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1. Introduction

In recent years there have been many efforts to rigorously model innovation processes
and competitions. The early work of Kamien and Schwartz, summarized in Kamien
and Schwartz (1982), concentrated on the decision-theoretic problems associated with
innovtion and lead to the study of equilibrium of competition in innovation contained
in Loury (1979), Lee and Wilde (1980), Reinganum (1982a,b), and Dasgupta and
Stiglitz (1980a,b). These analyses examined one-shot innovation processes�as long
as no competitor won, all competitors were equal. Also, they assumed that there was
just one available innovation technology.
This paper has two purposes. First, we examine the equilibrium of a race for a

prize where each of two agents controls independent R&D projects. At each moment,
both agents work to advance his own state of knowledge while knowing that of his
opponent. The race ends when one of the Þrms has achieved a critical state of
knowledge, here called �success�, which results in some social gain, a portion of
which is the winner�s prize. This model is intended to be a stylized representation
of a multi-stage R&D race where the competitors choose a portfolio of innovation
investments while observing his opponent�s position.1 Such a model can address
questions concerning each player�s reaction to his rival�s advances and the resulting
allocation of resources across alternative innovation approaches of varying risk. We
characterize the equilibrium of the resulting stochastic game.
Second, we use approximation techniques to more precisely examine the nature

of the subgame-perfect equilibrium of our game. Global closed-form solutions to our

∗The author gratefully acknowledges the comments of Paul Milgrom, seminar participants at
Northwestern University, the University of Chicago, the 1984 Summer Meetings of the Econometric
Society, University of California at Berkeley, Stanford University, and Yale University, and the Þnan-
cial support of the National Science Foundation and the Kellogg Graduate School of Management.

1Section 2 compares our model with the multiperiod models of Fudenberg, Gilbert, Stiglitz, and
Tirole (1983), Lee (1982), Telser (1982), and Harris and Vickers (1985).
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general model are not known and likely do not exit. The approximation techniques
used below can provide answers to interesting questions for some open set of games.
While such an approach does not yield a global resolution of the issues, it does provide
guidance as to what is possibly true globally and what are the critical factors. The
presentation of this analysis is itself a second independent purpose of the paper since
it represents a general way to analyze subgame-perfect equilibria of dynamic games
without imposing economically unmotivated restrictions on the functional forms of
critical model elements.
More speciÞcally, we Þnd that if the prize to the innovator and the net social

beneÞts are �small� (in a sense speciÞed below) the model yields several results.
First, if the prize equals the beneÞts, there is excessive innovation effort, a result
common to innovation models of this nature. Second, since agents can be at differing
levels of knowledge in our model, we would like to compare the relative efficiency of
resource allocation across Þrms. We Þnd that lagging Þrms are less efficient in that
if there is to be a momentary subsidy of innovation effort, the Þrst dollars of such
a subsidy should go to the leading Þrm. Third, in spite of the relative inefficiency
of the lagging Þrm, it is optimal to let competition continue unitl some Þrm enjoys
complete success. Fourth, in spite of the excess innovation effort, it is optimal to set
the prize nearly equal to the social beneÞt.
Fifth, since agents choose how to allocate resources across projects of varying

riskiness, we examine the allocative efficiency of investment within Þrms. We Þnd
that there is relatively excessive investment in the riskier projects. Sixth, a strategic
feature of much interest is the nature of the reactions of each innovator to the other�s
advances in knowledge. We Þnd that if one player advances, the other will surely
increase its effort in risky projects, a movement contrary to the socially optimal
reaction, but may increase or decrease effort in less risky projects.
Some of our results hold because the multi-stage nature of the game disappears

if the net social beneÞts is small. However, other features, particularly the nature of
players� reactions and the risk allaocation decisions, are related critically to the multi-
stage subgame-perfect nature of our analysis. This indicates that we have successfully
peeked into the nature of subgame-perfect equilibrium in innovation races. Further-
more, we indicate how other approximations could be carried out, showing that the
viability of this approach does not rely on the small prize. The only thing which is
needed for the application of the approximation techniques used below is some ex-
ample with a known closed-form solution. These demonstrations are conducted with
sufficient generality that it is apparent that the approach to closed-loop subgame per-
fect equilibrium analysis we take is not speciÞc to this model and therefore of general
interest in game-theoretic analysis of dynamic strategic interaction.
Section 2 describes the general model. Section 3 gives an overview of the approx-

imation technique which we utilize below and section 4 demonstrates it in detail for
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a useful special case. We then examine the nature of our problem for the case of a
small net social value, discussing in section 5 the social optimum and in section 6 the
competitive outcome. Section 7 compares the optimum and equilibrium outcomes
and section 8 examines some implications for optimal social policy given rivalrous
innovation. Section 9 discusses the relation of our analysis with other approaches,
arguing that our approach gives a method to generalize solutions to problems which
generate closed-form solutions. Section 10 concludes.

2. The Model

We will investigate a simple model of multi-state innovation with two Þrms. Com-
petition takes the form of a race. The position of each player is denoted by a scaler
with player 1 at x and 2 at y. Success is deÞned by one player crossing 0; therefore
we assuame x and y are initially both negative and that the current state of the race
is represented by a point in the third quadrant of the plane. A player can attempt to
improve its position by investments which determine the probability of a jump to a
better state of knowledge. Jumps occur in two ways. There are partial jumps which,
if a player is at a point x < 0, have a probability of F (x) of hitting 0 and otherwise
have a probability of f(s, x)ds of landing in the interval (s, s+ ds), s < 0. There are
also leaps from a to 0, the probability of which is proportional to both investment in
that process and G(x) if a player is at x. The leaps will be called more risky since
whenever investment is such that leaps and partial jumps have the same expected
jump, the expected gain in the value of any convex function of position is greater for
leaps. For the sake of simplicity, we assume square cost functions.
The following notation summarizes the basic model:
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x (y) ≤ 0 State of Þrm 1 (2).
udt (vdt) Probability that a partial jump of x(y) occurs with u(v)

being chosen by Þrm 1 (2).
f(s, x)ds Probability of jump from x to (s, s+ ds) if a partial

jump occurs. If s < x, then f(s, x) = 0. Otherwise, we assume
that the distributions of the jumps are
ordered by Þrst-order stochastic dominance, that is,
if x0 > x, then f(s, x0) Þrst-order
stochastically dominates f(s, x). f is bounded above.

F (x) Probability that a partial jump hits 0 from a if a
partial jump occurs. F (x) is increasing in x, by the
stochastic ordering of f in x. F is positive everywhere.
F (x) = 1− R

[x, 0) f(x, a)ds.

wG(x)dt, (zG(y)dt) Probability that Þrm 1 (2) leaps to 0 from x(y), where
Þrm 1 (2) chooses w(z).
G is bounded above and positive everywhere.

