The Parametric Path Method for Solving Perfect Foresight Models

KENNETH L. JUDD
HoOOVER INSTITUTION
STANFORD, CA 94305

JUDD@HOOVER.STANFORD.EDU

January, 1999

ABSTRACT. The parametric path method applies projection methods to
compute the equilibrium time path of economic variables in large macroeco-
nomic models. We exploit the special structure of economic time paths common
in such models to reduce dimensionality. An illustrative example shows that
the method can find excellent approximations with little computational cost.

Large-scale dynamic general equilibrium models are increasingly used in analyses
of economic problems. However, their use is limited by numerical difficulty of solving
such models. The perfect foresight aspect of dynamic general equilibrium analy-
sis creates links between current and future economic variables. This simultaneity
automatically generates large complex systems of nonlinear equations, and makes
conventional computational general equilibrium procedures like Scarf’s algorithm or
homotopy procedures impractical.

We propose an algorithm which uses standard methods from numerical functional
analysis and exploits the special structure of many dynamic general equilibrium mod-
els. While there are an infinite number of unknowns in an infinite-horizon general
equilibrium model, the dynamic path is relatively well behaved. Specifically, dy-
namic general equilibrium analyses often assume convergence to a steady state, or,
more generally, convergence to some known (or easily computed) dynamic path. Dur-
ing some initial phase, that convergence need not be well-behaved but asymptotically
the convergence is governed by linear approximations about the asymptotic path.
The idea of the parametric path method is to express the time path of economic
variables as some function of time where the number of free parameters in the pa-
rameterization is far less than the number of unknown prices and quantities in the
infinite-horizon economic model'. As long as the asymptotic behavior of equilibrium
is well-behaved, it is possible to construct flexible and parsimonious parameteriza-
tions which can accurately approximate equilibrium. This reduction in the number

Tt is common in numerical rational expectations models to parameterize the critical unknown
functions; see Gustafson (1958), Wright and Williams (1982, 1984), and Miranda (1987) for the
seminal contributions to this literature.
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of unknowns substantially reduces the complexity of the numerical problem since the
cost of solving methods for nonlinear equations is quadratic (at best) in the number
of unknowns.

We first describe the general perfect foresight model and traditional solution meth-
ods. We then use the projection method (see Judd, 1992) to develop the parametric
path method for solving perfect foresight models. We finish with a detailed applica-
tion to a familiar simple perfect foresight model.

1. TRADITIONAL PERFECT FORESIGHT MODEL SOLUTION METHODS
Let z; € R" be a list of time ¢ values for economic variables such as consumption,
labor supply, capital stock, output, prices, interest rates, wages, etc., and z; a list of
exogenous variables, such as productivity levels, tax rates, monetary growth rates,
etc., at time t. Perfect foresight models have the form

gt, 7,7) = 0,t=0,1,2,... (1)
To; = TO,@'; 1= 1,2,...,71[ (2)
Ty bounded (3)
where
T = (w0, 71, Ta, ey Ty, o)
-
< = (Z(),Zl,ZQ,...,ZS,...)

and g(t, ¥, Z’) € R™ is a system of n functions concerning supply, demand, expec-
tations, or other equilibrium relations among the economic variables. The equations
in (1) represent Euler equations, market clearing conditions, and any other equations
in the definition of equilibrium. Some of the economic variables may have fixed pre-
determined values at ¢ = 1. These initial conditions are represented by the ny < n
conditions in (2). The objective is to find a sequence of values for x; such that (1,2)
hold.

We shall use a simple example to illustrate our analysis. We examine the optimal
growth problem

max i Bru(cy) (4)

s.t. k‘t+1 = F(l{?t) — Ct
kfo - EO

The solution to this problem is the solution to the Euler equations

u'(e) = Bu' (copn) F (Keia).
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In the notation of (1,2), the growth problem can be expressed as

_
gl<t7 ?7 k ) = o (Ct) - ﬂu/ (Ct+1) F/<kt+1) = 07 = 07 1727 (5)
9(t, ¢, ?) = kypn— Flb) +a=0,t=12,..

ke = ko

In this problem, z = (¢, k) and there are no exogenous variables. The functions in

g(t, ¢, ?) are the time ¢ Euler equation and time ¢ savings equation. The capital
stock has a predetermined value at ¢t = 0 but consumption is free at all times.The
equations in (5) form a first-order nonlinear system in two variables. We can eliminate
¢; and formulate the solution in terms of k; only in the second-order nonlinear system

g(t, @ k) = ' (F(ke) = ker) = B (F (k1) = keva) F' (k) =0, t = 0,1, ...
kfo - kfo (6)

lim k, — k%
t— o0

We shall use (6) below as an example.

