agents optimize and markets clear. Many have been bothered by the
assumption of such perfection on the part of economic agents and markets. In this
section, we take a slight detour and discuss how computational ideas have contributed
to modelling agent rationality. We discuss this issue here for two reasons. First, it
is an excellent example of where computational ideas have played important roles in
theoretical analysis. Second, an appropriate resolution of this issue will be important
for computational approaches to theory since it will help computational analysts deal
with the errors which are always present in computational methods.
Computational ideas can and have contributed to economic theory is by suggesting

ways to model the rationality of economic agents. Economists are beginning to in-
vestigate the idea that understanding how economic agents with Þnite computational
abilities solve the problems they face may help us in understanding their behavior
in complex environments. Various examples of this exist in the economics literature.
We next consider the computational ideas which have been used in modelling �ratio-
nality� in this section since, Þrst, it is an interesting example of how computational
ideas can be used in theory, and, second, notions of bounded rationality will help us
interpret and deal with the errors which invariably accompany numerical methods.
Game theorists, beginning with Rubinstein[62], have used the Turing machine

notion of computation to model bounded rationality. In this approach, we assume
that inÞnitely rational players choose automata to execute strategies, but we assume
that there is a cost to using a large, sophisticated automaton which forces the players
to trade-off the computational cost against the payoffs. This idea has received much
attention in the game theory literature. However, it is difficult to use these notions
in a precise manner when modelling agents in complex environments since Turing
machines are not easy to analyze.
Economic theorists sometimes use the concept of the idea of ²-equilibrium. Akerlof

and Yellen[1] discuss the relation between the agents� ²-rationality and the multiplicity
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of plausible ²-equilibria. However, the concept of ²-equilibrium is confusing from an
operational point of view. A key feature of most economic problems is that each agent
must solve an optimization problem. The basic assumption in ²-equilibrium is that
an agent cannot perfectly solve his problem but will make some choice which yields
him a payoff within ² of the best possible choice. Upon reßection, this is somewhat
confusing: how can an agent be assured of getting a payoff with ² of the optimum
payoff without knowing that maximal value? Such an agent is using some algorithm
to solve his problem. There is no such algorithm available in the numerical analysis
literature, forcing us to ask what algorithm can this agent be using which assures us
that he will choose only such points?
An improvement to the ²-equilibrium concept may be based on numerical analysis

notions of computation. For example, a player in a game must solve an optimization
problem. Instead of asking which actions would put him within ² of the best possible
payoff, we could ask what he may choose if he used a standard optimization method.
If the problem is concave then most optimization methods would stop when it found
a point where the marginal beneÞt of changing his choice is below some critical value.
This may be similar to the conventional ²-equilibrium, but there would be a difference
depending on the curvature of the objective. However, if the player�s optimization
problem had multiple optima then a player may have the same difficulty in Þnding
the best point as does a maximum likelihood econometrician. By assuming that the
agents actually use standard optimization algorithms and using the stopping sets of
such methods be our predictions of behavior, we avoid the epistemological difficulties
of the conventional ²-equilibrium concept. This strategy has been used; Marimon et
al.[?] study economies wherein agents use genetic algorithms to solve their problems.
Rational expectations theorists have used the notion that agents� abilities to form

conditional expectations are limited to particular forms of regression, and then com-
pute rational expectations equilibrium given this limitation. Examples of this include
Anderson and Sonnenschein[4], Allen[2], and Marcet and Sargent[53].
We should note the different ways in which the computational ideas have been

used and analyzed, and distinguish between computational and deductive methods
which arise in these models. Rubinstein created a model in which the agents behaved
as automata, a computational idea modelling behavior, and then proceeded to analyze
the resulting theory in a deductive fashion. Anderson and Sonnenschein assume that
agents use regression in forming their expectations, again a computational approach
to modelling behavior, and then proceeded in a deductive fashion to prove existence.
The theoretical examples mentioned above made theoretical assumptions concerning
the way in which economic agents use their information and compute their response
to economic stimuli. In contrast, Marimon et al. assumed that agents used particular
numerical method to solve their optimization problems, formulating another theory of
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bounded rationality, and then studied that theory by simulating the resulting model,
thereby using a computational approach to analyzing a theoretical model of behavior.
Therefore, the literature contains examples of both deductive and computational
analysis of theoretical models of bounded rationality. Incorporating computational
ideas into a theory does not mean that one must analyze the resulting model in a
computational manner.7

