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Abstract. Static oligopoly theories disagree on whether mergers are prof-

itable. The Cournot model says that many potential mergers would be unproÞtable

whereas the Bertrand model says that all mergers are proÞtable. We show that,

for economically sensible parameter values, mergers are proÞtable for merging Þrms

when Þrms choose both price and output, using inventories to absorb differences

between output and sales. Furthermore, substantial cost advantages are necessary

for a merger to beneÞt consumers. The merger predictions of our dynamic model

are most similar to predictions of static Bertrand analyses of differentiated products

even though our model often behaves like the Cournot model in the long run.
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1. Introduction

A major task of antitrust policy is the regulation of mergers. A merger allows partici-

pating Þrms to coordinate their actions and, presumably, increase proÞts. This will harm

consumers to the extent that this coordination allows Þrms to raise prices and reduce

output, but it may beneÞt consumers if cost savings from the merger are so large that

prices fall. Any discussion of antitrust policy requires an understanding of the impact of

mergers on consumer welfare and producer proÞts. Despite the simple intuition, static

economic theory is ambiguous in its predictions. Cournot analysis argues that if a merger

does not reduce costs and does not nearly produce a monopoly, then the merging Þrms will

lose proÞts. The Cournot view implies that regulators only need to prevent the formation

of monopolies and that Þrms would pursue a nonmonopolistic merger only if it reduced
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their costs. Bertrand analysis argues that Þrms will always be able to enhance market

power and proÞts through merging and argues for more activist merger regulation. Sim-

ple static models fail to give us a clear analysis of mergers. We re-examine basic merger

questions using the dynamic model of oligopoly presented in Judd (1990), which allows

Þrms to choose both prices and output, using inventories to absorb differences between

output and sales. We Þnd that mergers are generally proÞtable for participating Þrms in

the Judd (1990) model for empirically reasonable speciÞcations of taste and technology.

The results from static oligopoly analysis follow directly from their simple static as-

sumptions. The intuitive view is supported by Bertrand-style analysis with differentiated

goods. Deneckere and Davidson (1985) showed that merged Þrms will increase prices on

their goods, and that the unmerged Þrms will follow by raising their prices, resulting in

higher proÞts for all Þrms. Price increases in Bertrand competition are mutually beneÞ-

cial, and mergers of any size are proÞtable. In contrast, mergers are not always proÞtable

in Cournot games. If Þrms merge in a Cournot oligopoly of a homogeneous good, then the

merged Þrm will want to reduce its output relative to the premerger total output. The

unmerged Þrms will respond by increasing their output, a response which reduces proÞts

to the merged Þrm. In fact, Salant, Switzer and Reynolds (1983) conclude that mergers

involving fewer than 80% of the Þrms in the market are unproÞtable. Thus, a potential

merger which does not reduce costs will not happen unless it nearly results in monopoly.

The key fact is that Bertrand analyses assume that Þrms set prices and immediately

adjust output to meet demand, whereas Cournot analyses assume that Þrms decide how

much to produce and then accept whatever price is necessary to sell that output. Their

simple structure make static models1 unsatisfactory for studying any oligopoly question,

particularly merger problems. They assume that Þrms may choose only price or quantity

whereas real Þrms choose both. Unfortunately, the results depend critically on which is

chosen by the Þrm and which is chosen by the market. Since real-world Þrms choose

both price and output, it is desirable to examine merger issues without making arbitrary

choices about strategic variables.

The pervasive ambiguities2 in static oligopoly theory has lead some to argue that one

1Some have examined an alternative, Stackelberg-like, approach which assumes that after a merger

the merged entity Þrst chooses its output recognizing the later reactions of the other Þrms. Farrell and

Shapiro(1990) and Gaudet and Salant(1991) use this approach. We stay with a dynamic Nash equilibrium

concept wherein all actions within a period are simultaneous but each Þrm�s actions today may affect any

other Þrm�s actions tomorrow. Our dynamic game approach captures some of the ideas in conjectural

variations approaches but does so by explicitly modelling multiperiod interactions in a Nash equilibrium

approach.
2The ambiguity is an example of how models with strategic complements behave very differently

from models with strategic substitutes; see Bulow et al. (1985). This ambiguity is endemic in static

merger analysis. For example, Lommerud and Sorgard (1997) examines the proÞtability of a merger if

the unmerged Þrms react by introducing new varieties. They Þnd that the Cournot and Bertrand models

yield different predictions.The Bulow et al. approach will not be useful for us since our strategic variables
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model of static oligopoly is better than the other. For example, Kreps and Scheinkman

(1983) used a two-stage model where Þrms Þrst choose capacity and then choose prices.

The Kreps-Scheinkman model leads to the same outcomes as the Cournot model. How-

ever, even these results are fragile. The Kreps-Scheinkman game needs to specify rationing

rules since they do not allow inventories. Deneckere and Davidson (1986) show that the

equilibrium is sensitive to those rules.

We argue that it is ultimately futile to search for the best static model, and that

instead we should investigate merger questions in more realistic dynamic models. In

many industries, each Þrm decides the price at which it sells its products and how much

to produce each period, and uses inventories to absorb differences between current output

and current demand. Kirman and Sobel (1974) examined such a model, proving existence

of equilibrium under certain conditions. Judd (1990) presented a linear-quadratic model

with adjustment costs, investment, and learning. The addition of adjustment costs makes

quantities more difficult to adjust than prices, a focus of the Kreps-Scheinkman (1983)

model. Judd (1990) examines only cases with linear-quadratic speciÞcations of tastes

and technology, a choice we continue here. Since the inherently dynamic model in Judd

(1990) allows the ßexibility we see in many industries, we regard it as a more reasonable

description of reality than either static model.

It Þrst appears that this more complex model will be no more precise in its predictions.

Judd (1990) shows that long-run proÞts, prices, and output replicate the static Cournot

model if the costs of adjustment are high. In these cases, any merger would reduce the

long-run proÞts of merger partners. Judd (1990) also shows that if the costs of output

adjustment are low then the long- and short-run equilibria are essentially the Bertrand

equilibrium, implying that any merger increases the merged Þrms� proÞts immediately

and permanently. Therefore, the Judd (1990) model produces a mixture of the Bertrand

and Cournot results for long-run proÞts and prices.