The system (1,2,3) is an infinite set of equations with an infinite number of un-
knowns. Under some conditions, there will be a locally unique solution; we will make
that assumption as is implicitly done by all other methods. The problem in (4) has
a unique solution for any given initial capital stock kg. Any solution method must
reduce the problem in some way. There are several ways to do this.

Most methods use domain truncation to reduce the problem to a finite-horizon
problem. That is, they solve the truncated problem

g(t, o, 1, ...,xp, 2% .. 7)) = 0,t=0,1,2,..,T—1 (7)

,17011' = EO,@'; 7 = 1, 2, Ny (8)
where 2% is the steady state value, or some proxy for the long run. Some components
of zr are also fixed at their long-run values to make the number of unknowns in
(7,8) equal to the number of equations. Domain truncation reduces (1,2,3) to (7,8), a
system of n’I’ nonlinear equations in n1" unknowns. There is no boundedness equation
in (7,8) since (7) imposes x; = x** for ¢t > T. The long-run proxy z* need not be
the steady state. It is taken to be some convenient value. The objective is that the
choice of 2% should not affect the solution since it lies in the distant future.

In (5), it would be natural to set ¢, and k; equal to their long-run steady state
values for ¢t > T'. This would leave us with one too many unknowns. We could set cp
equal to its steady state value and leave kr free, creating a system where there were
equal number of ¢ and k& unknowns.
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There is always the question of what T’ should be. Any method should try al-
ternative values for 1" and accept a solution only when the choice of 1" does not
substantially affect the solution. There are difficulties with this approach. For ex-
ample, Kehoe has shown that the solution can be very sensitive to the choice of T,
settling down only for very large values of 7.

Since T is typically large, we need to develop special methods. Fortunately, we can
apply methods from the literature on solving large systems (see, e.g., Kelley (1995),
Saad (1996), Young (1971)). Some algorithms break the problem into smaller systems
and then use solve individual systems iteratively until the full system converge. For
example, Fair and Taylor(1983) use a block Gauss-Seidel procedure period by period
for a given time choice of T" and then tests the sensitivity to 1. Other examples
of this approach are Hall (1985), Fisher et al. (1986), Fisher (1992), and Hughes
Hallett and Piscitelli (1998). Convergence of such methods depends on the order of
the equations and is linear at best. The advantages are their simplicity and small
memory requirements. However, they may not converge even after using various
strategies including reordering of equations and damping factors.

An alternative is to use Newton’s method. This is possible when the Jacobian is
sparse. Juillard et al.(1998) pursued this strategy. Using Newton’s method is difficult
because the Jacobian is large. Gilli and Pauletto (1998) economize on this by using
a Newton-style method together with a Krylov method to compute approximate
Newton steps instead of exactly solving for the Newton step.

2. PARAMETRIC PATH METHOD FOR PERFECT FORESIGHT MODELS

The parametric path approach employs a substantially different strategy. Instead of
treating each value of x; as independent it applies some a priori knowledge about how
x evolves over time. For example, the sequence 1,2,1,2,.. is not likely to represent
a quarterly series for the capital stock or even aggregate consumption. Since the
capital stock cannot change quickly, relative changes will be small over a small period
of time. Similarly, consumption smoothing on the part of consumers imply that
consumption paths will be smooth in the absence of unanticipated shocks. This
feature of the solutions is not exploited by standard methods since they treat each
distinct 2, separately. Instead, our intuition says that 7 should be a smooth function
of time ¢. This insight allows us to dramatically reduce (1,2) to a much smaller system
to which we can apply methods which could never be used directly on (1,2).

2.1. A Simple Parameterization. The key idea behind the parametric path
method is to replace the sequence 2’ with a parameterization of components of @
in some way representing our beliefs that x evolves smoothly. First consider the
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functional form

= ®(t;a", \) (Za tj) + 3¢ (1 — efM) (9)

In (9) the matrix of coefficients

0 = (@) € R

parameterize several polynomials in ¢. The extreme values of the path x;(¢;a, \) are

®(0;a",)) = af
(oo a’,N) = 2

For any coefficient matrix a, the path in (9) is a convex combination of the initial

M and

value ag and the long-run value z°® where the time-dependent weights are e
1—e? Ifa; =0for j =1,2,.. then the path in (9) converges smoothly and
monotonically to the z°°. Since the exponential term dominates any polynomial term

n (9), the path in (9) asymptotically satisfies the linear adjustment process

d 88 88
%(a:—a: )= —A(x—z*) (10)

The initial conditions (2) imply that
ahy =Tos, i =1,2,...,n1 (11)

Other than the conditions in (11), we are free to choose the components of a so that
the sequence

. ((@1(0;a,)\)) ((I)l(l;a,)\)) (@1(2;a,)\)) )

approximately solves (1).