14. Numerical Error: Estimation and Interpretation

Any approximation scheme has some error; that is a fact of life in computational
approaches. We need to be able to control that error and it would be desirable to
have some economic interpretation of that error.
Many numerical methods have desirable asymptotic properties. Typically these

properties do not produce a bound on the error, but just a statement that if the
algorithm uses a size parameter h then the error is proportional to hk for some k > 0.
This can be difficult to interpret except for the infrequent case where one has a
good estimate of the proportionality constant. Economists will often face a choice
between using slow methods which have good asymptotic properties, and alternative
procedures which are fast and typically produce results which are ²-equilibria for
small ², but have no known good asymptotic properties. Even if one has a convergent
scheme, one must still choose a stopping criterion since we cannot wait for the inÞnite
sequence to converge.
These considerations of bounded rationality, numerical error, and stopping crite-

rion lead to some important conclusions. Since it is the convergence criterion which
deÞnes what is an acceptable end, it is not clear why one demands convergent meth-
ods. Instead, one can just compute a candidate approximation and then check to
see if the candidate satisÞes the stopping criterion. Since it is the stopping criterion
which determines when we end our search, it is there where we can impose our notion
of ²-equilibrium. I call this approach �compute and verify�.
The connection between bounded rationality and numerical methods is one which

will be increasingly important. My claim is that in many economic models and
computational methods, the numerical error can be related to the optimization error
of agents. In Judd[37], I focussed on the magnitude of the Euler equation error, a
criterion commonly used in the stopping rules of optimization algorithms. The result
allows one to use reasonable assumptions about agent rationality to set standards

7I should also make clear that I am not here trying to deÞne what is and is not computational
economics. In particular, I am not saying that research which uses deductive methods to analyze
models of bounded rationality is not computational economics. I just want to make clear the
distinction between computational assumptions about economic agents in theoretical models and
the use of computational methods to analyze theories.
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for the acceptability of numerical approximations. For example, if an approximate
equilibrium strategy has a consumer making optimization errors of a dime per dollar
of expenditure, then the approximation is unacceptable if one believes that people do
better; if the implicit optimization errors are a penny per thousand dollars, then the
approximation is acceptable if you doubt that people can do better.
At this point, I will go way out on the limb and make a radical proposition:

once we have agreed to a notion of ²-equilibrium, existence theorems may not be
necessary. It is not generally possible to prove the existence of an equilibrium through
computational means, but numerical demonstrations can be sufficient to prove that a
candidate equilibrium is an ²-equilibrium. Since agents in the real-world economy are
likely to make mistakes, the best we may ask of them is ²-optimality. Therefore, if we
can computationally prove the existence of ²-equilibria through the construction and
analysis of numerical approximations, the value of existence theorems is reduced.
There are many issues raised by moving to this kind of analysis. In particular,

there are generally a multiplicity of ²−equilibria. Some would dislike this multiplicity.
I would argue that the size of the set of ²−equilibrium is interesting for small ²
since the size of that set indicates the ability of our theory to predict outcomes of
interactions among real people. This supposedly problematic feature of ²−equilibrium
concepts can really be turned around and used to investigate new economic issues.