However, Þrms and consumers do not care only about the long-run. When Þrms con-

sider a merger, they presumably care about the present value of proÞts, not the long-run

proÞts. Also, the proper measure of the impact on consumers is the present value of con-

sumer surplus. When we take a present value approach, we Þnd surprisingly unambiguous

results for merger questions. For a broad range of parameter values, we Þnd that a merger

increases the present value of proÞts for the merging Þrms, even in many cases where the

long-run steady-state equilibrium nearly equals the static Cournot equilibrium. Since the

static approach corresponds to a steady state analysis in our dynamic model, it is clearly

invalid in a dynamic world where producers and consumers care about the discounted

present value of proÞts and utility.

Salant et al. and Davidson-Deneckere focus on mergers which don�t affect costs. A

will be a mixture of complements and substitutes, and which effects dominate depends on the parameters.
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merger may be socially beneÞcial if it allows Þrms to reduce their costs. The lack of

merger incentives in the Cournot model implies that if Cournot Þrms do merge short of

monopoly it must be because of cost savings. However, that is not true in the case of

Bertrand oligopolies. Froeb and Werden (1998) and Werden (1996) derive simple formulas

for determining how much cost reduction is required for a proÞtable merger to not result

in a price increase. These papers are limited to the static Bertrand and Cournot models.

We reexamine this issue in our dynamic model.

This paper also uses a different methodological approach than typically taken in the

industrial organization and antitrust policy literature. Because of the complexity of our

dynamic model, we cannot express dynamic equilibrium in compact formulas. Instead,

we use numerical methods to compare the pre- and post-merger dynamic equilibria. We

perform these computations over a broad and realistic range of values for the critical

demand and cost parameters. These calculations also produce evidence concerning the

quantitative importance of various factors. We argue that dozens of numerical examples

using realistic parameters in a realistic dynamic model and producing quantitative infor-

mation are more useful in analyzing real-world merger problems than theorems producing

qualitative results about unrealistic static models.

Our conclusions are limited by the special nature of the model but less so than is typical

in oligopoly analysis3 since its dynamic detail is far more realistic than static analyses. In

general, this paper shows that adding realistic dynamic detail is both desirable and simple

to accomplish, and has substantial impact on the answers to important merger questions.

2. Dynamic Oligopoly with Inventories and Adjustment Costs

We use a multi-Þrm extension of the linear-quadratic duopoly model of differentiated

products with inventories developed in Judd (1990). Throughout this paper we assume

that the representative consumer has the utility function

U = C
NX
i=1

qi −
Ã

NX
i=1

qi

!2
−B

NX
i,j=1
j>i

(qi − qj)2 −
NX
i=1

piqi + Y (1)

where qi is consumption of good i, pi is the price of good i, and Y is money income. We

Þx the coefficient of
³PN

i=1 qi

´2
to be 1. This is not a limitation since a change in units

used to measure q would allow us to change the coefficient of
³PN

i=1 qi
´2
to be 1 without

3Our analysis is limited to linear demand and cost structures, a limitation shared by much of the

literature. Crooke et al. (1999) emphasizes how the price change after a merger is sensitive to the

assumed functional forms in a Bertrand model. In particular, they Þnd that linear speciÞcations predict

smaller price changes than many other speciÞcations such as the constant elasticity form. A numerical

approach for nonlinear structures could be executed using the methods described in Judd(1992); we leave

those generalizations for future work.
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loss of generality. The inverse demand functions are linear:

pi = −ψqi − α
NX
j=1
j 6=i

qj +C (2)

ψ ≡ 2 (1 +B(N − 1)) , α ≡ 2(1−B)

The demand for good i, di, is

di = −bpi + a
NX
j=1
j 6=i

pj + c (3)

a ≡ 1−B
2BN2

, b ≡ B +N − 1
2BN2

, c ≡ C

2N

Note that C is the �choke price,� that is, if all products sold at price C then demand

for all goods is zero. The parameter B represents the degree of substitutability among

products. Products are perfect substitutes if B = 0. As B increases, products are less

substitutable, and their demands are independent if B = 1. If B exceeds 1 then the

products are complements. Since the analysis of complementary products would be sub-

stantially different, and discussions of horizontal mergers typically focus on substitutable

products, we assume B lies between 0 and 1.

Substitutes Assumption: 0 < B < 1

The key feature in Kirman-Sobel (1974) and Judd (1990) is the presence of inventories

which allow Þrms to choose price and output simultaneously. This speciÞcation adds

substantial realism to the model. We follow Judd (1990) and assume adjustment costs in

production. The inventory of product i follows the rule

Ii,t+1 = φ (Ii,t + qi,t − di,t) (4)

where It, qt, dt represent beginning-of-period inventory, output, and demand in period t

respectively, and 1 − φ = δ ∈ [0, 1] is the depreciation rate. In our model, demand is
determined by current prices only; hence, products are perishable for consumers, but

are somewhat durable as long as stored by Þrms. Therefore, given positive inventory

holding costs, each Þrm economizes on production and storage costs over time. We assume

quadratic inventory holding costs; the holding costs for product i are Hi(Ii) = hi Ii+giI2i .

We assume a cost function for product i that includes adjustment costs. The cost of

producing qi,t at time t is

Ci(qi,t) = miqi,t +
γ

2
(qi,t − qi,t−1)2 (5)
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where mi is speciÞc to product i, and γ represents the common quantity adjustment

cost4. Adjustment costs affect short-run marginal costs, but the long-run marginal cost

for product i is mi.

The quadratic adjustment cost in (5) models the realistic notion that it is costly

to change output quickly. Kreps and Scheinkman (1983) appeal to adjustment costs to

justify their sequential game where quantities are chosen Þrst and prices second. However,

their game has only these two stages followed by one period of sales and output. The

game in Judd (1990) allows Þrms to simultaneously choose prices and quantities in each

period, and allows inventories to absorb differences between output and sales, and avoids

the rationing rules in Kreps-Scheinkman. The sequence of moves in this multi-period

dynamic game is a more realistic description of dynamic interaction. The extra ßexibility

in a dynamic game allows us to model the relative cost of adjusting output and prices in

a direct fashion instead of through careful construction of a simpler game. We assume

that adjustment cost terms are quadratic since the dynamic equilibrium is then relatively

easy to compute.