Some features of (9) can be determined by a priori knowledge about (1) The form
in (9) imposes convergence to z* in the long run. Since we often know the steady
state 2°°, we can use this knowledge in (9). The choice of A is also one which can
use a priori information. Given the asymptotic behavior in (10), we want A to be the
rate of convergence associated with the dominant eigenvalue of the linearization of (1)
around x*. Sometimes we can compute this, but we often have good guesses about
the asymptotic rate of convergence. We will see that a good guess is satisfactory.
Otherwise, (9) is quite flexible for the initial values of t. Therefore, (9) is a form
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which reflects our knowledge about the long-run behavior of the long-run equilibrium
and our comparative ignorance about equilibrium in the short run.

The formula in (9) treats ¢ as a continuous variable. This may initially seem odd
to do in a discrete-time framework. However, there is nothing in (1) which requires
t to be an integer. For example, the expression for the time ¢ equation

u' (F(ke) = keyr) — B (Fkea) = ko) F (ki) (12)

in (6) makes perfectly good sense for noninteger t if we define k; = x(¢; a, A) for some
a and A. We shall proceed as if { were continuous, making it an integer only when
necessary. This is key since the whole idea of the parametric path method is to apply
approximation methods for functions of a continuous variable to functions on the
integers.

2.2. General Parameterizations. The general idea is to find some functional
form? ®(¢; a) and use it to approximate the sequence as in

T =®(ta), i=1,..,n (13)

The parametric path method is an application of projection methods (see Judd
(1992)) for solving functional equations. One natural choice for our parameteriza-
tion® is to use orthogonal polynomials of the form

D(t;a) = (f(:) aj¢j(t)) e M 4 g5 (1 _ ef’\t) (14)

where the family {¢J (1) };io is orthogonal with respect to e 2*. More specifically, we
assume

b,(1) = Ly(2At)e (15)

where I;(s) is the degree j Laguerre polynomial. Laguerre polynomials are defined
by the recursive formulas

L) = ) Lnla) -

The key property of the ¢, is that they are mutually orthogonal; that is

m

2m+1—x
m+ 1

Ly
m+ 1 1<x>

/000 6, (1) 5 (t)dt = /Lj(QAt)e’AtLi(Q)\t)e’M _0, i+

?Here we use the notation ®(t;a) and do not include A explicitly. If there were a parameter in
(13) like the A parameter in (9), we fold it into the parameter list a.

3See Judd(1992) and Judd(1998) for discussions of orthogonal polynomials and their use in
developing projection method algorithms for dynamic general equilibrium methods.
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because the Laguerre polynomials I;(2At) are orthogonal with respect to the weight
e 2. Since the functional form in (14) is a linear combination of ¢, functions, we
have an orthogonal representation of functions of the form (9). The space of functions
spanned by the form (14) is the same as that spanned by the form (9). The form
in (14) is also flexible for initial values of ¢ and imposes convergence to z*° in the
long run. We prefer the orthogonal representation in (14) since, as we will see, it has
many computational advantages.

Of course, there are many possible forms for the functional form ®(¢; a). ® should
be flexible enough to parsimoniously approximate any likely solution. The best choice
of n cannot be determined a priori. Generally, the only correct choice is n = co. If
the choice of the functional form is good then larger n will yield better approxima-
tions. We are most interested, however, in the smallest n that yields an acceptable
approximation. We initially begin with small n and increase n until some diagnostic
indicates little is gained by continuing. Computational considerations also play a role
in choosing a functional form. ® should be simple to compute and each coefficient
should be of roughly the same importance.

Our task is somewhat simplified since each component of ® is a one dimensional
function of t. This fact implies that we can use the full range of possible functional
forms, including splines and rational polynomials as well as polynomial systems. We
will stay with polynomial systems for the purposes of this study.

2.3. Projection Conditions. Once we have chosen a parameterization @, we
need to devise some way to choose the coefficients a in our approximation so that ®
approximates an equilibrium to (1,2). Define the residual function

R(t,a) = g(t,z(0;a),z(1;a),...,x(s; a),...)

where again we are treating ¢ provisionally as a continuous variable. We want to find
some a such that R(t;a) is “practically” zero for all ¢,implying that equations (1,2)
nearly hold. For such an a, the time path z(t; a) will be an approximate solution to
the perfect foresight model (1,2).