15. A Computational Approach to Analyzing a Theory

In the examples above, I have emphasized how computational methods can examine
a wider range of models than analytical theory can plausibly analyze. Any analysis,
deductive or computational, consists of two steps: Þrst, determine the facts about the
theory, and, second, express them in intelligible form. In the case of the deductive
approach to theory, the strategy is to Þnd sufficient conditions under which some
proposition is provable, and then express that proposition in the form of a theorem.
The theorem could just list the results of the analysis in various instances, but that is
inelegant. The deductive mode attempts to Þnd a simple, elegant proposition which
is true under simple conditions.
A major problem with computational theory is that while the Þrst step of Þnding

facts is not difficult since it consists of solving various instances, the second step of
expressing those facts is very difficult. The kind of tabular and graphical expressions
displayed above can be used for low-dimensional models, but when one leaves a two-
dimensional universe, such tools are difficult to use without excessive consumption of
paper and a reader�s time.
In this section, I offer various schemes which could lead to modes of numerical

investigation and relatively easy exposition. I will lay out an approach which ties
together the common deductive methods with the computational methods. I do not
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claim that this is the typical approach used; in fact, the numerical literature has no
such general strategy. I argue that the strategy below allows us to exploit numerical
tools to analyze theories and economic issues in ways which satisfy the legitimate
methodological concerns of sceptics. Some will Þnd the strategy and its requirements
too demanding, and think that this is a proposal which would deter, not encourage,
the use of numerical methods; others will Þnd it an attempt to disguise the logical
ßaws of numerically intensive research. The main objective here is to get us to think
seriously about where numerically intensive research Þts into the economic literature.
In the discussion below, we let the generic �Proposition P� be a statement about

the model. It could be a comparative static, a statement stating the relative size
of two quantities in equilibrium, or another kind of statement usually found in a
theorem. For the purposes of speciÞcity, suppose that proposition P is �The optimal
consumption tax results in greater social welfare than the optimal income tax.� To
investigate this proposition we would like to vary at least the revenue needs, the social
welfare function, the technology, and heterogeneity in tastes and endowments. For
the purposes of this discussion, we will assume that there are computational methods
which can determine P �s truth in any speciÞc case.

15.1. Find Examples with Closed-Form Solutions. The Þrst step in analyz-
ing any theory should be determining cases with closed-form solutions, if that is at all
possible. Sometimes these examples may be quite trivial. For example, in discrete-
time dynamic games, if we assume that the discount factor is zero then the dynamic
game is just a succession of static games. Budd et al.[15] and Judd[33] begin with the
closed-form solution to a dynamic game where the payoff was zero, a rather trivial
instance. One may have more substantial cases with closed-form solutions. For ex-
ample, linear-quadratic examples can be solved and treated as essentially closed-form
solutions since the error can be reduced almost to machine zero. There may also be
special cases with solutions. The result of these special cases will be the threads of
tractable cases in Figure 1. In the case of our proposition P , the special case of zero
revenue needs and identical agents is easily solved since both the optimal consump-
tion and income tax policies which raise zero revenues impose zero taxes and reduce
to the same competitive equilibrium.

15.2. Perturbation Methods around Tractable Cases. After theory pro-
duces simple analytically tractable cases, one can measure the robustness of the prop-
erties of these cases by applying perturbation methods to determine what happens in
�nearby� cases. In our example, we could take the zero revenue, representative agent
case and perturb the revenue needs and add a small amount of agent heterogeneity.
The tractable examples may be silent on some important issues, whereas the per-
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turbation methods may tell you interesting answers nearby. Perturbation methods
begin with points on the tractable threads in Figure 1 and effectively �fatten� them
since it gives us information about points near those �threads.� The broken lines in
Figure 1 display the results of this �fattening� process, representing the expanded
class of models for which we have essentially closed-from solutions and which we now
understand.

15.3. Test Numerical Methods on Tractable and Perturbed Cases. Since
tractable cases are isolated and perturbation methods yield only local information,
we need to examine other cases if we are to obtain a robust picture of our theory.
However, before computing these other cases, we can use the analytically tractable
cases and the perturbation results as cases on which we can test the reliability of
candidate numerical methods. By testing possible numerical procedures out on these
cases, we will have a better idea as to their numerical errors and speeds, help us
choose among these possibilities, and will allow us to Þne tune the chosen methods
to attain the desired accuracy in these test cases. Such information is likely to be
informative when applying the procedure to other cases. This also gives us more
reason to Þnd tractable cases and perform perturbation calculations.
We are now ready to conduct a more global analysis. The following methods

could be used to generate and summarize global information concerning the validity of
proposition P which can complement the local information produced by the tractable
examples and perturbation methods.

