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Computational Methods

� A Natural Part of Econometrics as deÞned by Frisch
� �.. as long as we conÞne ourselves to statements in general terms about one
economic factor having an effect on some other factor, almost any sort of rela-
tionship may be selected..�

� Economic analysis requires a comparison of magnitudes of complex interactions
operating in all directions.

� �Mathematics is indispensable ... necessary for discussing issues safely and
consistently�

� Computational methods are necessary to examine the complex relationships in mod-
ern dynamic stochastic models.

� Early methods
� Based on economically intuitive stories, such as tattonnement

� Suffered from many problems - poor convergence properties, low accuracy

� The past decade
� A substantial inßux of mathematical technique

� Development of faster and more reliable methods for dynamic economic models

� Our objective
� Give an overview of some of the key ideas

� Give examples of their advantages.
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Perfect Foresight Models

� Canonical model
g(t, xt, xt+1) = 0, t = 0, 1, 2, ... (1)

� Fair-Taylor (Ecm., 1983)
� A Gauss-Jacobi scheme: Given a guess for xt+1, use time t equation to Þnd new
guess for xt

� Slow, possibly nonconvergent; loose accuracy

� L-B-J (see Boucekkine, (JEDC, 1995), and Juillard et al (JEDC, 1998))
� Jacobian is sparse since time t equation depends on only (xt, xt+1)

J(x) =



g2(1, x1, x2) g3(1, x1, x2) 0 0 · · ·
0 g2(2, x2, x3) g3(2, x2, x3) 0 · · ·
0 0 g2(3, x3, x4) g3(3, x3, x4) · · ·
0 0 0 g2(4, x4, x5) · · ·
0 0 0 0 . . .
...

...
...

...


(2)

� Use sparse Newton method from literature on solving large systems

� Far faster than Fair-Taylor
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� Gilli - Paulletto (JEDC, 1998)
� Inverting even sparse matrices is difficult

� Use Krylov methods to invert Jacobian in a Newton scheme

� Judd (2000) - parametric path method
� Observe that solutions tend to be smooth in t

� Approximate xt with a polynomial-exponential expression in tÃ
NX
i=0

ait
i

!
e−λt + x∗

¡
1− e−λt¢ (3)

� Use orthogonal polynomial, integration ideas to Þnd a good subset of M > N
equations

g(tj, xtj , xtj+1) = 0, j = 1, 2, ....M (4)

� Use this subset to solve for coefficients (use overidentiÞcation method)

� Conclusion: Application of methods for solving large nonlinear systems have pro-
duced faster and more reliable solution methods for perfect foresight models.
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Projection Methods

� The mathematical literature on projection methods (also called method of weighted
residuals) provides us with a framework for describing many algorithms for solving
dynamic economic models.

� Simple One-Agent Example

u0i(C(k, θ)) = βE {u0(C(k+, �θ))R(k+, �θ) | θ}
k+ = F (k, θ)− C(k, θ)

� Step 0: Choose function to approximate
� C(k, θ) is natural here

� Wright and Williams (1982): approximate conditional expectation function, a
smoother function.

� Approximate C(k, θ)
� Polynomial in (k, θ) or (log k, log θ) or etc.

� Orthogonal polynomials

bC(k, θ) = nX
i=0

aiϕi(k, θ) (5)

� DeÞne residual of the approximation

R(k, θ; a) = u0i( bC(k, θ; a))− β E {u0( bC(k+, �θ; a))R(k+, �θ) | θ} (6)

� Replace conditional expectation with a numerical approximation
� Gaussian quadrature, monomial rules

� Monte Carlo, quasi-Monte Carlo
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� DeÞne (and numerically approximate) projection conditions relative to a set of test
functions pi(·):

Pi(a) ≡ hR(· ; a) , pi(·)i2, i = 1, · · · , n. (7)

� Solve projection conditions

Pi(a) ≡ 0, i = 1, · · · , n. (8)

� Tatonnement or learning story

� Solve backwards from some Þxed date

� Newton�s method

� Homotopy or Scarf method

� Test candidate solution a∗ by computing some test norm with high accuracy

� Judd (1992) computes kR(k, θ; a)kp using deterministic quadrature for p =
1, 2,∞

� den Haan and Marcet (1994) computes moments of R(kt, θt; a
∗) in Monte Carlo

simulations
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Models with Many Agents

� Simple Two-Agent Growth Example, common preferences

u0i(C
i(k1, k2)) = β u0(Ci(k+1 , k

+
2 ))R(k

+), i = 1, 2 (9)

k+i = Y i(k)− Ci(k), i = 1, 2
Y i(k) = kiR(k) + w(k), i = 1, 2

R(k) = F 0(k1 + k2)
w(k) = F (k1 + k2)− (k1 + k2)Fk(k1 + k2)