To proceed, we need to define what it means for R(¢;a) to be small. There are
several ways to do this. The first direct way is to create for each choice of a the “sum
of squared residuals” index

SSR(a) = /0 TRt o) ?w(t)dt (16)

where w(t) > 0 is some weighting function. Normally one would not want to choose
w(t) since the domain of integration is infinite. However, the functional form (9)
converges to the true steady state. For that parameterization, R(t;a) will go to zero
exponentially for any choice of a, implying that (16) is well-defined even if w(t) = 1.
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The general least squares projection method computes the L? norm of the residual
function, SSR(a), for some w and chooses a to solve

main SSR(a). (17)

This reduces the problem of solving an infinite number of equations to solving a
nonlinear minimization problem in R", a tractable problem. Of course, the standard
difficulties will arise. For example, there may be local minima which are not global
solutions. However, there is no reason for these problems to arise more often here than
in any other context, such as maximum likelihood estimation, where minimization
problems are solved numerically.

The least squares method is a direct implementation of the idea to make small the
error of the approximation. In general, one could develop alternative implementations
by using different norms. However, most projection techniques find a good-fitting
approximation in a less direct but more effective fashion. The key concept is that of
a projection. Specifically, we choose a weight function w(t), a set of test functions,
pi(t), and form projections of the form

(Btia).ps(0) = [ Rt ) py(0) wt) at (18)

For these techniques the basic idea is that the true solution would produce a zero
residual error function; in particular, the residual function would have a zero projec-
tion in all directions. Therefore one way to find the nm components of a is to fix n
projections and choose a so that the projection of the resulting residual function in
each of those n directions is zero. That is, we want to find a such that

(Ri(t;a),p(t)) =0,i=1,..,n (19)

for several test functions p (t). The equations in (19) are not sufficient since the initial
conditions must also be included in the analysis. The initial conditions (2) imply

m

20,:(0) = Z%‘%‘(O) =T 1=1,2,...,ng (20)
=0

We want to find @ which satisfy (20) as well as several conditions of the form (19).

2.4. Integral Approximations. The integral in (18) needs to be computed ap-
proximately. At this point, we need to drop the fiction of ¢ being continuous. We will
use standard integration methods to motivate the integral approximations. Integra-
tion methods generally apply formulas of the form

/000 Byt =S wihity)
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for some quadrature weights w; and quadrature nodes t;. The quadrature nodes t;
will typically not be integers. Since the residual function R(t;a) for (1,2) is only
really defined at integer ¢ we use the approximation

/OOO h(t)w(t)dt = iweh(tﬁ) (21)

where t! is the nearest integer to ¢;.

It is only at this point, the final detail in the algorithm, that we need to restrict
t to be an integer. It is the integration formula in (21) which tells us which #’s to
use. The maximum ¢ tells us how much into the future we need to approximate the
x; path. Fair-Taylor and other traditional methods make an ad hoc determination of
the horizon they use. Also, the ¢’s which are used depend on the integration formula
we use in (21). In fact, the t’s we use are often optimal given the integration formula
used.

In the end, the parametric path method uses the integral approximation (21) and
reduces (1,2) to solving the system of nonlinear equations

Byjla) = Y wiR(ty;a)pi(ty) =0, i=1,.,n, j=0,..,m (22)
£=1
@(0,@) = El,i; 1= 1,2,...,71[ (23)

The system (22,23) is overidentified. We want to impose (23), so we drop n; equations
from (22); it is normally preferable to drop the projections from some higher-order
polynomial test functions. When we refer to the system (22,23) we will implicitly be
referring to an exactly identified system.

Here we see a critical feature of the parametric path method. In the end, we
evaluate the equilibrium equations at only a small number of times ¢. Other methods
compute (1) for all ¢ < T for some large T.

Different choices of the p; defines different implementations of the projection
method. We will use the Galerkin method, also known as the Bubnov-Galerkin or
Galerkin-Petrov method. In the Galerkin method the test functions are the basis
functions in a linear representation and the weighting function is chosen so that the
basis functions are mutually orthogonal. This produces a projections of the form

Pi(a) = (R(x;a), ¢;(x))=0,i=1,--- n.