Let si,t denote the lagged output of product i, qi,t−1. The vector of state variables, yt,
is deÞned by5

yt = [1, I1,t, s1,t, q1,t, p1,t, · · · IN,t, sN,t, qN,t, pN,t]0 (6)

and the vector of control variables, xt, is deÞned by

xt = [q1,t, p1,t, · · · qN,t, pN,t]0

The state variables follow the linear law of motion

yt = ℵ yt−1 + i xt (7)

where ℵ and i are derived from (3,4) and the deÞnitions for y and x. Current proÞts

from product i are deÞned by the demand and inverse demand systems (2,3) and can be

expressed in the quadratic form

πi(y) = pidi(p)−Ci(qi, si)−Hi(Ii) = 1

2
y0Ri y (8)

4We assume that γ is common in order to preserve the general symmetry of the problem. Heteroge-

neous γ would not affect the tractability of the analysis. In order to focus on merger issues and possible

cost reductions, we assume symmetry in other aspects of problem, as is typical in this literature. The

speciÞcation in (5) also assumes that long-run marginal cost is constant. We could add a niq
2
i,t term to

model nonconstant long-run marginal costs, but we focus on the constant LRMC case to keep the analysis

simple and comparable to most papers in this literature. Furthermore, we are assuming that marginal

costs are constant only in the long run, a far more reasonable assumption than assuming constant short-

run marginal cost, the assumption implicit in static analyses which make no distinctions between the

short and long run.
5We follow the trick of including the constant 1 in the list of state variables. This allows us to express

proÞts as a simple quadratic form. The equations of motion are augmented by y1,t+1 = y1,t and the

initial condition is y1,0 = 1.
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These speciÞcations deÞne the structure of a linear-quadratic game.

2.1. Closed-Loop Nash Equilibrium and Merger Analysis. We now describe

closed-loop Nash equilibrium and the exercise we perform to examine mergers. Each

Þrm (which may produce many products) chooses outputs and prices in each period to

maximize the present value of proÞts. Since the deÞnition of a Þrm will change with a

merger, we must include that possibility in our notation. We assume that there are M

products produced by N ≤M Þrms. Let ω denote the product conÞguration; speciÞcally,

Þrm ω(i) produces product i. DeÞne Ωj(ω) to be the products produced by Þrm j in

product conÞguration ω. Let xi = (qi, pi) denote output and price of product i, and let

Πj denote the proÞt ßow for Þrm j. Firm j�s proÞts is a function of the state y as well as

the product conÞguration ω, and is expressed in

Πj(y,ω) =
X

i∈Ωj(ω)
πi(y) (9)

The law of motion is (7) for any product conÞguration.

For each product conÞguration ω we have a linear-quadratic game. The value function

for Þrm j is deÞned to be the present value of current and future proÞts. The Bellman

equation (we follow here the indexing scheme used in Kydland (1975, 1977) where yt−1
is the state variable in the value function at time t) for Þrm j when ω is the product

conÞguration is

Vj(yt−1,ω, t) = max
xi,i∈Ωj(ω)

{Πj(yt,ω) + βVj(yt,ω, t+ 1)} (10)

s.t. yt = ℵ yt−1 + i xt

Our Bellman equation makes explicit the dependence of equilibrium proÞts on the product

conÞguration. The value function for each Þrm is speciÞed differently depending upon the

market structure, the control variables and current proÞts. When each Þrm produces a

single product, the controls for Þrm i are xi = (qi, pi) and its proÞts are Πi = πi. We

take this to be the pre-merger equilibrium. If all Þrms were to merge the result would be

a single Þrm which would have a monopoly over the N goods.

Firms are no longer symmetric if some of them merge. If Þrm 1 and Þrm 2 merge,

then the new merged entity controls the variables (q1, p1, q2, p2) and competes with Þrms

which sell only one product. The proÞt function for the merged Þrm will be the sum of π1

and π2 but π1 and/or π2 may be different due to the merger because of cost savings from

joint production. Formally, we allow costs to depend on the product conÞguration. We

assume that technology transfers are free within a Þrm, and therefore free among merged

Þrms. Thus, it is crucial how we specify the form of (joint) cost functions for a merger6.

6See, for examples of different speciÞcations, Perry and Porter[1985] or Farrell and Shapiro[1990].
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If technologies are identical over Þrms and have no scale effects, a merger will produce no

cost-savings.

We can compute the subgame perfect Nash equilibrium for any product conÞguration

since we have assumed linear-quadratic utility and cost functions. We examine two simple

cases, following standard merger analysis. We assume that we begin with N Þrms each

producing a single product. After a merger of M Þrms, we have a non-cooperative game

among N −M + 1 entities: one merged Þrm selling M products and N −M unmerged

independent Þrms selling a single product. By comparing the solution of this game with

the solution of the initial non-cooperative game among N Þrms, we can provide possible

answers to the questions about the proÞtability and social value of mergers.

We need to be clear about the dynamic details of the analysis. The critical features

are: (i) the N single-product Þrms converge to the steady-state of the subgame-perfect

Nash equilibrium before the merger occurs; (ii) there is an unanticipated merger of some

of the Þrms; (iii) any cost saving among the merged Þrms is achieved immediately and

permanently; and, (iv) Þrms proceed under the assumption that there will be no further

mergers. To do this we compute the subgame perfect equilibrium strategies and value

functions for two product conÞgurations: the pre-merger case of single-product Þrms and

the post-merger product conÞguration. We compute the changes in the present value of

consumer and producer surplus, evaluated at the pre-merger steady state which occur

as a result of the unanticipated merger and use these values to judge the impact of the

merger on consumer and producer surplus.

2.2. Computational Details. We have speciÞed a general linear-quadratic dynamic

game. There are no closed-form solutions for the equilibrium of the inÞnite-horizon dy-

namic game. This is not surprising since there are no closed-form solutions for multivariate

linear-quadratic control problems, which require the solution a Ricatti equation. There

are some eigenvalue-eigenvector solution methods for LQ control problems which reduce

the numerical problem to familiar matrix algebra operations, but our dynamic game is not

the solution to a single optimal control problem, but the solution to interactions among

the individual control problems. The absence of a closed-form solution makes it unlikely

that we can prove theorems telling us when mergers are proÞtable, increase consumer sur-

plus, or increase social surplus. There are closed-form solutions for Þnite horizon games

given a terminal payoff. In fact, we will use them in our computations below. However,

they are the result of hundreds of iterations of linear operations and would be impossible

to even just display in this paper. They are also useless for proving theorems on the

impact of mergers. We must resort to computation in order to address these issues in a

quantitative fashion. In fact, our computations show that there are no simple theorems

since we Þnd examples covering a broad range of possibilities. The only way to proceed

is to compute equilibria for empirically sensible cases, and Þnd instructive patterns for
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those cases.