15.4. Search For Counterexamples. Ultimately the special cases and the local
analyses are exhausted, and we must move to more global methods of evaluating the
question at hand, that is, the truth of some proposition P . The next logical step
is to search for counterexamples8. In our example, we would form the function SW
expressing the social welfare of the optimal consumption tax minus that from the
optimal income tax, and feed SW to a global minimization algorithm. This global
optimization approach will implicitly produce strategies to Þnd counterexamples to
the hypothesis that SW > 0 always. The results from the perturbation analysis may
indicate which directions are most likely to produce cases where SW < 0.
Searching for counterexamples via optimization routines may be a good method

to test proposition P , and failure to Þnd a counterexample strong evidence for propo-
sition P. If we want to make a case for the general validity of proposition P , then
we need to focus on Þnding counterexamples. If there are counterexamples, the opti-
mization approach is designed to get to them quickly, ignoring conÞrming examples.

8Scott Page suggested this step to me.
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However, the lack of a counterexample is difficult to express. If one reports this
failure, the reader (journal editors and referees, in particular) may worry that the
search procedure was not competently executed or that the optimization procedure
was not appropriate for the problem. If we fail to Þnd a counterexample, we need to
consider cleaner ways to express the apparent global validity of proposition P .

15.5. Monte Carlo Sampling. Once one is fairly convinced of a proposition�s
truth, then one wants to express that in some compact way. Monte Carlo sampling
can produce results which are easy to report in either classical or Bayesian fashion.
The Þrst procedure for a computational theory I will describe involves the com-

puting numerous examples of a model and then using statistical inference language to
summarize the Þnding9. Suppose that one wants to investigate a set of parameterized
models of a theory on which one has imposed a probability measure, µ. Suppose we
want to evaluate our proposition P . We could draw N models at random according
to the measure µ, and use computation to determine the truth of the proposition
in those cases. If computation showed that proposition P held in each case, then
one could say �We reject the hypothesis that the µ-measure of counterexamples to
proposition P exceeds ² at the conÞdence level of 1− (1− ²)N .� Note the crucial role
of the randomization; the fact that we randomly drew the cases allows us to use the
language of statistical conÞdence.
One could also use Bayesian methods to express his beliefs after several compu-

tations. Let p be the probability that a µ-measure randomly drawn point satisfy
proposition P , and suppose that one has a uniform prior belief about the value of p.
Then one�s posterior belief about p after N draws which satisfy proposition P can be
directly computed.
The advantage of Monte Carlo sampling methods is the ease of expression, and

little question about meaning since independent draws are easy to implement and
well-understood. The ability to express the results in both classical and Bayesian
ways make it easy to communicate the result.

15.6. Quasi-Monte Carlo Sampling. Some have told me that they would pre-
fer to use a prespeciÞed, uniform grid instead of random draws. This approach would
be more efficient since it would avoid the clumping and gaps which naturally oc-
cur with Monte Carlo sampling10. The disadvantage of any deterministic sampling

9This is an idea which I outlined in [?], have discussed with several colleagues, and which many
others have proposed. Despite the fairly wide discussion of this idea, I am unaware of anyone actually
implementing this approach.
10Monte Carlo sampling is ex ante uniform, but ex post it is most likely locally normal by the

Central Limit Theorem.
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method would be the inability to use statistical language to express �conÞdence lev-
els.� The alternative expression would be the maximal size of a ball or cube of
counterexamples; that is, if proposition P is true at each point on a grid and the
largest ball which can miss each point on the grid is of diameter δ, then δ could be
used as a measure of the strength of proposition P . Sometimes we could do better.
Suppose that the proposition is �f(x, µ) > 0 at equilibrium values of x in model µ.�
It may be possible to show that fµ is bounded by M . Then if we can, via computa-
tion, prove the truth of proposition P on a grid with mesh δ < 1/M , then we actually
have a proof of Proposition A for all models µ.