αu2/2 + βw2/2 Firm 1�s costs and the social costs associated
with its choice of u and w. α, β > 0

αv2/2 + βz2/2 Firm 2�s costs and the social costs associated
with its choices of y and z.

P > 0 Prize to winner. There is no prize for the loser.
B > 0 Social beneÞt of success.
ρ > 0 The social and private discount rate.

This model differs from earlier multi-stage models in substantial ways. In the
multi-stage analysis of Reinganum (1985), when one Þrm succeeds in achieving stage
n, all Þrms are able to compete equally for being Þrst to achieve stage n+1; therefore
no Þrm is able to pull away from the others. Similarly, in Lee (1982) and in Telser
(1982), a Þrm may pull away in the sense that it may achieve an increasingly superior
cost structure, but the leading Þrm has no advantage in achieving any other low level
of costs. In this model, a Þrm may pull away from its competition and Þnal success
is easier to achieve the more advanced it is.
The ability to pull away and attain some dynamic advantage is present in models

analyzed in Fudenberg, Gilbert, Stiglitz, and Tirole (1983) and in Harris and Vickers
(1985) but they both assume very special structures for innovation costs and limit
the investment choices of innovators. In particular, innovation is a natural monopoly
in Harris and Vickers� model in that society would only want one innovation project
commanding resources, a feature which limits the ability to address issues in patent
policy and the structuring of incentives for innovation. Under our assumptions, how-
ever, there is a social value to having resources allocated to each innovation project
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since the marginal cost of effort is zero when the effort level is zero for each project.
Both Fudenberg et al., and Harris and Vickers focus on conditions under which a

Þrm will surely win the patent race once it has any small advantage over its competi-
tor. The information lag model studied in Fudenberg et al. paper is closely related
to our model. In both models no player knows what the other player is currently
doing, but both know the position of its opponent at the beginning of each period.
The models differ in that the state of each player responds stochastically to his ef-
forts whereas Fudenberg et al. assume a deterministic response. They also make an
increasing cost assumption concerning the relationship between effort and progress,
but must make restrictive assumptions to render the analysis tractable.
All previous dynamic models have assumed only one kind of research investment.

By permitting alternatives of varying riskiness, we can also compare the relative al-
location of resources among projects of varying riskiness.2 Finally, we also determine
how the relative efficiency of the two Þrms is related to their relative position, Þnding
that the lagging Þrm is less efficient. We address the issue of when a competition
should be ended and a winner granted the monopoly right to the innovation, a ques-
tion previously ignored.
We will see that this general model can be used to address several issues in the

economics of innovation competition. Before analyzing our model we will Þrst discuss
our approximation approach and what it can yield.

3. Approximations

The model described above is far too general to hope for a closed-form solution, a
common goal of such analyses. Nor will the structure be sufficiently tractable so
as to allow for comparative static analysis as in previous work. We will instead
use basic approximation techniques to study our general model for cases near some
tractable case. This section reviews the basic mathematics underlying our approach
and discusses its usefulness.
The primary tools used below are generalizations of Taylor�s theorem and the

Implicit Function theorem in Rn to Banach spaces. Taylor�s theorem for a real-
valued function over Rn, f(x; z) (think of x as the variable and z as a parameter)
says that if f(x; z) is cn in x on [0, b], then for any z and any a ε (0, b) there is a

2Dasgupta and Stiglitz (1980b) also model riskiness choice. However, their analysis is of ques-
tionable validity since their equilibrium equation, (36), often does not have a solution. In particular,
it cannot have a solution if N = 1 and riskiness is strictly increasing in α since there is no cost
to increasing α and increasing riskiness is always of value in their model. This possibly explains
why their conclusions contradict those of this study. Bhattacharya and Mookherjee (1984) have also
examined a static portfolio choice problem.
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c ε (0, a) such that

f(a; z) =
n−1X
k=0

f (k)(0; z)
ak

k!
+ f (n)(c; z).

This states that the k-th degree polynomial in Taylor�s Theorem is an 0(an) approx-
imation of f(a; z) for a to the right of 0. In particular, properties such as positivity
and convexity which hold for this approximating polynomial near zero also hold for
f(x; z) when x is near zero.
Since equilibria in our games will be expressed as a collection of functional equa-

tions of the equilibrium strategies, we will use the Implicit Function Theorem to
�compute� equilibria for games �close� to games for which solutions are known. Gen-
erally, the Implicit Function Theorem states that f can be uniquely deÞned for x near
zero by a relation of the form H(x, f(x); z) = 0, wherever H1(0, f(0); z) exists and
H2(0, f(0); z) 6 =0. This allows us to implicitly compute the derivatives of f with
respect to x as a functions of x and z, leading to a polynomial approximation for f .
However, our strategies are not going to be vecotrs of real numbers, but rather

functions of the state variable, objects which are from inÞnite-dimensional spaces. It
is necessary, therefore, to Þrst introduce some terminology from nonlinear functional
analysis. This will allow us to generalize the Implicit Function Theorem to functions
and power series over Banach spaces and implement an approximation approach.
Suppose that X and Y are Banach spaces, i.e., normed complete vector spaces. A
mapM : Xk → Y is k-linear if it is linear in each of its k arguments. It is a power map
if it is symmetric and k-linear, in which case it is denoted by Mxk ≡M(x, x, . . . , x).
The norm of M is constructed from the norms on X and Y , and is deÞned by

||M || = sup
||xi||=1, i=1,2,...,k

||M(x1, x2, . . . , xk)||

For any Þxed x0 in X, consider the inÞnite sum in Y :

Tx =
∞X
k=1

Mk(x− x0)k

where each of the Mk is a k-linear power map from X to Y . When the inÞnite series
converges, T is a map from X to Y . It will be convenient to associate a real valued
series, called its majorant series, with T

∞X
k=0

||Mk|| ||x− x0||k

The important connection between the power series for T and its majorant series is
that T will converge whenever its majorant series does.
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DeÞnition: T is analytic at x0 if and only if it is deÞned for some neighborhood
of x0 and its majorant series converges for some neighborhood of x0.
With these deÞnitions, we can now state the analytic operator version of the

Implicit Function Theorem.

Theorem 1. Implicit Function Theorem for Analytic Operators: Suppose that

F (ε, x) =
∞X

n,k=0

εnMnk x
k (1)

deÞnes an analytic operator, F : U(0, 0) ⊂ X → Y , where U(0, 0) is a neighborhood
of (0, 0) in RxX. Furthermore, assume that F (0, 0) = 0 and that the operator
M01 : X → Y , representing the Frechet cross-partial with respect to x at (0, 0), is
invertible. Consider the equation

F (ε, x(ε)) = 0 (2)

implicitly deÞning a function x(ε) : R→ X. The following are true:

1. There is a neighborhood of 0 εR, V (0), and a number, r > 0, such that (A2)
has a unique solution of ||x|| < r for each ε in V (0).