Fortunately, it is relatively easy to compute the equilibrium value functions for each

conÞguration of Þrms and products. A linear-quadratic dynamic game reduces to a cou-

pled system of Bellman�s equations where each Þrm-speciÞc Bellman equation is an opti-

mal linear regulator problem. We obtain the subgame perfect solution (also known as the

feedback solution and Markov Perfect equilibrium) numerically by recursive, backwards

computation beginning with a concave terminal value functions for the Þrms. That is, we

make a guess about the Þrms� value functions at some terminal time T , then compute the

value functions at time T − 1, T − 2, T − 3, etc. We iterate backwards for 500 periods;
we Þnd that the 500-period solution is indistinguishable from the 400-period solution and

insensitive to the guess for the terminal value. The resulting collection of policy and value

functions describe Þrm behavior during any transition period as well as at the steady

state. This computation must be done for both the pre-merger dynamic game as well as

any of the post-merger dynamic games we study.

The details of computing the dynamic oligopoly equilibrium are spelled out in the

literature; see, for example, Basar and Olsder (1995) and Kydland (1975, 1977) for precise

descriptions of the linear algebra used to compute the equilibrium value and strategy

functions at time t given the value functions at time t + 1. We will illustrate the ideas

behind the computational technique by presenting the details for the simpler case of

duopoly.

The solution to Vj(y,ω, t), the value function for Þrm j at time t in state y and

product conÞguration ω,7 takes the form of coupled Ricatti equations. The solution to Vj

is a quadratic form

Vj(yt−1,ω, t) = (1/2) y0t−1Sj,t yt−1

Decompose i in (7) into i = [i1, i2]. DeÞne

Ht =

"
i01
P
1,t

i02
P
2,t

#
(11)

Σj,t = Rt + βSj, t+1, j = 1, 2 (12)

Let xj,t denote the set of prices and outputs under the control of Þrm j in the product

conÞguration ω. Given the value function at t + 1, (1/2) y0tSj,t+1 yt, Þrm 1 chooses the

variables under its control, x1,t, to solve the Bellman equation (10), implying the Þrst-

order condition

0 = i01Σ1,ti1x1,t + i01Σ1,ti2x2,t + i01Σ1,tℵyt−1 (13)

7The product conÞguration for a duopoly is either one product per Þrm or a single Þrm controlling

both products. We keep the ω notation since it is necessary in the cases we compute.
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First-order conditions for Þrm 2 imply the symmetric condition

0 = i02Σ2,ti2x2,t + i02Σ2,ti1x1,t + i02Σ2,tℵyt−1 (14)

If we combine the Þrst-order conditions in (13,14), we Þnd that the equilibrium rule is

xt = Gtyt−1

where

Gt = (HtB)
−1Htℵ (15)

Furthermore, the quadratic form for the value function at t is

Sj,t = (ℵ+ iGt)0Σj,t(ℵ+ iGt)

The equations (11,12,15) form a recursive set of matrix equations which take us from

the t+1 value functions represented in the Sj,t+1 matrices to the period t value functions

represented in the Si,t matrices. If period T were the last period and Sj,T were Þrm j�s

Þnal payoff, then we can compute the payoff for periods t < T by iterating the process in

(11,12,15). For any time t < T we can combine these expressions to produce a closed-form

solution for Sj,t but the result is of no value for our purposes. Therefore, we compute

several examples.

Any computation is an approximation, so we need to examine their likely quality.

Standard diagnostics indicate that the numerically computed equilibria for these cases are

quite reliable. In every simulation, we found that the condition numbers of the matrices

which arise in our computations are quite small. In particular, these log condition numbers

always fall between 2 and 4, indicating that we lose at most 4 decimal digits (out of the

16 digits which our computer can carry) in critical matrix operations. Also, the Þrst Þve

digits of the results were insensitive to changes in the horizon and large changes in the

terminal value function. These diagnostics indicate that our numerical results are good

approximations to the inÞnite-horizon equilibrium to at least a few signiÞcant digits, an

accuracy which is adequate for our purposes.

There is one detail about which we must be careful. This procedure uses just the Þrst-

order conditions for the players� optimization problems. It may produce value functions

for a player which are not concave in that players� control variables, in which case the

decision rules do not satisfy the second-order conditions for optimization. For example,

this could arise if there were signiÞcant increasing returns to scale in a Þrm�s production

function. Our examples do not have increasing returns to scale in output. We sometimes

allow mergers to have a spillover effect on costs, but that does not produce an increasing

returns to scale since all Þrms have constant returns to scale with respect to output both

before and after the merger. We have checked our examples and Þnd that decision rules

in our equilibria satisfy the second-order conditions for optimization and that solutions
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to the Þrst-order conditions are unique at each stage. Therefore, all of our equilibria are

unique.8

2.3. Limitations and Possible Extensions. There are many limitations of this

analysis. First, we have made special functional form assumptions concerning demand

and supply; however, this is not a weakness unique to this analysis. Crooke et al. (1997)

show that the predictions for the price effects of mergers in the typical static model are

sensitive to functional form speciÞcations. We are sure that many of our quantitative

results would also be sensitive to changes in the demand speciÞcation, However, it is

unclear if the case of linear demand and supply substantially biases the qualitative results

in any particular direction. In any case, extending our analysis to nonlinear cost and

demand structures is well beyond the scope of this paper since it would require the solution

of nonlinear dynamic games. The numerical methods presented in Judd (1992) could be

used to analyze more general speciÞcations, but we leave this for future work.

Second, we have ignored entry. The possibility of entry will affect merger decisions

since entry may blunt the incentive of incumbents to merge and their ability to exploit

any market power. This has been the focus of papers such as Kamien and Zang (1990),

Werden and Froeb (1998), and Gowrisankaran (1999). Those studies have stayed with

conventional Bertrand or Cournot modes of competition. Nonlinear extensions of our

model could allow both price and output decisions by Þrms as well as entry, but they lie

beyond the scope of this study.

2.4. Cases Examined. We compute the impact of mergers for several cases. We now

list those cases and indicate why these represent a broad range of empirically reasonable

cases.

We compute equilibria of markets with N = 5, 7 and 10 products. The long-run

marginal cost for product i, mi, may vary across products and may be affected by a

merger. We assume Þrm 1 has the best technology with LRMC equal to m1, and that

it is involved in any merger. The pre-merger marginal cost for all products other than

product 1 is m−1.
We assume no depreciation of inventories, that is, δ = 0; some experimentation shows

that this does not affect our results. The inventory cost parameters are chosen to be

hi = 0, gi = 1, 10, and 100, for all i. Our tables below will report on the case g = 100, a

quadratic cost function with very steep curvature and an optimal steady state inventory

level close to zero. Supplementary calculations indicate that the results do not depend on

8This uniqueness property would disappear if we allowed an inÞnite horizon since the folk theorem

implies that there could be reputation-style equilibria as well as the ones we approximate. The objective

of this paper is to examine the implications of long but Þnite horizon games with the implications of

static analyses. Therefore, we do not examine reputation equilibria.
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this. Also, no result is affected by h since h just affects the optimal inventory level9.