15.7. Regression Methods. Often, the results of computations will be similar
to the Quirmbach example cited above, that is, there is no deÞnitive result and
the patterns we Þnd are complex. In those cases, we need other ways to analyze and
express the results. The graphical approach in Quirmbach is one way, but it is limited
by dimensionality. In problems with higher dimensions, one could use curve Þtting
methods, such as regression, to express one�s Þndings. In the Quirmbach case, we
could draw a random number of models and Þt a probit expressing the probability
that one market structure dominates the others, or we could regress SW against the
model�s parameters. Since the objective is to Þnd SW as a function of the parameters,
we could use approximation theory and choose a collection of points which are optimal
in terms of Þtting such functions.
The main point is that approximation and regression methods could be used to

summarize the results of a computational study of a theory. As long as the topological
analysis of the model indicates that the function of interest is smooth (or, piecewise
smooth at least) then we can implement the appropriate approximation method to
Þt the surface.

16. The Problems Facing Computational Economics Today

I have been discussing the potential of computational theory. I suspect that few of
these ideas are new, as is indicated by the many examples I have cited. The question is
why computational theory is not exploited more fully. Papers like this one generally
focus on the unrealized and unappreciated value of computational methods. It is
common to blame the rigid methodologies adopted by journals and others in the
profession. However, economists who use computational methods are often their
own worst enemy. Part of the problem is that computational economics has not yet
developed the standards, the discipline, and the coherent core of techniques which
characterize other subdisciplines in economics, such as econometrics. Computational
economists often do not take their computations seriously, inviting others to also
discount them. These problems make it easy to criticize much of what passes for
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computational economics. Any balanced consideration of computational economics
should face up to the problems which exist, and develop solutions. In this section, I
will focus on these problems11.
First, many of us are guilty of poor scholarship regarding both the relevant math-

ematical and prior economic literature. There is a tendency to use standard math-
ematical terms in ways inconsistent with the standard mathematical concept. This
alienates a natural audience for the work; if the mathematically well-educated reader
is alienated, then how can we expect others to value and respect the work. Economists
working in one area make little effort to learn what has been accomplished in other
areas. For example, in our paper on computing rational expectations equilibrium,
Bizer and Judd[10], we ignored the relation between the methods we used and the
earlier work in Agricultural Economics by Gustafson, and Wright and Williams, work
which did appear in standard economics journals and was well known among rational
expectations economists. Journal editors and referees are equally poorly informed,
seldom enforcing minimal standards of scholarship. Ignorance of past work makes
it inevitable that the wheel is frequently reinvented, often with �innovations� tanta-
mount to trying a square wheel, and keeps the Þeld from truly advancing. This poor
scholarship makes it much more difficult for good work to disseminate properly and
for a coherent literature to form.
Part of this scholarship problem is that journals do not take computational work

as seriously as they do empirical or theoretical work. Theoretical papers (i.e., both
economic theory and econometric theory), must contain the proofs of any proposition.
In many cases, the techniques used to prove a theorem are as useful and interesting as
the actual theorem. Empirical papers must clearly indicate the statistical procedure
used and their properties. Similarly, the empirical procedure used in an empirical
paper is often its most valuable contribution. In both cases, journal editors and ref-
erees not only permit but insist on full disclosure of the details. Experimental work is
also allowed to publish the details of experiments. The treatment of computationally
intensive and innovative work is very different. Computational economists are often
told to limit severely, if not eliminate, the discussion of their methods, even when
those methods are as interesting as the paper�s economic content. I expect that the
Journal of Computational Economics and the Journal of Economic Dynamics and
Control, with their declared interest in computational methodology, will help to re-
duce this problem in the future, but their existence is no excuse for bad policies at
other journals.