2. The solution, x(ε), of (A2) is analytic at ε = 0, and, for some sequence of xn
in X, can be expressed as

x(ε) =
∞X
n=1

xn ε
n (3)

where the coefficients xn can be determined by substituting (A3) into (A1) and
equating coefficients of like powers of ε.

3. The radius of convergence of the power series representation in (ii) is no less
than that of the analytic map, z(ε) : R → R, deÞned implicitly for some
neighborhood of 0 by

0 =
∞X

n,k=0

εn ||Mnk|| z(ε)k (4)

Furthermore, for some sequence zn of real numbers,

z(ε) =
∞X

n,k=0

εn zn

represents the solution to (A4) and |zn| > ||xn||.
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See Zeidler (1986).
As will be apparent, the mathematics turns out to be elementary since our task is

reduced to recursive computation of xn terms. The term-by-term approach alluded
to in (ii) above will be illustrated in the next section.
However, we should Þrst discuss the value of such an approximation approach. Our

objective below is to apply it to examine subgame-perfect equilibria in our model.
In most of the analyis below, we will express equilibrium strategies and values as
functions of the prize, P , social beneÞt, B, and the position, (x, y) and examine
approximations for them around the case of a zero prize and no social value. At Þrst
blush, approximations based on such cases may appear useless since the case of a
zero prize degenerate. A number of considerations justify the effort and indicate the
general value of this approach.
First, the approximations can provide counterexamples to conjectures. Suppose

g1(P ) and g2(P ) are functions of interest, and it is initially conjectured that g1(P ) >
g2(P ). If we can show that g1(0) = g2(0) and g1(0) < g

0
2(0), then there must be an

interval of P > 0 where g1 > g2, contradicting the conjecture. This in fact will occur
below when we discuss equilibrium reaction functions.
Furthermore, suppose g1 depended on some function F , i.e., g1(P ;F ). More

generally, one could identify conditions on F which lead to the �g1 > g2� conjecture
failing. In models of dynamic competition, we often make special assumptions about
the functional form of such F �s. After deriving our results, however, we usually don�t
know exactly what general feature of the functional form was crucial. Our approach
below will Þnd exactly what features of all structural elements are critical for any
results for the case of a small prize. Whenever the intuition gathered from such an
analysis does not depend on P being nearly 0, then we have perhaps discovered a
robust feature of the model. Generally, we study such approximations not because
they are valid for nearly degenerate cases, but rather that they likely indicate patterns
which continue to hold much more generally.
Second, any analytical investigation of this model must focus on cases which

are degenerate in some ways. Note that the models of Lee and Wilde, Reinganum,
and Fudenberg et al. are all special cases of this general model (or some slightly
different general model) which are degenerate in some dimension. For example, Lee
and Wilde, and Reinganum implicitly assume that the success probability function
G(x) is independent of the position x, making position irrelevant. Also, F (x) is
essentially absent in their models, as if α were inÞnite. Each of these special cases are
of interest despite their degeneracies. However, if we are interested, for example, in a
precise look at how innovators react to each other�s successes, it is valuable to look at
cases in which there are as few unmotivated restrictions on the underlying stochastic
structure as possible. It is unfortunate that we may have to assume a small prize,
but that is the price we pay here to attain this particular goal. Finally, the technique
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that is exploited below can be used generally to develop a robustness analysis for all
the special cases studied previously.
The main advantage of our approach is that one can examine the model one wants

to study, not search for special solvable cases. In general, the only ingredient needed
is some case with a tractable and usable solution, which will provide a basis for a
more general analysis. That is the value of perturbation analysis in the physical
sciences. For example, the Einstein equations of general relativity theory are gen-
erally intractable. However, many of that theory�s powerful implications, such as
gravatational radiation, have come from the examination of the high-order approxi-
mations of solutions to the Þeld equations around the case of no matter. Low-order
approximations have often been useful in economics; in macroeconomics, we often use
linearizations of dynamic systems around their steady states and in public Þnance,
we often use the rule-of-thumb that approximates the excess burden of a tax with
the product of the demand elasticity and the square of the tax rate. The usefulness
of high-order approximations in our context will be apparent below.
4. An Example: The Case of a Single Firm
In this section we will analyze the case of a single Þrm. This will illustrate the

analysis used below and will also be used later when we examine the optimal stage
at which to end the race. Also, to cut down on inessential clutter, we will examine
here only the simple case when β is inÞnite. The general solution will be displayed
at a later point.
The case of a single innovator is a dynamic programming problem. If M(x) is the

value of position x to the Þrm, that is, the supremum of the expected present values
of payoffs under all possible strategies for a Þrm currently at x, then the dynamic
programming equation for M is

M(x) = max
u

(
− αu2

2
dt+M(x)(1− ρdt) (1− udt) (5)

+(1− ρdt)udt
µZ 0

x
M(s)f(s, x)ds)

¶
+ udtPF (x)

¾
where dt is the inÞnitesimal unit of time.3 The individual terms of the maximand
represent the expected value of innovative effort. If the rate of effort is u, the expen-
diture during dt is −(1/2)αu2dt. With probability 1 − udt there will be no success,
implying that the state of knowledge dt units of time in the future will remain x and
the value will remain M(x). The current unconditional expected value of that event
is (1−ρdt)(1−udt)M(x). With probability udt there will be a jump to some s ε (x, 0].
If x jumps to 0, an event with probability F (x) conditional on a jump occurring, the

3Throughout this essay we will employ the intuitive inÞnitesimal notation of equation (1). How-
ever, all the dynamic programming equations can be derived formally, as in Bryson and Ho.
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immediate reward is P . Since the reward is immediate, no discounting occurs. If x
jumps to a point x0 ε (s, s+ds), an event with a conditional probability of f(s, x)ds,
the value becomes M(s) in the next period. In the foregoing,

R 0
x . . . ds will representR

[x,0) . . . ds, thereby ignoring the atom at x = 0. We use this notation to distinguish
reaching an intermediate stage from that of winning. (1) therefore states that the
value of a position equals the maximum expected current value of future positions
net of current costs. This is just the principle of optimality of dynamic programming.
Solving the maximization problem in (1) shows that

αu =
Z 0

x
M(s)f(s, x)ds+ PF (x)−M(x) (6)

Substituting this Þrst-order condition into the control equation yields the Bellman
equation for this control problem:

0 =
µZ 0

x
M(s)f(s, x)ds + PF (x)−M(x)

¶2
/2α− ρM(x) (7)