The adjustment cost parameter, γ, is assumed to be 0, 5, 50, or 500, so that the exam-

ples cover the cases ranging from the case of no adjustment cost to cases with expensive

and slow output adjustment. There is little point examining cases where γ > 500 since the

adjustment costs become unrealistically large. It is not immediately apparent what values

γ should have. Fortunately, γ is closely related to the slope of the short-run marginal cost

curve. We will use the implied values for short-run marginal costs to judge what γ should

be.

We assume C = 100; this is arbitrary since long-run marginal costs are constant. The

substitutability parameter, B, is critical; we allow it to range between 0.1 and 0.5. We

will see that this range encompasses sensible values for own- and cross-price elasticities.

The discount factor, β, is set to be 0.99; this corresponds to setting a unit of time equal

to three months if the annual interest rate is 4%.

The complete list of critical parameter values used in our calculations are listed in Table

1. Our discussion below will present the results for some of these values to indicate the

magnitudes of various effects. We will also provide statements summarizing the qualitative

patterns found in the complete collection of computations.

[PUT TABLE 1 ABOUT HERE]

While this set of parameters is somewhat limiting, it focuses on economically sen-

sible cases. We will see that the range for B covers sensible values for own- and cross-

elasticities of demand, and the range for γ covers sensible values for the short-run elasticity

of marginal cost. We make no effort to use estimated elasticity values for any particular

industry; instead we choose values for the critical parameters which are plausible. Increas-

ing the range of values will not affect the qualitative Þndings much since we Þnd some

ambiguities even with this range of values. The key fact is that our calculations can show

how the results depend on demand and cost elasticities and the reader can ultimately

judge what is plausible and what is not.

2.5. Qualitative Results. We next note some qualitative features of equilibrium that

help us understand our results. First, when there are no adjustment costs (γ = 0) the

dynamic equilibrium for the Þnite-horizon game is the same as the Bertrand equilibrium

and the Bertrand equilibrium is an equilibrium of the inÞnite-horizon game. This hap-

pens because both short- and long-run marginal costs are constant when γ = 0. With no

adjustment costs, current output affects neither current nor future marginal cost. Further-

more, unexpected movements in inventory are immediately neutralized in the following

9This is true also because we assume constant long-run marginal cost. If LRMC were not constant

then the long-run level of output would be affected by a merger, affecting the LRMC and the marginal

cost of changing inventories.
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period without any effect on marginal cost. Price decisions affect only demand since any

inventory implications of a price decision are absorbed by a change in output without

affecting marginal cost. Therefore, there is no strategic value to inventories and output

decisions focus on maintaining a target level of inventory. Therefore, pricing decisions are

the same as in the static Bertrand equilibrium, and output is set to supply anticipated

demand and maintain the efficient level of inventory.

Second, as the adjustment cost parameter γ increases, the slope of short-run marginal

cost curve gets steeper and our dynamic model incorporates some of the capacity-commitment

or quantity-setting features of static Cournot games. The steady state of the oligopoly

when all Þrms have very large adjustment costs has nearly the same output and prices as

a static Cournot equilibrium. These cases resemble the Kreps-Scheinkman model since

Kreps-Scheinkman implicitly assume that the ex post cost of capacity adjustment is inÞ-

nite.

Judd (1990) demonstrated these results for the case of two Þrms. Our analysis is more

general since we analyze multiÞrm oligopolies but we Þnd these same basic qualitative

results. Since the parameter γ parameterizes the transition from Bertrand oligopoly to

Cournot oligopoly, we might expect a comparable mixture of results for merger analysis.

However, the steady-state results in our dynamic model are not relevant since convergence

to the steady state is very slow when adjustment costs are large. In dynamic economics

in general, we know that comparative steady state analysis is highly questionable, par-

ticularly as part of welfare analysis. In our dynamic model, the net result is much less

ambiguous than static analyses.

3. Mergers with no Cost Saving

We Þrst examine the case where all Þrms have the same costs, both before and after any

merger. Our computations display several robust properties. We illustrate them in Figure

1 for the case of a two-product merger in a Þve-product industry when m = 30, B = 0.1,

and γ = 500. This is a case where the products are good substitutes and adjustment costs

are very high. The steady state of this case is indistinguishable from the static Cournot

model. This case is a rather extreme one but gives us rich example of what may happen

in equilibrium.

Figure 1a displays the per-product output for both the merged and unmerged Þrms.

Equilibrium converges slowly to the steady state because of the high value of γ. The un-

merged Þrms continuously expand their output and the merged Þrm continuously reduces

its output of each product, as would be predicted by a Cournot model. Figure 1b displays

product prices. All unmerged Þrms gradually increase their prices over pre-merger levels,

as predicted by Bertrand analysis. The merged Þrm has a humped pattern for prices, Þrst

raising prices then retreating somewhat before settling in to a steady state with higher

prices.
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Figure 1c displays per-period proÞts. The evolution of proÞts is even more com-

plex. The proÞts of the unmerged Þrms immediately increase above pre-merger levels and

continue to rise forever. In this case, the merged Þrms� proÞts immediately falls below

pre-merger levels but then rises above pre-merger levels, only to ultimately fall below

pre-merger levels. This is one of the few cases where the merged Þrms lose in terms of

present value, but the hump-shaped pattern in proÞts is seen often. In the short-run the

merged Þrms absorb high adjustment costs to get output down. In the intermediate run,

the unmerged Þrms have not yet attained their long-run market share and the merged

Þrm extract extra proÞts by coordinating the output and pricing of its products. Firms

may want to merge even though the resulting market power is temporary. In contrast,

the traditional static approach would argue that a merger would not be desired since it

implicitly only examines the steady state. Figure 1d tracks consumer, producer, and so-

cial surplus. This merger produces a growing transfer from consumers to producers. The

net effect on social surplus was slightly negative.

[PUT FIGURE 1 ABOUT HERE]

The humped pattern for the merged Þrms� proÞts in Figure 1d was seen in several

examples we plotted, even for some proÞtable mergers. Sometimes, the initial effect on

the merged Þrms� proÞts is sometimes negative, even though there is a present value gain.