11Exact citations of the �sins� discussed in this section serve no purpose in this context. Also,
speciÞc citations would have the unfair feature of pointing to writers who were clear enough in their
writing so that their sins are clear.
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A second (not unrelated) problem is that many economists who use computa-
tional methods know little about computing. Recently I was at a conference where a
presenter, a well-regarded professor at a well-regarded department12, discussed how
difficult it was to solve his problem, how his solution method (commonly used in his
subÞeld) took a long time to converge, and that it was therefore unreasonable to ask
that he make a more reÞned calculation. After the presentation, a couple of confer-
ence attendees discussed these problems with him. We Þrst pointed out that he was
essentially solving three smooth equations in three unknowns, where each equation
was easy to evaluate. After he agreed to that, we then asked him why he did not use
Newton�s method to solve the problem13; his blank stare told us that he had never
heard of Newton�s method for solving nonlinear equations!
This is not limited to a few, bad papers. Numerically intensive papers often con-

tain assertions which are inconsistent with the mathematical literature. Sometimes
these assertions are even contradicted by the literature they cite. My favorite pet
peeves are �only Monte Carlo methods can be used for high-dimensional integra-
tion�, �to compute a linear approximation to a nonlinear stochastic control problem
you take a linear approximation of the law of motion and a quadratic approximation
of the objective at the deterministic steady state,� and �you cannot generally inter-
polate data with smooth approximations and impose shape (concavity, monotonicity)
restrictions.� These three statements are often made explicitly, and are more often
implicit in the techniques authors choose to use. They are all misleading today, were
known to be misleading even twenty years ago, often lead to inefficient methods, and
in many economically relevant contexts are just plain wrong.
A third problem is that computational economists are often sloppy concerning the

reliability of their methods and accuracy of their results. At a recent conference, I
pointed out to an author that his results were unreliable since the two algorithms he
used were both very ad hoc and that he had not really done anything to convince us
of their reliability. His response was that he had demonstrated their reliability since
the answers of the two methods were very close. We then looked at his tables to Þnd
that the Þrst method produced an answer of 2 and the other produced an answer of 4.
Apparently �close� to him just meant �the same order of magnitude�, a standard far
weaker than we usually expect of numerical procedures and a standard which would
surely alienate many economists.
Another example of sloppiness often occurs in the use of Monte Carlo-based sim-

ulation solution methods. Many rational expectations methods use realizations of

12Any further identiÞcation would be inappropriate since this was by no means a unique incident.
13He was instead using the iteration xk+1 = g(xk) and variations thereof to solve the Þxed point

x = g(x) where x ∈ R3.
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random number generators in their algorithms. The result of the computation is
then a random variable. Sometimes this is exploited usefully, as in the case of es-
timation methods which use simulation. In fact, one of the advantages of Monte
Carlo methods in simulation methods is that one can fold numerical error into the
estimate of the standard error. In any case, it is recognized that the Monte Carlo
simulation produces random errors whose approximate magnitude must be reported.
Unfortunately, it is more typical for the non-econometric uses of such methods to
just report the computed result for one sample, give no report of the standard de-
viation of the random result, and, when challenged, claim, without documentation,
that the variation is trivial. In one such case, I got the authors� program, changed
the seed in their random number generator, and reran their computations. The new
results were at least two per cent different and in many cases twenty per cent different
from the answers the authors computed. Standard practice in the empirical litera-
ture insist that standard errors be reported with point estimates; the same should
be demanded of Monte Carlo-based computational methods, and of any application
where comparable concepts are available14.
The combination of poor scholarship, poor grasp of basic computational meth-

ods, and sloppy standards combine to make computational economics look bad in
the eyes of those aware of the problems, and invite disaster by risking embarrass-
ingly bad results. These problems are interrelated. Ignorance of efficient methods
leads to inefficient programming which is incapable of meeting high standards. The
unwillingness of journals to publish the computational details of a paper seriously
impedes dissemination of critical computational ideas. The lack of a full discussion of
computational methodology makes it impossible for peer review to impose the usual
discipline. The result is that many refuse to take the computational results seriously
unless the computational results just serve to illustrate theorems.
These problems are not present equally in all branches of computational eco-

nomics. More mature areas have worked out these issues. The difficulty is that the
standards which work, for example, in computable general equilibrium (CGE), may
not work or apply to, for example, computational methods for rational expectations
models. Also, the extensive mathematical training which the typical CGE economist
has is not adequate for solving rational expectations models. The development of
a common, general core of techniques and a common language, such as is done in
econometrics, is a task which would help greatly.