By standard dynamic opitmization methods, there exists a unique such M .
We cannot generally Þnd a closed-form solution for M in (3). We will instead

use an approximation to give us precise information about M for any F and an open
set of parameter choices. Note that this Þts our discussion above. If we assume that
the value function M is in the Banach space of real-valued functions on the negative
reals with the supremum norm, then the RHS of (3) is the sum of a linear a bilinear
operator acting onM and the real parameter P . To proceed in this fashion one should
examine dimensionless versions of a problem since the concept of �small� should not
depend on the choice of units. DeÞne m ≡ M/P to be the value of problem (1)
relative to the prize. m is a dimensionless quantity representing the value of the
game which will yield a substantive concept of small.
Rewritten in terms of m, (7) becomes the equation

m(x) = p
µZ 0

x
m(s)f(s, x)ds+ F (x)−m(x)

¶2
(8)

where p ≡ P/2αρ is the size of the prize relative to the marginal cost of innovation
and the cost of capital. Since the dimension of ρ is (time)−1 and that of α is (dollars)
(time), p is dimensionless and will be our measure of the prize. Since m, p, f , and
F are all dimensionless, (30) is a dimensionless representation of (3). When p is zero,
(30) yields the obvious solution, m(x) = 0. p may be zero either because P is zero
or because αρ, the �costs�, are inÞnite. Focussing on p makes clear that we are not
assuming that the prize itself is small but rather it is small compared to the rate of
increase in marginal cost. This will imply that the prize is to the Þrst order equal to
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the costs and that the net proÞts of an innovator are small relative to the prize. The
interpretation that the prize just covers the opportunity costs of innovative activity
makes our focus on small p more plausible.
Once we transform (7) into a dimensionless equation, we also must transform

other variables of interest; in particular, the control variable, u. However, u is not
dimensionless since it measures effort per unit of time and depends on the time unit.
We can rewrite (6) into the dimensionless form:

�u ≡ u

ρ
= 2p

µZ 0

x
m(s)f(s, x)ds+ F (x)−m(x)

¶
(9)

where �u is the dimensionless rate of effort per normalized unit of time.
We now illustrate computing a local solution to (30). If p = 0, then m = 0.

Applying the Implicit Function Theorem tells us that m(x; p) is smooth in p for p
near zero, and that we can approximate m(x; p) for such p up to 0(pn)

m(x; p) ≈ m(x; 0) + pk1(x) + p2k2(x) + . . .+ pnkn(x) (10)

where we deÞne kn(x) ≡ 1
n!

∂nm
∂pn

(x, 0). First note that m(x; 0) = 0 since a zero prize
makes the optimal value of the problem zero.
Differentiating (30) with respect to p and evaluating at p = 0 shows that

k1(x) = F (x)2 (11)

Taking a second derivative of (30) with respect to p, evaluating it at p = 0, and using
the fact that ∂m/∂p (x; 0) = k1(x) = F (x)2, we Þnd that4

k2(x) = 2F (x)
µZ 0

x
F (s)2f(s, x)ds− F (x)2

¶
(12)

Continuing in this fashion, one can recursively compute kn(x) for any n justiÞed by
the known smoothness of m in terms of p. Note that no smoothness of m in x need
be assumed.
It is usually quite tedious to do all the differentiation explicitly. A standard trick

in perturbation analysis is to take the polynomial approximation for m in terms of p
in (4), insert it into (8), and conduct the algebraic operations indicated in (30) to get
an approximate polynomial representation of (8). (8) then becomes

pk1(x) + p2k2(x) + . . . = pF (x)2 + 2p2
µZ 0

x
k1(s)f(s, x)ds)− k1(x)) + . . .

¶
(13)

4As is becoming apparent, our notation will be burdened with many superscripts. Superscripts
to functional names, as in k2(x), will represent distinct functions, and will never represent iteration
as in k(k(x)). Superscripts to functional evaluations represent powers. Hence, k2(x)3 is the cube of
the value of the function k2 evaluated at x.
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If we equate terms linear in p in (13), we Þnd that k1(x) = F (x)2. Combining p2

terms and using the computed solution for k1 demonstrates (12). Continuing in this
fashion will yield all kn functions. Since this approach yields the terms of the Taylor
series more efficiently, we will use it below.
From these expressions we may infer several obvious properties of the optimal

control for small p. For example, that if p is small, effort increases as one is closer to
the Þnish. This follows from the observation that the pF (x) term dominates in (9)
since m is 0(p) implying that u rises as F (x), and hence x, rises. Also, u falls and as
α and ρ rise, an intuitive result since both represent costs. Using this approach, we
next examine the total social optimum when we have two separate projects and two
Þrms.

4. The Social Optimum

Let W (x, y) be the social value function when current states are x and y. Then the
Bellman equation becomes

W (x, y) = maxu,v,w,z(−αu2/2− αv2/2− βw2/2− βz2/2)dt
+udt

³R 0
x W (s, y)f(s, x)ds+BF (x)

´
(1− ρdt)

+vdt
³R 0
y W (x, s)f(s, y)ds+BF (y)

´
(1− ρdt)

+ (wG(x) + zG(y)) (1− ρdt)Bdt
+(1− ρdt) (1− (u+ v + wG(x) + zG(y))dt)W (x, y)

(14)

(14) is derived just as (5) was. The Þrst-order conditions of (14) imply

αu =
R 0
x W (s, y)f(s, x)ds+BF −W (x, y)

βw = G(x) (B −W (x, y))
αv and βz may be expressed similarly. Using the Þrst-order conditions, (??), for u
and w, the corresponding conditions for v and z, (14) becomes

0 = (Ex {W (s, y)}−W (x, y))2 /2α+ (Ey {W (x, s)}−W (x, y))2 /2α (15)

+ (G(x) (B −W (x, y)))2 /2β + (G(y) (B −W (x, y)))2 /2β − ρW (x, y)
where

Ex {W (s, y)} ≡
Z 0

x
W (s, y)f(s, x)ds+BF (x)

and

EY {W (x, s)} ≡
Z 0

y
W (x, s)f(s, y)ds+BF (y)

Theorem 2. There exists a unique solution,W (x, y), to the social optimum problem,
and W (x, y) is analytic in B, α, β, and ρ.
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Proof: The RHS of (15) is an analytic operator on bounded functions over the
nonpositive reals. When P −0, the unique solution is W = 0. Furthermore, the cross
Frechet derivative, Þrst with respect to P then with respect to W , is −ρ, which is
an invertible operator on bounded functions. Therefore, we can invoke the Implicit
Function Theorem to assert Theorem 1.
We next compute an approximation for W . Suppose W (x, y) = B(bh1(x, y) +

b2h2(x, y)+ . . .) is the approximating series for W around B = 0, which exists by the
Implicit Function Theorem. We let b = B/2αρ be a dimensionless measure of the
social value, and use it since the implied representation forW/B will be dimensionless.
The linear term, h1, is computed to be

h1(x, y) = F (x)2 + F (y)2 + γ
³
G(x)2 +G(y)2

´
(16)

and the investment rules are approximated to 0(b2) by

u
ρ

≈ 2bF (x) + 2b2
³R 0
x h

1(s, y)f(s, x)ds− h1(x, y)
´

w
ρ

≈ 2 (b− b2h1(x, y)) γG(x) (17)

and similarly for v and z. The Þrst-order approximations for u and w are as if the
current hazard rate of immediate success was common to all stages since αu ≈ BF (x)
and βw ≈ BG(x) to 0(B). This indicates that the Þrst-order behavior of this multi-
stage game at any stage reduces to the behavior of a single-stage game. In particular,
to a Þrst order, the presence of other projects has no impact on investment rules.
Intuitively, this is because for small B, effort levels are �small,� the probability of
success for any one project is �small,� and by independence the probability of success
by two projects is �small squared,� hence negligible. Therefore, most of the interesting
multi-stage questions will require examination of h1 and h2 which appears in the o(B)
terms. We will return to this in Section 8.
Straightforward combinations of (??) and (17) prove Corollary 1.