The intuition for the overshooting pattern is clear. The intermediate gains in proÞts occur

because it takes time for the unmerged Þrms to increase their output; in the meantime,

the merged Þrm also cuts back on output but in a coordinated fashion across the products

it sells, as in a Bertrand analysis.

3.1. ProÞts. We now focus on the impact of mergers on proÞts. Tables 2 and 3 display

our results for the impact of a merger on the present value of proÞts. They report the

percentage proÞt gain per product for the Þrms involved in a merger; e.g., the Þrst row

of Table 2 tells us that if four Þrms merge then the proÞts for the four-product Þrm will

be 39.5% greater than the joint proÞts of the four pre-merger Þrms. We assume m = 30;

the results are practically identical for m = 20, 40, and so are not reported here. In

these tables, we see that larger mergers are more beneÞcial for the participating Þrms. As

expected, γ is negatively related with the proÞtability measure. When the model collapses

to a Bertrand game (γ = 0) Þrms instantly move to steady-state prices and adjust out

mergers of any size are proÞtable, as predicted by the Bertrand approach to mergers.

With γ = 0, Þrms can instantly set the new steady state levels of price and quantity,

which makes our dynamic model equivalent to a static Bertrand game.

[PUT TABLES 2 AND 3 ABOUT HERE]
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As γ increases, the importance of transition periods also increases. The steady states

when γ = 500 almost equal the static Cournot equilibria. Many cases with high γ imply a

reduction in steady state proÞts, as with the static Cournot model, but imply an increase

in the present value of proÞts. This is the key reason why we Þnd far more proÞtable

mergers than static Cournot analysis does.

Whether or not the merged Þrms beneÞt from a merger depends on the parameter val-

ues. In general, the merged Þrms enjoy an increase in the present value of their combined

proÞts. The only exceptions in Tables 2 and 3 are mergers of two Þrms with B = 0.1,

γ = 50 in the Þve-product industry, and mergers of two and three Þrms with B = 0.1,

γ = 50, merger of two Þrms with B = 0.2, and γ = 50 in the ten-product industry. Thus,

partial market concentration is less likely to be proÞtable when products are close sub-

stitutes and Þrms are less able to change output. This is similar to the extreme case

of homogeneous products in the traditional static Cournot game, such as in Salant et

al.(1983).

Table 2 also reports the elasticities of short-run marginal cost in the pre-merger steady

states. The elasticity of marginal cost is deÞned as the percentage increase of marginal

cost caused by one percent increase of output quantity, and reßects the slope of marginal

cost curve. This elasticity gives us a way to judge what are plausible values for γ. The case

where a two-product merger was unproÞtable also had a SRMC elasticity of nearly ten,

implying that a 1% increase in output over one unit of time would increase marginal cost

by nearly ten per cent. This is where our choice of β = .99 is important. Since safe assets

return about 1% (after inßation) and risky assets like equity return about 7%, this implies

that the period of time we use is at least two months and could be up to twelve months,

depending on a Þrm�s cost of capital. Given the fact that output is far more volatile than

prices, elasticities of SRMC greater than ten appear to be, at best, marginally plausible.

Cases with γ = 500 more often produce Cournot-like implications for proÞt gains but also

imply implausible elasticities of SRMC on the order of 100. Therefore, these examples are

not supportive of using static Cournot models for merger analysis since it implies extreme

properties of the cost function.

While unproÞtable mergers are possible, they seem to require unrealistically inßexible

cost functions. Of course, in examining an actual merger, one could estimate the short-run

elasticities to evaluate likely proÞtability. In any case, the reader can examine Tables 2

and 3 and judge for themselves whether the cases with Cournot-like results are plausible.

We next summarize our results from Tables 2 and 3 and our complete set of computations.

Summary 1. For the parameter values displayed in Table 1, mergers with no cost savings

increase the present value of proÞts for the participants except when quantity adjustment

costs are large, the products are good substitutes, and the number of merged Þrms is

small. When adjustment costs are large, steady state proÞts for the merged Þrms may
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fall even when the present value of proÞts increases.

3.2. Consumer and Social Surplus. Consumers surely lose from mergers when

there are no cost savings, and social surplus will fall because of the rise in prices and fall

in output. Tables 4 and 5 report the changes in consumer and social surplus from various

mergers. They show that consumer losses from mergers are greater when adjustment costs

are higher. This is because the initial pre-merger steady state has lower output and is

less efficient as γ increases and any merger aggravates that inefficiency. Tables 4 and 5

show that social surplus losses are small unless the merger involves most of the products.

Tables 4 and 5 assume that the constant marginal cost is m = 30; since the results are

expressed in percentages, they are nearly the same for m = 20, 40; therefore, we display

only the m = 30 case.

The dependence on B is ambiguous. Mergers affect output and prices if B 6= 1. When
B = 1, product demands are independent and mergers have no impact on anything.

Similarly, the case B = 0 and γ = 0 reduces to Bertrand competition among perfect

substitutes, wherein price always equals marginal cost and any merger which does not

lead to monopoly has no impact on price, proÞts, or total output. Therefore, mergers

short of monopoly reduce consumer and social surplus for intermediate values of B but

not for the extreme cases.

Tables 4 and 5 also show that surplus changes depend intuitively onM , the number of

merged Þrms. The loss is convex inM , implying that larger mergers are disproportionately

bad for consumers and society. This is expected since a couple of Þrms which merge

have little additional market power but that the marginal ability to collude increases as

more competitors are eliminated. This corresponds to the standard static result that the

efficiency cost of oligopoly is (roughly) inversely proportional to the square of the number

of competitors.

[PUT TABLES 4 AND 5 ABOUT HERE]

We next summarize the results from Tables 4 and 5 and our complete set of compu-

tations.

Summary 2. For the parameter values displayed in Table 1, consumer and social surplus

are reduced by mergers. The loss is convex in the number of merged Þrms. The loss is

greatest for goods with intermediate substitutability.

4. Mergers with Cost Savings

If a merger reduces, there will be a trade-off between efficiency gains and market con-

centration. To study this trade-off, we examine mergers where one Þrm with a superior

technology merges with other Þrms, allowing the merged Þrm to use the low-cost tech-

nology to produce all of its products. SpeciÞcally, we assume Firm 1 has the lower-cost
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technology initially. Such a merger will have ambiguous effects. First, the merged entity

raises the price of good 1 due to market concentration. Second, it may reduce the price

of the other goods sold by the merged entity due to cost reductions. We will see that the

critical determinants are various elasticities, the size of the efficiency gain, and the size of

merger.