The Galerkin method is just one possible alternative. Most of the others described
in Judd (1992) could also be used.
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2.5. Initial Guesses. Good initial guesses are important since projection meth-
ods involve either a system of nonlinear equations or optimizing a nonlinear objective.
One advantage of the parametric path method is that there is a very natural initial
guess. We know the steady state values for all variables, and we often have a good
guess for the asymptotic rate of convergence to the steady state. A natural initial
guess is the path which smoothly moves from the initial state xq to the steady state
2% at the asymptotic rate of convergence A :

ajinit<t> _ a:oefm gL (1 . efkt) (24>

There is a general approach which is often useful. The least squares approach
may not be a good one to use for high-quality approximations. However, it may yield
low-quality approximations relatively quickly, and, since the least squares method is
an optimization method, convergence to a local extrema is ensured even if one has
no good initial guess. Furthermore, by adding terms to the least squares objective,
one can impose sensible restrictions on the coefficients to eliminate economically
nonsensical extrema. These facts motivate a two-stage approach. First, one uses a
least squares approach with a loose convergence criterion to quickly compute a low-
quality approximation. Second, one uses this approximation as the initial guess for a
projection method attempting to compute a higher-order approximation. With some
luck the least squares solution will be a good initial guess for the second computation.

2.6. Finding the Solution. To identify the coefficients a we either use a min-
imization algorithm to solve (17) or a nonlinear algebraic equation solver to solve
(22,23). We could create an overidentified system P(a) = 0 and then use a nonlinear
least squares algorithm to find the least squares solution. The nonlinear equations as-
sociated with Galerkin and other inner product methods can be solved by the variety
of nonlinear equation methods. While fixed-point iteration appears to be popular in
economics, Newton’s methods and its refinements have often been successful. A main
advantage of parametric path methods is that it reduces the problem to a small dense
nonlinear equation system to which Newton and similar methods can be effectively
applied.

If other methods do not work and it is difficult to find good initial guesses, then one
can use globally convergent homotopy methods since they do not require good initial
guesses. Homotopy methods are not possible to apply to conventional formulations
since homotopy methods are intractable when the number of unknowns is large.

2.7. Checking the Solution. The system (22,23) uses (1) only at only a small
number of t’s. Before we accept it, we need to check any solution to (22,23) at
some of the t’s we did not use. Suppose that the solution to (22,23) implies the
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approximation z; = ®(¢;a). To make the parametric path method comparable to
traditional approaches, we evaluate

— —
E= mex |g(t, 7, %)

where 7 is the time path implied by x; = ®(¢; a) and T is some large time. The index
F is the maximum error in the equations (1) over a long range of time. Any traditional
method continues until £ is small; this test is really part of any conventional stopping
criterion for solving nonlinear systems. This check allows us to use the same stopping
rule as traditional methods. In the parametric path method, if a solution to (22) does
not imply a sufficiently small value for ¥ we can begin again with a more flexible
parameterization. In the case of an orthogonal polynomial approximation this means
using higher-order polynomial terms.

We summarize the parametric path method.

Parametric Path Method: Summary
Step 1: Choose parameterization x = ®(t; a).
Step 2:  Form residual function R(t;a) = g(t, ®(.;a), 2).
Step 3:  Select test functions p;(t).
Step 4: Form projections P;;(a) = (R;(t;a),p;(t)) ,using integration
formulas where necessary.
Step 5:  Solve system of P;;(a) = 0 equations plus initial conditions.
Step 6: Compute £ = max;— 1,1 ||lg(t, @, Z')|; accept a if E is

sufficiently small; otherwise begin again at Step 1 with a more
flexible approximation.

3. GROWTH EXAMPLE
We now apply the parametric path method to our optimal growth problem displayed
in (4). We will solve the system (6) While this example is a very simple one, it
does share the essential features present in many other perfect foresight models: the
system is sparse and nearly diagonal, and equilibrium converges linearly to the steady
state.

3.1. Parameterization. We know from theory that the path of capital which
solves (6) converges asymptotically to the steady state at a linear rate equal to A
where A is the stable eigenvalue of the linearized system around the steady state k*°.
We have the initial condition k (0) = ko. We also know that the time path of capital
is “smooth” in that convergence is monotone. This suggests the parameterization

k(t) = (k:o + f: ajtje*t) + k= (1—e ™) (25)

i=1
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We want to express the parameterization in an orthogonal fashion since orthogo-
nal parameterizations have better numerical properties. We need to construct an
orthogonal family which spans the same space as that in (25). Let

;(t) = Ly(2xt)e”™

where L;(t) is the degree j Laguerre polynomial. Laguerre polynomials are defined
by the recursive formulas

T

Loa(t) = nL (2n+1—1) Ln(t) -

+1 n+1 LIna(®) (26)

and are satisfy [5° L;(t)L;(t)e *dt = 0 for i # j. Therefore,
/ i), (t)dt = / LA Ly(2M)e Pdt = 0, i #
0 0

We use the orthogonal parameterization

Z a;b,(1) + k(1= e ™) (27)
The initial condition is .