14I mention the Monte Carlo case because it is one which economists can easily understand. Similar
demands can be made of most numerical methods since procedures to estimate errors are often
available. For example, conditioning numbers serve an analogous purpose in linear and nonlinear
equations, and asymptotic error bounds exist for integration methods. Reporting these diagnostics
can go a long way in answering criticisms and revealing problems.
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While I do believe that the skepticism often expressed towards computational work
can be successfully addressed, this skepticism is valuable. Any new tool or approach
will be viewed with skepticism, and that is as it should be. Otherwise, we would
be whipped by constant motion from one new fad to another. Only those new tools
and approaches which can successfully meet such skepticism deserve to be adopted
as part of the core of economic methodology. One of the problems in computational
economics has been little consideration of how to address the skepticism. The exposi-
tional tools and research strategies discussed above are suggested patterns of research
and exposition which help one to communicate across methodological differences.
Of course, bad practice exists in all areas of economics, and standards must be

reasonable, tuned to what is practical. Unfortunately, there has been little discussion
of these issues, little effort in teaching graduate students a core of basic methods,
and little effort to set and enforce standards. Computational economists have some
housecleaning to do. I suspect that we do not agree on what those standards should
be and what is appropriate graduate training, but it is clear that we can do better.
Only when computational economists begin following serious standards of scholarship
will computational methods be taken more seriously.

17. Computational Economics and Future Technology

The trends in computational methods and power are all promising for the kind of
approaches described above. First, computational speed is increasing at a steady
rate. Better yet, computational costs are declining even faster. Some might argue
that we are fast approaching the limitations of the silicon-based technologies relied
on in current computing � the etchings can be only so small. This is not likely to
be a problem. We could go to other materials which allow even smaller components
and faster speeds. The other direction is three-dimensional chips. Beyond that are
optical switching methods, and, possibly, quantum mechanical computers. There is
little doubt that computational speed will continue to rise at a rapid pace.
The new directions in supercomputing are also beneÞcial to computational eco-

nomics. Supercomputing, as in the Cray series, used to mean vector processing, a
mode of computation which economists often found difficult to exploit. The new
mode in supercomputing (also called high performance computing) is massively par-
allel and distributed computing. In these environments, many moderately powerful
processors are networked and together solve a problem. In massively parallel ma-
chines these processors are all in one computer, whereas distributed computing is the
strategy of linking several computers in a network to cooperate on solving a problem.
The power of such computing structures depends on the problem. Some problems are
not easily decomposed into subproblems. Fortunately, most of the methods discussed
above can easily make full use of the computational power of such systems.
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These items concern the development of faster machines. Equally important are
the improvements in the algorithms available to solve problems. It is not generally
appreciated that, for many problems, there has been as much progress in software in
the past forty years as in hardware. This is particularly true for the multidimensional
problems which naturally arise in models of uncertainty, information, and risk. There
is no reason to think that progress in numerical analysis will slow. This is particularly
true in many areas of computational economics where standard practice is decades
behind the frontier of the numerical analysis literature. Even when computational
economists catch up with the frontier, it is plausible that economists will push out
that frontier in directions particularly useful to economists.
The combination of advances in hardware, computer organization, and software all

indicate that computing power available for computational economics will continue to
increase dramatically in the near future. Luckily, the nature of computational theory
is such that it will be able to efficiently exploit these advances. The result will be
dramatically faster computing, far beyond current practice.