We examine these issues using the same model and basic parameters as before, except

that m1, Þrm (and product) 1�s long-run average and marginal cost, differs from the

other Þrms� cost, which we denote m−1. We examine cost reductions of 10% and 30%,

representing a small and large cost reduction. We computed equilibria for the parameter

values in Table 1 and Þnd that cases with different parameter values and cost savings can

be inferred by interpolating the results we report in tables.

4.1. ProÞts. When mergers reduce costs, proÞts for the merger partners should rise

by more than when there are no cost savings. The proÞts for product 1 do not always

increase, since it loses its monopoly of the low-cost technology as Firm 1 merges with

other Þrms. We found several small merger cases where the proÞts from product 1 falls.

However, the costs of producing the products other than product 1 are reduced, and the

merged Þrm gains from both increased efficiency and market concentration. Ignoring the

distribution problem within a merger, we look at the total proÞt for the merged Þrm

relative to their pre-merger Þrms.

Tables 6 and 7 report the change in proÞts for the merged Þrm relative to the total

proÞts of its pre-merger Þrms. Tables 6 and 7 presents the case of a 10% cost reduction.

Table 6 reports pre-merger demand and cost elasticities to indicate the reasonability of

the examples. The elasticities are averages over the pre-merger Þrms in the N = 5 case; an

average is necessary since the asymmetry in costs imply asymmetric pre-merger equilibria.

Again we Þnd that our choices for B and γ bracket a wide range of economically plausible

demand and cost elasticities. We do not repeat this for the N = 10 case since there are

few differences. We see that the proÞt gains from mergers are substantial in all cases, and

that there are no cases in Tables 6 and 7 where proÞts fall. Even a 10% cost advantage

of a merger wiped out the possibility of losses in the cases where mergers lost money in

Tables 4 and 5.

[PUT TABLES 6 AND 7 ABOUT HERE]

We next summarize the results from our complete set of computations.

Summary 3. For all the parameter values displayed in Table 1, mergers are proÞtable

for merger participants whenm1 < .9m−1. The proÞt gains are greater for larger mergers,
but decrease with γ, the cost of adjusting output.
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4.2. Consumer and Social Surplus. The cost savings from a merger will reduce

the total costs of production. The key welfare issue is whether this gain is enough to

overcome the increase in market power and lead to lower consumer prices. To examine

this we compute the change in present values of consumer surplus and social surplus due to

the merger. Tables 8 and 9 report the percentage change in the present value of consumer

and social surplus after a merger relative to the pre-merger steady state.

[PUT TABLES 8 AND 9 ABOUT HERE]

The results are robust across the Þve- and ten-product cases, and also represent the

results for other choices of N . First, Tables 8 and 9 show that consumers suffer from

mergers unless the cost savings are large or the market concentration of the merged Þrm

is small. Even when the cost savings are 30%, consumer surplus falls when two out of

Þve Þrms merge. Consumers beneÞt only when a few Þrms out of several merge, such as

in Table 9 where there are initially ten Þrms. Consumers also suffer more as γ increases.

This is because larger γ means that the Þrms are playing more of a Cournot game in the

long run and that the merged Þrm takes less advantage of its cost advantage.

Second, the implications for social surplus are more benign. Social surplus includes

the proÞts of the unmerged Þrms as well as the consumer surplus and the merged Þrms�

proÞts. The unmerged Þrms gain when there are no cost savings, but they may lose when

the merger reduces costs. The merged products with lower costs are now more competitive

and may take sales from the unmerged Þrms. Mergers are often socially beneÞcial when

γ = 0 since then our dynamic model reduces to a static Bertrand game where equilibrium

prices are close to production costs. As γ increases, the social surplus losses from mergers

are greater.

Third, the relation between social surplus and the size of mergers is not monotone.

In particular, Table 9 shows that there is often a nontrivial merger that maximizes social

surplus. For example, when N = 10, a Þve-product merger enhances social surplus more

than the other mergers displayed when B = 0.2 and γ = 0, but a three-Þrm merger is

best when γ = 50.

Fourth, we see most mergers still reduce social surplus unless cost savings are large.

With large cost savings, even a monopoly may be desirable if that is the only way for

the superior technology to diffuse. Comparing these tables with Tables 6 and 7, we

found all the mergers that beneÞt consumers also enhance social surplus. Mergers always

involve some redistribution since we found no Pareto-improving mergers. The reason is

that unmerged Þrms suffer a loss in proÞts whenever consumers gain. In this model,

consumers and the merger�s competitors have opposite interests.

We now summarize the results from Tables 8 and 9, and our complete set of compu-

tations.
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Summary 4. For the parameter values displayed in Table 1, mergers can increase social

surplus when cost savings are nontrivial, but consumers gain only when cost savings are

large, the merged Þrms have small market share, and/or the game is nearly a Bertrand

game. A nontrivial merger is often better for social surplus than no merger, but monopoly

is not best except for very large cost savings.

5. Conclusions

The analysis of mergers in oligopolistic markets is critical to the formation of rational

antitrust policy. We use the Judd (1990) model of dynamic oligopoly to address merger

questions. This model avoids the unrealistic strategic limitations of Cournot and Bertrand

analysis, and allows for costly output adjustment in the short run. Static Cournot and

Bertrand models differ in their predictions of Þrms� incentives to merge. We Þnd that Þrms

generally beneÞt from mergers. This agrees with the conclusions of the Bertrand analysis

in Deneckere and Davidson (1985), but disagrees with the Cournot analysis of Salant et

al.(1983). We show that the Cournot analysis of mergers is unreliable in predicting merger

proÞtability in dynamic contexts even in cases where the static Cournot model correctly

predicts the long-run equilibrium. The difference arises because we focus on the present

value of merger activity whereas the Cournot model implicitly focuses on the long-run

steady state of our model.