0) = ko =) _ a;$;(0)

=0
and implies
Qg = ¢0 ( Z a]¢ )

Therefore, the parameterization is

Z%¢ + (0 (/{:0 - Z a;¢; (0 ) + k% ( - eikt) (28)

and the unknowns are the coefficients a;, 1 =1,2,...,m

There are two key features of (28). First, the exponential decay terms e ** some
of which are in the ¢ terms and some explicitly in (28), impose the boundedness
conditions. Second, the initial conditions are also satisfied for any choice of a € R".
These facts allow us to focus on finding an a which produces a good solution to (6).
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3.2. Projection Conditions. We define the residual function
R(t,a) =u (F'(k(t)) —k(t+1)) — Ou' (F(k(t+1)) —k(t+2)) F'(k(t+ 1))

Note that R(t;a) is well-defined for any real value of ¢, not just the integers, since
k(t) is defined for all ¢ in (28). This observation makes us more comfortable with
provisionally using continuous variable methods. We want to choose a so that R(t; a)
is nearly zero for all . By construction, R(t;a) — 0 and ¢ — co. The coefficients a
adjust k(t) so that R(%;a) is small for finite t. We will use a Galerkin method where
the test functions are the basis functions. To this end, we define the set of projection
formulas

Pa) = /000 R(t; a)L;(2M)e Mdt, i = 0,1,... (29)

The key problem is computing the integrals in (29).
We will use a change of variable (COV) method*. Specifically, we will use the

exponential and logistic maps
, 1 | <1 — a:)
= ——lo
L8\ 2

r = 1—2 M

which will map =z € [—1,1] to ¢t € [0,00), and vice versa. The projection equations
are then transformed into

Bla) = [ Ra)g 0t
= [ RU@) ot @)

~1
We next use Gauss-Chebyshev integration formula to arrive at

n

Pia) = = 3" R(t(ae); a)(t(an)) (1 — )Mt (1)

where the Chebyshev integration nodes are

(2£+1 )
Xy = COS 5 T

1)

“We could use any of a large number of integration methods. For example, Gauss-Laguerre
integration would be natural because of the presence of the e~ term in (29). We chose to use a
COV method because there is a bit more flexibility and because transforming the problem to [—1, 1]
allows us to use equioscillation ideas to evaluate the error.
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However, we really should use just the integers, so the final form for each projection®

1S
n

Pya) =37 R(t" (we); a)gs (1 () (1 — 27) /20 (x2)

=1
where t!(z) is the value of ¢(z) rounded to the nearest integer.
Since a = (ay,as, ..., am) € R™, we solve the system of equations
Pi(a)=0, j=0,1,....,m—1 (30)

3.3. Numerical Results. We apply the parametric path method to (4) assuming
u(c) = /(1 + ~) and F(k) = k + Ak® where we choose A always so that the
steady state is k* = 1. We display the results for difficult cases. If the initial
capital stock kg is close to the steady state then the exponential component is a very
good approximation without any help from polynomial terms. Therefore, we choose
ko = .5. We examine v = —0.5,—2.0, =5 0. We assume o = .25; o parameter had
little effect on algorithm performance. We choose 3 = .99, essentially modelling a
three-month period of time. We used a Powell hybrid method for solving (30) and
the initial guess set all polynomial terms equal to zero.

We first computed the optimal consumption policy function C'(k) for (4) using
the methods outlined in Judd (1992). The Euler equation errors from that method
were on the order of 107 so we took that to be the truth. We used C'(k) to compute
the true path for k and c¢. These paths were then used to assess the accuracy of the
parametric path method.

Tables 1, 2, and 3 report the maximum relative error in the k path where the
maximum is taken over the first 2500 periods. That is, we compute the true path
k¢, the path ke produced by applying the parametric path method, and report the
maximum error

F= max +———
t=1,..,2500 ky

A key step in this example of the parametric path method is choosing A in (28).
The asymptotic rate of convergence to the steady state of (4) is a natural choice; let
¢ be that value. It is easy to compute p for each parametric case of (4) we examine,
so we use j in Table 1. Table 1 examines several choices of m, the degree of the
polynomial pieces of our approximation (15). Table 1 shows that the method does
quite well. Fourth-degree approximations uniformly have errors of at most .02%,
implying essentially four-digit accuracy. We report the errors in k since the errors
in the consumption path are less than half the errors in k. The errors drop as we
increase the flexibility in the parameterization, dropping by about half for each extra
parameter. Also, the relative errors are nearly the same across different values of +.