Corollary 3. : For small B, the following hold for the optimal innovation policy:

(i): as x(y) increase, u(v) and w(z) increase and v(u) and z(w) fall;
(ii): w(z) is increasing and concave in B;
(iii): u(v) is increasing in B but may be convex or concave in B;
(iv): W is increasing and convex in (x, y) if F (x) and G(y) are convex;
(v): u and v (w and z) are decreasing in ρ and α(β); and
(vi): w and z are decreasing in α.

Particularly note that, if the two Þrms were managed in a socially optimal fashion,
each Þrm would increase its efforts on both projects as it advances, and the other
would decrease its effort. Also, the magnitude of these reactions are on the order of
B2. These features will be substantially different in the equilibrium of the R&D race.
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5. Equilibrium of the Innovation Game

We next solve for the symmetric subgame-perfect equilibrium of the corresponding
game. We are implicitly assuming that the current states of both players are common
knowledge since if we had assumed that no player could observe the position of his
competitor then the open-loop solution would be the correct equilibrium concept.
While this common knowledge aspect is certainly valid in sports races, it may appear
awkard here. It asserts that player 1�s knowledge of the value of y has no impact
on the value of x, i.e., that a Þrm may know how much its opponent knows without
knowing exactly what its opponent knows. This is not an unrealistic description of
matters in knowledge-intensive activities. Academics, for example, should not be
uncomfortable with this assumption since they often judge colleagues� relative levels
of knowledge about a subject without having an equivalent level of expertise in the
area. In sum, we are assuming that Þrms may determine their relative positions
without actually having access to each other�s knowledge. It will also be sometimes
true that players will want to reveal their position if they can do so without revealing
useful knowledge. For these reasons, we stay with the race analogy.
Let V (x, y) represent the value to Þrm 1 of state (x, y). We will examine symmetric

equilibria, implying that V (y, x) will represent the value to Þrm 2 of state (x, y). We
also limit our examination to equilibria which depend only on the current state of
the game.5 The Bellman equation for Þrm 1 is

V (x, y) = max
u,w

n
−
³
αu2/2 + βw2/2

´
dt+ wG(x)dtP (1− ρdt)

+udt
µZ 0

x
V (s, y)f(s, x)ds+ PF (x)

¶
(1− ρdt) (18)

+vdt
µZ 0

y
V (x, s)f(s, y)ds

¶
(1− ρdt)

+(1− ρdt) (1− (u+ v + wG(x) + zG(y))dt)V (x, y)}

The Þrst-order conditions from (18) allow us to express its strategy in terms of

5Implicitly, we are ruling out reputation effects, trigger strategies, and other phenomena which
can support implicit collusion in such inÞnite-horizon dynamic games. This is reasonable in the case
of leap investment since such investments are unobserved and any cheating could be inferred only
when a leap occurred, which would be too late. Some implicit collusion in partial jump investment
is probably possible since, as long as neither had won, each could infer cheating if the other seemed
to be moving too quickly. However, any such implicit collusion would be imperfect since one could
never exactly distinguish between cheating and good luck. Finally, note that we are computing the
unique limit, as the horizon increases to inÞnity, of the Þnite-horizon equilibria since the latter are
unique in the cases we study.
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the value function at that point and later points:

αu(x, y) =
R 0
x V (s, y)f(s, x)dsPF (x)− V (x, y)

βw(x, y) = (P − V (x, y))G(x)
(19)

αu(x, y) =
Z 0

x
V (s, y)f(s, x)dsPF (x)− V (x, y) (13a)

βw(x, y) = (P − V (x, y))G(x) (13b)

By symmetry, the strategies of Þrm 2 are

αv(x, y) =
R 0
y V (s, x)f(s, y)ds+ PF (y)− V (y, x)

βz(x, y) = (P − V (y, x))G(y) (20)

αv(x, y) =
Z 0

y
V (s, x)f(s, y)ds+ PF (y)− V (y, x) (14a)

βz(x, y) = (P − V (y, x))G(y) (14b)

The characterization equation for equilibrium is found by substituting these equations
for strategies into the Bellman equation, which then reduces to

0 =
µZ 0

x
V (s, y)f(s, x)ds+ PF (x)− V (x, y)

¶2
/2α+ (P − V (x, y))2G(x)2/2β

+
µZ 0

y
V (s, x)f(s, y)ds+ PF (y)− V (y, x)

¶µZ 0

y
V (x, s)f(s, y)ds− V (x, y)

¶
/α

−
Ã
ρ+

(P − V (y, x))G(y)2
β

!
V (x, y)

Theorem 4. There exists a P̄ > 0 such that for Pε[0, P̄ ], there is a symmetric sub-
game perfect equilibrium V (x, y), which is analytic in P, α, β, and ρ, and represented
as a solution to (15).

Proof. Same as Theorem 1.
Suppose V (x, y) = P (pg1(x, y)+ p2g2(x, y)+ . . .) is a Taylor series approximation

of V (x, y) for small p. By Theorem 2, such a representation exists and is unique for
small p.6 By substituting this representation for V in (15) and equating coefficients

6Even though (??) is not expressed in p, it can be straightforwardly rewritten so that V/P , the
dimensionless value of the game, depends on P, α, β, and ρ only through p and the dimensionless
ratio α/β.
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of like powers, we Þnd

g1(x, y) = F (x)2 + γG(x)2

g2(x, y) = 2F (x)
³R 0
x (F (s)

2 + γG(s)2)f(s, x)ds− F (x)2 − γG(x)2
´

−2 (γG(x)2 + γG(y)2 + F (y)2) (F (x)2 + γG(x)2)
(21)

The equilibrium strategies are therefore approximated to 0(p3) by

u(x,y)
ρ

≈ 2pF (x) + 2p2
³R 0
x g

1(s, y)f(s, x)ds− g1(x, y)
´

+2p3
³R 0
x g

2(s, y)f(s, x)ds− g2(x, y))
´

w(x,y)
ρ

≈ 2γp (1− pg1(x, y)− p2g2(x, y))G(x)
(22)

and similarly for v(x, y) and z(x, y). This solution and its approximation now allows
us to compare equilibrium with the social optimum and evaluate the competitive
equilibrium allocation of resources.