18. An Economic Theory of Computational Economics

Being economists, we believe that the evolution of practice in economics will follow
the laws of economics and their implications for the allocation of scarce resources. The
objective of economic science is understanding economic systems. Theories and their
models will continue to be used to summarize our understanding of such systems, and
to form the basis of empirical studies. We have argued that the implications of these
theories can be analyzed by deductive theorem-proving, or they can be determined
by intensive computations. The inputs of these activities include the time of individ-
uals of various skills and the use of computers, either as word processors or number
crunchers. Theorem-proving intensively uses the time of highly trained and skilled
individuals, a resource in short supply, whereas computation uses varying amounts
of time of individuals of various skill levels plus the use of computers.
The output of economic research will continue to be used to guide decisionmaking

by governments and Þrms, and train students. Many of these end-users care little
about the particular mode of analysis. If a million instances covering the space
of reasonably parameterized models of a smooth theory all follow a pattern, most
decisionmakers will act on that information and not wait for an analytical theorist
to prove a relevant theorem. In the absence of a proof, most will agree that the
computational examples are better than having nothing. Most end-users will agree
that the patterns produced by such computations are likely to represent general truths
and tendencies, and form a reasonable guide until a conclusive theorem comes along.
The picture drawn here is one where alternative technologies, deductive analysis

and intensive computations, can produce similar services for many demanders. Eco-
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nomic theory tells us what will likely happen in such a circumstance. In the recent
past, the theorem-proving mode of theoretical analysis was the efficient method; com-
puters were far less powerful and computational methods far less efficient. That is all
changing rapidly. In many cases, the cost of computation is dropping rapidly relative
to the human cost of theorem-proving. I anticipate that in a the next decade, it will
be typical for an individual to outline a theory, describe it to his desktop computer,
and, in matter of days, have the computer produce a summary of the results it found
after working through an computationally intensive analysis. The clear implication
of standard economic theory is that the computational modes of theoretical analysis
will become more common, dominating theorem-proving in many cases15.
Does this make deductive theory obsolete? Absolutely not. In fact, as discussed

above, the presence of computational methods raises the value of some kinds of de-
ductive analysis. Proving existence theorems, deriving the topological and analytical
properties of equilibrium correspondences, and Þnding efficient ways to characterize
equilibrium will all assist in the computational step. Even the ability to come up with
special cases with closed-form solutions will be useful in giving the computations a
beginning point. A computational approach to theory may alter the relative value of
particular types of deductive analysis, but does not reduce the value in general.

19. Complements or Substitutes?

At the outset, I posed the question �are computational and theoretical methods com-
plements or substitutes?� As is typical of economists, my answer is a resounding
and clear �both.� In some activities, they are clearly complements with their com-
plementary strengths and weaknesses indicating that they can be very successful as
partners. Deductive theory is necessary in reducing an economic question to a Þnite
set of mathematical expressions which a computer can then analyze to produce eco-
nomically useful results. The greater the analytical knowledge we have of a model,
the better we can do in developing computational methods for solving instances of
the model, and greater computer power allows the investigation of more general and
complex models. Also, numerical examples can help the analytical theorist in deter-
mining the likely quantitative importance of various features of a theory.
On the other hand, computation can also be, and will sometimes be, a substitute

for deductive theory. First, computation can inform us of patterns which analytical
theory would have great difficulty discerning or expressing. Second, it may be cheaper
to use computationally intensive methods instead of theorem-proving to analyze a

15This section owes much to and freely borrows from a George Stigler talk on the mathematization
of economics. While less dramatic, the computerization of economics may be similar in terms of
how it affects the style, emphasis, and allocation of effort in economic research.
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theory; given likely technical improvements in computing, this controversial direction
has great potential for growth if it becomes accepted.
Whether complements or substitutes in speciÞc activities, theory and compu-

tation should never be viewed as enemies in the general development of economic
understanding. Computation cannot achieve its potential without the use of theory,
and theory will become increasingly dependent on computation to answer theoretical
questions and guide it in directions of greatest economic value. The ultimate focus of
these discussions should be on what is good for economic science. Clearly, economic
science will thrive best by harnessing the power of both theory and computation.
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