While this analysis is limited, it does show that dynamic analysis of mergers can

be executed. It offers an alternative to using unrealistic static models which produce

conßicting results. Most surprising, we show that much of the ambiguity and confusion

of static analyses is avoided by examining a more realistic, explicitly dynamic model.
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6. Tables

Table 1: Cases Examined

Tastes: B ∈ {.05, .10, .20, .30, .50, .75} , C = 100, β = .99
LRMC: m ∈ {20, 30, 40} , m−1 ∈ {m, .9m, .8m, .7m}
Adjustment Cost: γ ∈ {0, 5, 50, 500}
Inventory costs: g ∈ {1, 10, 100} , h = 0
Products: N ∈ {5, 7, 10}

Table 2: ProÞt Gains (%) and Elasticities

No Cost Savings: N = 5, m = 30

ProÞt Gains Pre-merger

for M = Demand Elas. Elas. of

B γ 2 3 4 Own- Cross- SRMC

0.1 5 2.0 13.2 39.5 5.5 1.2 1.0

0.1 50 -1.4 7.3 29.8 5.9 1.3 9.7

0.2 5 2.0 8.7 22.3 3.4 0.7 0.9

0.2 50 0.5 6.0 17.8 3.6 0.7 9.0

0.5 5 0.5 2.0 4.5 2.2 0.3 0.7

0.5 50 0.4 1.7 4.0 2.3 0.3 7.4

Table 3: ProÞt Gains (%)

No Cost Savings: N = 10, m = 30

B γ M =2 3 5 9

0.1 0 1.0 3.5 14.2 103.0

0.1 5 0.5 2.6 13.1 92.4

0.1 50 -1.4 -0.9 7.1 79.0

0.2 0 0.7 2.3 8.9 48.7

0.2 5 0.5 2.0 8.5 45.2

0.2 50 -0.1 0.9 6.5 40.2

0.5 0 0.2 0.5 2.0 8.23

0.5 5 0.1 0.5 1.9 8.1

0.5 50 0.1 0.4 1.8 7.6
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Table 4: Post-Merger Surplus Changes (%)

No Cost Savings: N = 5, m = 30

Consumer Surplus Social Surplus

B γ M=2 3 4 M=2 3 4

0.1 5 -4.9 -14.3 -30.9 -0.78 -2.85 -7.62

0.1 50 -6.6 -17.9 -35.3 -1.22 -4.07 -9.71

0.3 5 -4.6 -13.8 -28.7 -1.10 -3.72 -8.77

0.3 50 -5.5 -15.6 -30.1 -1.39 -4.42 -9.54

Table 5: Post-Merger Surplus Changes (%)

No Cost Savings: N = 10, m = 30

B γ

0.1 0

0.1 5

0.1 50

0.5 0

0.5 5

0.5 50

Consumer Surplus

M=2 3 4

-0.4 -1.3 -2.8

-0.9 -2.6 -5.1

-1.4 -3.9 -7.4

-0.7 -2.2 -4.6

-0.8 -2.4 -4.9

-1.0 -2.8 -5.6

Social Surplus

M=2 3 4

-0.04 -0.14 -0.3

-0.10 -0.35 -0.8

-0.19 -0.63 -1.4

-0.19 -0.60 -1.3

-0.21 -0.67 -1.4

-0.26 -0.79 -1.6

Table 6: ProÞt Gains (%) and Elasticities: N = 5

ProÞt Gains Average Pre-merger

for M = Demand Elas. Elas. of

m1 m−1 B γ 2 3 4 Own- Cross- SRMC

18 20 0.1 5 9 22 48 3.6 0.8 1.9

18 20 0.1 50 5 15 37 3.9 0.8 18.3

18 20 0.3 5 5 10 18 2.0 0.3 1.6

18 20 0.3 50 5 9 16 2.1 0.3 15.4

36 40 0.1 5 19 34 60 7.0 1.5 0.7

36 40 0.1 50 14 26 48 7.5 1.6 7.3

36 40 0.3 5 12 18 27 3.5 0.6 0.6

36 40 0.3 50 11 17 24 3.6 0.6 6.0
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Table 7: ProÞt Gains (%) for Mergers:

N = 10, m1 = 30, m−1 = 27
B γ M=2 3 4 6 9

0.1 5 16.6 23.7 29.3 45.1 112.2

0.1 50 13.6 18.3 22.2 35.7 97.0

0.2 5 10.6 15.1 18.7 28.1 58.3

0.2 50 9.8 13.6 16.7 25.1 52.8

0.5 5 5.9 8.1 9.5 11.9 16.8

0.5 50 5.8 8.0 9.3 11.6 16.3

Table 8: Post-Merger (%) Changes in Surplus: N = 5

Consumer Surplus Social Surplus

m1 m−1 B γ M =2 3 M =2 3

18 20 0.1 5 -4.34 -13.4 -0.01 -1.41

18 20 0.1 50 -6.11 -17.1 -0.52 -2.76

18 20 0.3 5 -3.89 -12.6 -0.21 -2.02

18 20 0.3 50 -4.87 -14.4 -0.53 -2.76

14 20 0.1 5 -3.29 -11.6 1.61 1.49

14 20 0.1 50 -5.26 -15.6 0.92 -0.12

14 20 0.3 5 -2.44 -10.1 1.61 1.43

14 20 0.3 50 -3.53 -12.0 1.24 0.59

28 40 0.1 5 -0.74 -7.3 5.95 8.76

28 40 0.1 50 -3.21 -12.0 4.69 6.35

28 40 0.3 5 1.19 -3.7 6.32 10.15

28 40 0.3 50 -0.18 -6.2 5.78 9.04
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Table 9: Post-Merger (%) Changes in Surplus

N = 10, m = 30

m−1 B γ

27 0.1 0

27 0.1 50

27 0.2 0

27 0.2 50

27 0.5 0

27 0.5 50

21 0.1 0

21 0.1 50

21 0.2 0

21 0.2 50

21 0.5 0

21 0.5 50

Consumer Surplus

M =2 3 4 5

0.4 0.1 -0.8 -2.6

-0.9 -3.0 -6.2 -10.5

0.1 -0.6 -2.2 -5.1

-0.8 -2.9 -6.2 -10.7

0.1 -0.7 -2.4 -5.1

-0.2 -1.4 -3.6 -6.6

2.0 3.2 3.4 2.5

0.2 -1.2 -3.8 -7.7

1.7 2.4 1.9 0.02

0.5 -0.6 -3.1 -6.8

1.7 2.4 2.0 0.6

1.4 1.5 0.7 -1.3

Social Surplus

M =2 3 4 5

0.8 1.6 2.1 2.5

0.6 0.8 0.6 0.0

0.8 1.3 1.6 1.7

0.5 0.7 0.4 -0.2

0.6 1.1 1.2 1.0

0.6 0.8 0.8 0.4

3.1 5.8 8.0 9.8

2.4 4.0 5.0 5.5

2.7 5.0 7.0 8.5

2.3 4.1 5.2 5.8

2.4 4.6 6.3 7.7

2.3 4.3 5.8 7.0
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7. Figures

Figure 1: Impact of a merger