6. Comparisons of the Optimal and Equilibrium Outcomes

We next will compare the levels of innovative activity under social control with those
levels in the game equilibrium. If P = B, the difference between innovative effort
under competition, uc, wc, and the socially optimal levels, us, ws, is expressed, up
to 0(p2), by

ρ−1(us − uc) ≈ −2p2
³
F (y)2 + γG(y)2

´
F (x) (23)

ρ−1(ws − wc) ≈ −2γp2
³
F (y)2 + γG(y)2 + γG(y)2

´
G(x) (24)

The difference between Þrm two�s choices, vc, zc, and the optimal controls vs, zs, are
similarly expressed. First note that there is excessive investment in all projects under
competition, a conclusion common in these models. The excess is greater as either
Þrm is closer to success. Also the excess investment relative to the socially optimal
investment increases for each Þrm as the other Þrm is closer to success. These results
are expected since each Þrm ignores the social value of the other�s presence in the
innovation process (see Mortenson (1982)).
We also note that it is not clear which Þrm is more excessive in R&D investment.

If Euv is the difference, (u
c − us)− (vc − vs), between the two competitor�s excessive

investment in their partial jump processes, then

Euv ≈ 2γρp2 (F (y)F (x)F (y)− F (x)) +G(y)2F (x)−G(x)2F (y)

to 0(p2). If there are no �leaps�, G ≡ 0 and then Euw < 0 if x > y, that is, the
laggard�s investment is more excessive than the leader�s. This holds also if the leap
and partial jump processes are sufficiently similar, in particular if G = λF for some
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scaler λ > 0. However, if F (y) is small but G(y) is not, then Euw > 0, and the leader
invests more excessively in partial jumps.
In relative terms, however, we can be more precise since

(uc − us)
us

≈ p
³
F (y)2 + γG(y)2

´
(25)

is increasing in y. (wc − ws)/ws is similarly found to be increasing in y. The de-
pendence of vc − vx and zc − zs on x are symmetrically expressed. Therefore, the
laggard�s excess investment in both partial jumps and leaps expressed as a fraction of
the socially optimal investment is greater. Theorem 3 summarizes these comparisons.

Theorem 5. If B is small and P = B then

uc − us
us

>
vc − vs
vs

and
wc − ws
ws

>
sc − zs
zs

if and only if x < y.

These comparisons do not necessarily say anything about the efficiency of resource
allocation given that there is competition. For example, in deciding whether to
subsidize the current leader a social planner should consider its impact on the future
nature of the distorted allocation of resources due to the competition. We next
address this issue for the case P = B.
If P = B, the social value of the game is V (y, x) + V (x, y) since all beneÞts of

innovation are appropriated by the Þrms. At any position, the net social marginal
values, NSMV , of u and w per dollar of expenditure equal the ratio of the net
contribution to the social value and the marginal cost:

NMSVu =

R 0
x
V (y,s)f(s,x)ds−V (y,x)R 0

x
V (s,y)f(s,x)ds+PF (x)−V (x,y)

NSMVw = − V (y,x)
P−V (x,y)

(26)

where we use (19) to simplify expressions. Using our expansion for V (x, y), (26)
implies that, as p converges to 0,

p−1NMSVu ≈ −g1(y, x) = −F (y)2 − γG(y)2
p−1NMSVw ≈ −F (y)2 (27)

Symmetric expressions for NMSVv and NMSVz hold. If x > y then F (x) > F (y)
and G(x) > G(y), implying that NMSVz, and NMSVv < NMSVu. Therefore, the
social value of more investment in either project is greater at the leading Þrm, even
when we consider the distortions implicit in the competition.
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Theorem 6. If P = B and P is small, social welfare at any stage would be increased
by shifting innovation effort from the laggard to the leader. That is, if (x, y) is the
current state and x > y, V (x, y) + V (y, x) is increased if u(x, y)2 is increased and
w(x, y)2 is decreased by ε, for small ε > 0, and similarly for z(x, y) and w(x, y).

Theorem 4 shows that any small temporary subsidy/tax scheme which reallocates
effort towards the leader is socially desirable since combinations of subsidies and
taxes can induce such a switch and the objective of V (x, y) + V (y, x) ignore any
redistributive component of such a policy. Therefore, in this limited sense, policy
should favor the current leader over the laggard.
Another interesting issue which we can address in this model is that of the effi-

ciency of the allocation of resources between the risky leaps and the less risky par-
tial jumps. The social efficiency of the portfolio choice by Þrm one is determined
by comparing the net social marginal values of u and v. NSMVu > NSMVw iff
g1(x, y)− R 0x g1(s, y)f(s, x)ds < F (x)g1(x, y) which is true since g1(x, y) is increasing
in x. Hence, there is an excessive share of resources allocated to the �risky� project.
To get an intuitive grasp on this result, we should compare the social valuation of the
intermediate stages with the equilibrium valuation by Þrm one. Since the difference
between g1 and h1 is independent of x, we need to compare g2 with h2 to study
differences relevant for one�s portfolio choice between u and w. Straightforward ma-
nipulation of the expansions for V and W shows that, ignoring terms which are of
o(P 3),

V (x, y)−W (x, y) ≈ 2p2
³
F (x)2 + γG(x)2

´ ³
F (y)2 + γG(y)2

´
P + Z(y) (28)

where Z(y) depends only on y. Therefore, V −W is increasing in x for small p. First,
this implies that investment is even more excessive than indicated by p2 terms since
the gap between social and private values of R&D is increasing at 0(P 3). Second, it
indicates a bias towards risky R&D projects. Since this excess increases in x, those
projects which are more likely to yield big jumps, holding the expected jump constant,
will Þnd their private value to be more excessive relative to their social value.

Theorem 7. If P = B and P is small, social welfare would be increased if resources
were shifted from the risky R&D projects to the less risky projects.