5We also drop the 7/n factor since we want to set P = 0.
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Table 1: Maximum errors in k: A= p

v o1 2 3 4

50| 1(-3) 6(-4) 3(-4) 2(-4) 1(-4)
L1 2(-3) 7(-4) 3(-4) 2(-4) 1(-4)
05| 4(-3) 1(-3) 6(-4) 3(-4) 2(-4)

It is not surprising that the results in Table 1 are so good since the correct choice
for X nails the approximation asymptotically. We next show that the parametric path
algorithm would also work if we don’t have a good guess for X\. Table reports the
same exercise except we take A = 3y in each case, and Table 3 chooses A = .33u. The
maximum errors are greater, but also drops as we add parameters.

Table 2: Maximum errors in k: A = 3u

y 1 2 3 5

50 1(-1) 5(2) 2(-2) 1(-2) 6(-3)
1111 6(-2) 3(-2) 1(-2) 7(-3)
0.5 | 1(-1) 6(-2) 3(-2) 1(-2) 7(-3)

v o1 2 3 4 5

5.0 1(-3) 4(-2) 1(-2) 6(-3) 2(-3)
11| 1(-1) 4(-2) 2(-2) 9(-3) 1(-3)
05| 1(-1) 4(-2) 2(-2) 7(-3) 2(-3)

Some other indices indicate the efficiency of the parametric path algorithm. We
used Newton’s method and it converged in 3 or fewer iterations, even in the cases
where \ was different from p. Also, the orthogonal nature of the approximation
makes the Jacobian well-behaved. The condition number of the Jacobians were all
small. Furthermore, the Jacobians were nearly triangular with the diagonal elements
dominating the elements below the diagonal.

4. COMPARISONS WITH ALTERNATIVE METHODS
The parametric path method initially appears to be very different from standard
methods. The differences are less than they seem. We next compare it with alterna-
tive methods in order to highlight the common features. These comparisons will also
indicate how they can be combined in hybrid methods which take advantage of each
methods’ strengths.
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The problem (1) is an infinite system of equations in an infinite number of un-
knowns. The solution lies in R*. It is impossible to solve such an infinite system
on a computer. We need to reduce the dimensionality somehow. The conventional
approach finds an approximation which lies in the finite-dimensional subspace

X ={re Rz, =2t >T}.

Successively better approximations are produced by increasing the terminal date T
We also reduce the problem (1) to a finite-dimensional space. The space we used in
our example was

m

X = {a: € R®|z, = e’\tZaiti} :

i—0
In the limit as we take T" or m to infinity, both finite-dimensional spaces span R™. The
issue is which approach produces small finite-dimensional spaces which approximates
well the true solution.

The main idea behind the parametric path method is similar in spirit to Krylov
methods (and their early forms, such as conjugate gradient methods). The inner
loop of a Krylov method reduces a large problem to a smaller one which generates an
approximation using ideas similar to our projection method. The outer loop examines
a succession of finite-dimensional approximations, where the new directions are chosen
to keep the smaller finite-dimensional problems well-behaved. The parametric path
method also continues by examining successively larger approximation spaces until
the apparent error is small. In our version of the parametric path method, the
sequence of spaces used is exogenously specified, but a more refined version could
endogenize the sequence of approximations used.

The projection equations system (22) could also be a large system. We noted that
(22) was nearly triangular in our example. This property is actually expected given
the orthogonality of the projections and indicates that Gauss-Seidel methods, such
as those used in Hughes Hallet and Piscitelli could be applied. If we used a finite-
element approach, (22) would be sparse and could use the Newton style methods used
in Juillard et al. and Gilli and Pauletto. The main accomplishment of the parametric
path method is the reduction in dimensionality. The reduced system can still take
advantage of many other techniques for solving large systems.

Some systems are not sparse. In particular, the overlapping generations analysis of
Auerbach and Kotlikoff produces systems of equations which are too dense for sparse
methods. They use a successive approximation procedure to compute equilibrium.
However, at best it displays on linear convergence and sometimes it does not converge.
The parametric path method does not exploit sparseness and could be also used
to solve models such as Auerbach and Kotlikoff. The key assumption is that the
economic variables behave in a relatively smooth fashion and that a low-dimensional
approximation is good once one focuses the search on a suitable space of solutions.
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The parametric path method can be useful even in cases where the equilibrium
paths of economic variables are not smooth. The projection aspect of the parametric
path method implies that the parametric path method will likely produce a smoothed
approximation of the true path. This can then be used as an initial guess for a more
refined method such as Fair-Taylor or any of the other later methods.