The last comparison we will make is between the optimal and equilibrium reactions
of Þrms to eacha other�s partial successes. Before using our approximations, note that
our expression for Þrm 1�s equilibrium choice of w (19), differs substantially from the
expression for the social choice, (??), despite their formal similarity. In (??), it is
clear that the optimal choice of w falls if the social value of the social position (x, y)
increases but x, the position of Þrm 1, remains unchanged. In particular, an advance
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in Þrm two�s position will increase the social value, and hence lead to a reduction of
expenditure at Þrm one on the leap investments. In (19), we Þnd that expenditure on
w will rise as the value of the game to Þrm one falls, which is the expected response
to an advance by Þrm two. Hence, if the social and private value functions vary with
position in the intuitive fashion, Þrm one will increase leap investments in response
to an advance by Þrm two, even though the socially optimal response would be a
reduction in effort.
Proving these conjectures globally would be quite difficult given the nonlinear

nature of the expression for the equilibrium value functions. However, our approx-
imations will immediately conÞrm them. Since g2(x, y) is independent of y, the
dependence of u and w on y for small P , is determined by the dependence of g3 on
y, and is summarized in

ρ−1uc = . . .+ 2p3 (F (y)2 + γG(y)2)

×
³R 0
x (F (s)

2 + γG(s)2)F (s, x)ds− F (x)2 − γG(x)2
´

ρ−1wc = . . .+ 2γp3 (F (y)2 + γG(y)2) (F (x)2 + γG(x)2) G(x)

(29)

where we have displayed all terms of 0(P 3) which depend on y.

Theorem 8. If P = B and P is small,

0 <

¯̄̄̄
¯∂U c∂y

¯̄̄̄
¯ < −∂us∂y , ∂w

c

∂y
> 0 >

∂ws

∂y
,

that is, one�s equilibrium reactions are less than the optimal reactions in magnitude.
Furthermore, ∂uc/∂y is always positive and ∂wc/∂y is of ambiguous sign. Symmetric
results for Þrm two hold.

Proof: The comparisons of magnitude follow from the fact that ∂uc/∂y is 0(p3)
by (29) but ∂us/∂y and ∂ws/∂y are 0(p2) by (11a). The sign conditions for wc and zc

follow from (29b). If F (s) and G(s) are large relative to F (x) and G(x) for s > x, then
the integral in (29a) dominates and ∂uc/∂y > 0. However, if F (s) ≈ F (x) and G(x) ≈
G(x) for s > x, then

R 0
x (F (s)

2+γG(x)2)f(s, x)ds ≈ (F (x)2+γG(x)2) (1−F (x)) and
∂uc/∂y < 0 in (29). Q.E.D.
In comparing the dependence of strategies on the positions of the players, Þrst

note that there is no reaction of one Þrm to another�s position to 0(p2). Hence, the
equilibrium reactions of the Þrms to each are smaller than the optimal reactions.
Furthermore the direction may be wrong. In the case of leap investment, the reaction
will always be in the wrong direction. This is intutitively seen from (19): we expect
that as Þrm two advances, the value of the game to Þrm one, V (x, y) decreases,
thereby raising one�s choice of w. In the social control case, the value increases as
Þrm two advances, reducing the social choice for w.
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However, the reaction of u is ambiguous. The reaction of a partial jump�s control
to the other Þrm�s movement depends on just how different the stages are. If the
stages are similar in that the probability of winning immediately per unit of effort
with a leap, G(x), or partial jump, F (x), is nearly as large at x as at any later stage,
then u will fall, whereas if later stages have substantially greater likelihoods of getting
one to success, then a Þrm�s effort in partial jumps may increase as its opponent moves
ahead. In the latter case, the improvement in the opponent�s prospects prompts one
to work harder, as if one must either work hard or concede the race. Also note that if
a mean preserving spread in the probability weights f(s, x) will increase the likelihood
of a perverse reaction for u since the integral in (29b) has a convex integrand.
Finally note that Þrm one�s choice of its leap control reacts more to an opponent�s

improvement as Þrm one is closer to Þnal success. This indicates that effort levels are
more volatile as the game is nearing completion.
At this point we should expand on the appropriate interpretation of our juggling

of these various orders of magnitude. For example, the fact that the reaction of uc

to y is zero at 0(p2) and possibly nonzero only at 0(p3) does not imply that reactions
are generally unimportant and uninteresting when compared to the effects which
show up at 0(p2). In fact, in many games where reactions are generally important
we would Þnd that, as the payoffs go to zero, the reactions go to zero faster than
other elements of equilibrium strategies. Only for nearly degenerate games does the
order reßect the relative importance of various effects. Since our objective is to gain
more general insight, we make no comparisons. On the other hand, one cannot infer
that an 0(p3) effect will eventually dominate any 0(p2) effect since other, even higher,
orders also contribute. Our goal in these calculations is to sign various effects and
determine the critical structural elements for an open set of games, hoping to elicit
general qualitative insights about the nature of the subgame equilibria. Arguments
which mix various orders of magnitudes are either illegitimate or focus too tightly on
the small p nature of the analysis.

7. Implications for Social Innovation Policy

We next examine the optimal values of two parameters of social innovation policy,
the portion of social beneÞts to be awarded to the winner and the stage at which a
patent is to be granted, in this two Þrm innovation game. We will Þnd that when B
is small, the difference between the optimal P and B is negligible relative to B. This
result validates our focus on the case P = B in the previous section since it implies
that all those results continue to hold for an optimally chosen P . In particular, this
shows that the misallocation of resources between projects of varying riskiness will
not change with an optimally chosen P . While these results are not surprising, it is
instructive to show how to rigorously demonstrate them within our approach.
Let P − θB, i.e., θ is the portion of social beneÞts of innovation which the in-
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novator is allowed to appropriate. We are making the simplifying assumption that
this allocation of social beneÞts to the innovator can be made in a nondistortionary
fashion. In the case of patents this is only valid if demand is inelastic. If a prize is
awarded, this assumes that it is Þnanced by nondistortionary revenue sources.
Presumably, θ is a parameter at least partially chosen by policy markers. Given

that we found that there was excessive allocation of resources for innovation in the
equilibrium of the innovation game, the optiaml θ is never unity. Let W again repre-
sent the social value function. Then

W (x, y) = − [α(u2 + v2) + β(w2 + z2)] 1
2
dt

+(1− ρdt) (uF (x) + vF (y) + wG(x) + zG(y))Bdt
+(1− ρdt) (1− (u+ v + wG(x) + zG(y))dt) W (x, y)
+(1− ρdt)

³
u
R 0
x W (z, y)f(z, x) + v

R 0
y W (x, s)f(s, y)ds

´
dt

(30)

Where u, v, and z are the equilibrium policy functions if the prize is θB.
We can use the characterization in (30) to generate some information about the

optimal θ, θ∗(B), when B is small. This is not a completely trival calculation since
any θ is optimal when B = 0. Therefore we compute θ∗(0+), the limit of θ∗ as B falls
to zero.
First, for sufficiently small B, θ∗(B) is deÞned and shown to be continuously differ-

entiable by the Implicit Function Theorem applied to the equationWθ(θ
∗(B), B) = 0,

since Wθθ is not zero and WθB exists for B close to zero. Since θ∗(B) is optimal for
the initial position (x, y),

lim
B→0+

W (x, y, θ∗(0+), B)−W (x, y, θ, B)
B2

> 0

for all θ. Since W (θ, B) and WB(θ, B) both converge to 0 as B converges to 0, by
l�Hospital�s rule this limit equals

lim
B→0+

WBB(x, y, θ
∗(0+), B)−WBB(x, y, θ, B)

2

Therefore,WBB(x, y, θ
∗(0+), 0)−WBB(x, y, θ, 0) > 0 for all θ, implying that θ

∗(0+)ε argmaxθWBB(x, y
and WBBθ(x, y, θ

∗(0+), 0) = 0. Since

αρWBB(x, y) = 4(θ − θ2/2)
³
F (x)2F (y)

2 + γ(G(x)2 +G(y)2)
´

(31)

θ∗(0+) = 1. Therefore, when the prize is small, it is optimal, in the sense of maxi-
mizing total social surplus, to give nearly all of the social beneÞts to the innovator.
Note that this does not contradict our earlier result that innovation is excessive

whenever the prize equals the beneÞt, just that the difference between the opitmal
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prize and the social beneÞt goes to zero faster than the social beneÞt. This is not
surprising since it just says that the externalities due to the competition over the
rents fall more rapidly than B as B goes to zero. The primary point of this exercise
is to illustrate how to determine the limit.
Second, further expansion of the social value function and application of l�Hospital�s

rule shows that the optimal θ falls more rapidly as B increases when F (x) and G(x),
the probability of an immediate success from the current position (assuming the
players begin at the same position), rises. This implies that the shorter the race, the
smaller should be the winner�s share under competition. Since the details entail only
repeated applications of the foregoing calculations, they are omitted here.
Another crucial aspect of patent policy is the stage at which a patent is granted.

A patent may be granted before Þnal and complete success is achieved. In fact, in
the existing patent system, a patent is granted when a description of an invention has
been completed, before the development stages leading to a workable and commerical
prototype have been achieved. This may be socially optimal if the effort of followers
is so excessive and wasteful that it is better to force them out of the race, bearing
the possible inefficiencies that may result when an innovator is given the monopoly
early. In our model, this can be modeled by assuming that a patent is granted to the
Þrst Þrm which crosses c ≤ 0. If c = 0, the Þrm must complete the project before
acquiring a patent worth P . If c < 0, then a Þrm receives a patent at c and may
Þnish development without any competition.
Proceeding as in the c = 0 case, we Þnd that the equilibrium value function for

the players solves

0=
³R c
x V (s, y)f(s, x)ds+

R 0
c M(s)f(s, x)ds+ PF (x)− V (x, y)

´2
/2α

+
³R c
y V (s, x)f(s, y)ds+

R 0
c M(s)f(s, y)ds+ PF (y)− V (y, x)

´
×
³R c
y V (x, s)f(s, y)ds− V (x, y)

´
/α− ρV (x, y)

(32)

where M(·) is the monopoly value function computed in section 2 with the extension
to two instruments, u and v or w and z. If we expand (32) as before for the case of a
small social beneÞt and prize, we Þnd that when P is small the loss in V (x, y)+V (y, x),
the social value function if P and B are equal, when c < 0 compared to c = 0 is
approximated by

F (y)
Z 0

c
g1(x, s)f(s, y)ds+ F (x)

Z 0

c
g1(y, s)f(s, x)ds > 0 (33)

Hence, the major factor is that if c < 0, the contest is ended early and the resulting
loss in total effort is excessive relative to the cost savings.
Theorem 7 summarizes our Þndings concerning optimal policy.



Closed-Loop Equilibrium in a Multi-Stage Innovation Race 23

Theorem 9. When B is small, the optimal policy is to award a prize only when
the race is completely won and the prize should be nearly the entire social value
of the innovation. Furthermore, the closer the innovators are to Þnal success when
competition begins, the less should be their share in the social beneÞt.

While these conclusions are surely not globally true, we have shown their validity
for an open set of problems. More importantly, we have shown how to address these
questions for that collection. Other exercises, such as the impact of suboptimal inno-
vation resource allocation on the optimal prize, can be conducted by straightforward
examination of the higher-order terms of our expansion for W , the social planner�s
objective. In the interest of space, we leave such extensions to the reader.
9. Generalizations
There are many other exercises which could have been pursued, but were not be-

cause the one examined above most clearly illustrates the general approach advanced
here. To indicate that this approach is not too specialized, we will now discuss some
other possible exercises.
All models with closed-form solutions are degenerate in some sense. When we

use them we hope that the effects from which we abstract are not important. Take,
for example, the model used by Loury and Reinganum. While it yields closed-form
solutions for the quadratic cost speciÞcation, it abstracts from the possibility of in-
termediate stages, our focus here. Recall that our model with F and G equal to
constant functions is exactly that model. To examine the importance of intermediate
stages on the nature of equilibrium, we could have assumed that F and G deviated
slightly from constant functions. This alternative would have allowed us to determine
the nature of equilibrium for arbitrary prize but with only a small deviation from the
implicit stage-independence of Reinganum�s analysis.
Another possible generalization is allowing intermediate payments. While in some

of these earlier models there were prizes for intermediate success, we assumed no such
intermediate prizes nor social beneÞts. However, the analysis conducted above could
also allow intermediate payoffs since nothing we did used the absence of intermediate
payoffs in an essential fashion; we focussed on the more simple payoff structure since
our purpose was to present a robust analysis of the positional dynamics among com-
petitors for one kind of race. A more general analysis with intermediate payoffs could
generate insights, for example, into strategic implications of the learning curve; one
approach would be to approximate the slow-learning case by knowing the solution to
the no-learning case. However, we leave such an analysis to another study.
While this is certainly not an exhaustive list, it does argue for the assertion that

the approach of this paper is useful in examining the robustness of simple models
generally, allowing us to add some otherwise intractable element to the analysis of a
problem. While our analysis got started by examining the trival case of no payoff,
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generally one can begin with any tractable case. We hope that this exercise has
not only generated interesting results about the nature of innovation rivalry, but also
demonstrated that perturbation analysis generally can be a valuable tool for dynamic
strategic analysis.

8. Conclusion

We have analyzed a simple closed-loop subgame perfect model of multi-stage innova-
tion. We found the usual result of excessive innovative effort when the prize equals
the social value. Under the assumption that the net social value of innovation is small,
we have also found that there will be excessive risk-taking, that at any moment the
following Þrm is a less efficient innovator relative to the leader, that the prize to
the innovator should nearly equal social beneÞts, and that the competition should
not be ended before one of the competitors has succeeded completely. While these
results have obvious limitations on their generality, the do tell us that the contrary
propositions cannot be generally true. While many of the results, e.g., the excessive
investment when the prize equals the social beneÞt, follow naturally from the fact
that these subgame perfect equilibra are close to some open-loop equilibria others, in
particular the computation of the equilibrium reactions, are specifc to the subgame-
perfect solution. They have therefore given us a peek into the nature of subgame
perfect equilibrium in such innovation models.
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