5. CONCLUSION
The parametric path method develops a new approach to solving perfect-foresight
models. It parsimoniously parameterizes the time path of the unknown economic
variables. The parameterization allows us to apply ideas from approximation theory
to the problem of determining the undetermined coeflicients. In particular, the use of
orthogonal polynomials allows us to use Gaussian integration methods which tell us
which equations to use in approximating the solution. The algorithm is more flexible
than most alternatives. For example, it can be used even for non-sparse systems,
such as overlapping generations models. It is also more robust; the reduction in

the number of unknowns allows us to use more reliable nonlinear equation solution
methods.
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6. EXTRA STUFF
Rational Chebyshev functions on the semi-infinite interval
t—L
L (6) =T <t - L???)
pseudospectral grid points
2i—1
; = Leot(x;/2), 0, =m———,1=1,...,N
Y cot(x;/2),x; =7 ik
Boyd(1982a, J Comp Phys)
Boyd(1982a, b, ”Stieltjes” Math Comp) for guidance on L
Exponential map asymptotically inferior, but sometimes enjoys finite-expansion
advantages. It is, however, dangerous. P. R. Spalart(1984, Contemp. Math.)
[see Boyd, p. 408ff, semi-inf chapter]

R(t;a) ~ e
f/<l{7)—f/<kiss),Ra ~ efAt

R(t,a) = f(k(t;a)) =0
Ro, = [k (9, — ) = [(R)(L;(2M) — )e

We need to define the concept of an approximate solution.
Pi(a) = /0 TRt a)Ly(2M)e Mt
Pi(a) = /0 T R, (ta) L (20 dt
- /0 TR (L (2M8) — 1)e ML (2At)e Mt

problem: we impose a false value on k(7).

It is convenient to define some function #(¢) : [0,1] — [0, c0) which will allow us
to use methods for approximating functions on [—1,1] for approximating functions
on [0,00). Specifically, we could use

C(t) = 1—2e
HO) = —L log (%C)
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For such a COV function, we could let

O(t;a) = ¥(C(L); a)

where U((;a) : [-1,1] — R is a functional form mapping [—1,1] to the real line.
Another possible form for W is the spline form

(G a) =

Both splines and polynomials are linear in most of their unknown coefficients. One
could also use nonlinear function forms such as rational Chebyshev functions

¢ty = 7
14¢
t = T, | —=

or neural networks
(G a) =
Alternative choices for a COV function are
¢ty = 7

B 1+ ¢

When we have chosen a COV #((), the problem ?7 reduces to finding

Gauss-Laguerre

E(a) = R(t;a)p(t)dt

COV methods
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Exponential-COV-Gauss-Chebyshev

t = —Llog(l—x)

t € [0,00), z€[-1,1]
Algebraic-COV-Gauss-Chebyshev
I 1+x

l—=
t € [0,00), z€[-1,1]

;I =

Rational Chebyshev functions on the semi-infinite interval??

.
TL, (t) :Tn< ??)
T

pseudospectral grid points
y; = Leot(z;/2),x; = W%,i =1,..,N

Boyd(1982a, J Comp Phys)

Boyd(1982a, b, ”Stieltjes” Math Comp) for guidance on L

Exponential map asymptotically inferior, but sometimes enjoys finite-expansion
advantages. It is, however, dangerous. P. R. Spalart(1984, Contemp. Math.)

[see Boyd, p. 408ff, semi-inf chapter|As we have seen in our examples, projection
techniques include a variety of special methods. In general, we specify some inner
product, (-, -}, of By, and use (-, -} to measure the “size” of the residual function, R,
or its projection against the test functions. We can use inner products of the form

(@), @) = [ f@)gleyu(z)da

for some weighting function w(x), but there is no reason why we are limited to them.
In choosing the norm, one should consider exactly what kind of error should be small
and find a norm that will be sensitive to the important errors. There are several ways
to proceed.

One approach would be to use domain truncation where we approximate the
future with some distant future time:

Bla) = [T R(Ea)s, 0t

= [ R0

= sz tua’ Z)eAt
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and then approximate 77 in some fashion
Pla) = / R(t; a),(t)dt
0

= /OT R(t; a)¢;(t)ee Mdt

= sz tzaa Z)eAt

problem: we impose a false value on k(7).
One could use Gauss-Laguerre integration formulas???

Pla) = |7 R(t ), ()77t
= /OO ta Ate”tdt

= sz tua’ Z)eAt
- ZCUIR ) At

Pia) = 0,5=0,1,..
Pi(a) = / 2)\t) Mgy

- / Li(2A) — 1)e ML, (20)e Mdt

22
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