� Same procedure as with one agent, just with more Euler equations and more con-
sumption functions

� Tensor product approximation of C i(k1, k2, θ)

C i(k; a)
.
=

J1X
j1=0

J2X
j2=0

aij1j2m k
j1
1 k

j2
2 , i = 1, 2 (10)

� complete polynomial approximation

C i(k; a)
.
=

X
0≤j1+j2≤d
0≤j1,j2≤d

aij1j2 k
j1
1 k

j2
2 , i = 1, 2 (11)
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� Suppose we had m agents (See Gaspar and Judd (1997))

� ci depends on ki and other k�s but symmetrically, so

Cm(k; a)
.
=

X
0≤i+j≤d
0≤i,j≤d

ai,j k
i
m ϕj(k1, .., km−1, km+1, ..., kn) (12)

where φj(k−i) is a symmetric polynomial

� Linear and quadratic symmetric polynomials are

x+ y + ...+ z

x2 + y2 + ...+ z2

(x+ y + ...+ z)2

and cubic ones are

x3 + y3 + ...+ z3

x2y + x2z + ...+ y2z + ...

(x+ y + ...+ z)3
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� Suppose we had a continuum of agents.

� Krusell and Smith (1997) use approximation

Ci(k; a)
.
=

X
0≤i+j≤d
0≤i,j≤d

ai,j k
i
m f(µ, σ

2) (13)

which is a symmetric polynomial with a continuum of variables

� den Haan (1997) parameterizes the distribution of wealth more ßexibly than
just mean and variance

F (k)
.
= exp

Ã
NX
i=0

bik
i

!
Ci(k; a)

.
=

X
0≤i+j≤d
0≤i,j≤d

ai,j k
i
m f(b)

den Haan (2000) shows that more ßexibility is needed sometimes.

� DeÞne and solve projection conditions

Pi(a) ≡ 0, i = 1, · · · , n. (14)

� Test candidate solution a∗ by computing some test norm with high accuracy
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Incomplete Asset Markets: A Competitive Example

� Basic Problem
� Two Agents, with idiosyncratic Markovian endowment risk

� Two assets (a stock and a bond)

� Heaton and Lucas (1996)
� Discretized asset space (30×30)
� Solve backwards in time

� Converged, computed two-digit accuracy (on average) in market-clearing price

� Marcet and Singleton (1999)
� Parameterized conditional expectation with low-order polynomial

� Use learning iteration

� Report convergence problems

� Judd, Kubler, and Schmedders (1999)
� Use cubic splines to approximate consumption, investment, and price laws

� Use homotopy methods to compute state-speciÞc equilibria

� Backward-in-time method, converged - relatively rapidly

� Euler equation residuals on order of 1 in 10,000



11

� General problems
� Must impose some kind of asset constraint

∗ Portfolios tend to wander in equilibrium with incomplete assets

∗ Shorting constraints are natural but they create kinks in policies and condi-
tional expectations

� Arbitrage problems

∗ Algorithms search price space
∗ Some guesses imply arbitrage opportunites, undeÞned demand

� Ill-conditioning problems

∗ Bonds and equities tend to be good substitutes
∗ Jacobian of demand function is ill-conditioned
∗ Need to use algorithm which can handle ill-conditioning - homotopy meth-
ods, TENSOLVE
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Time Consistency Problems: A Strategic Example

� Basic Problem
� Government�s future actions affect current private behavior

� Government cannot commit

� General approach
� Strategic agents have value functions, V i(x), and Bellman equations

V i(x, u) = max
ui
π(u, x) + βV i(f(x, u)), i = 1, 2 (15)

� Competitive agents have policy functions for decision rules given by Euler equa-
tions which determine the law of motion f (x, u)

� Method: parameterize value functions and competitive agents decision rules

� Early Computational Examples
� Gov�t oil storage vs. private storage: Williams and Wright (Bell, 1982)

� Approximate private and gov�t decision rules: WW used degree 6 polynomials.

� Similarly in Kotlikoff-Shoven-Spivak (1986) computation of strategic bequests.

� Low accuracy level (two digits) and slow

� Recent examples of time consistency computations
� Miranda and Rui (1996): strategic storage game between producers of a com-
modity

� Ha and Sibert (1997): strategic capital taxation game between countries with
capital ßows

� Both used orthogonal polynomial and collocation methods to achieve higher
accuracy in more complex models
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Perturbation and Asymptotic Methods

� General Problem

E {g(xt, yt, xt+1, yt+1, ²)|xt} = 0 (16)

xt+1 = F (xt, yt, ²zt)

with solution Y (x, ε)

E {g(x, Y (x, ²), F (x, Y (x, ²), ²z), Y (F (x, Y (x, ²), ²z), ²)|x} .= 0 (17)

� Compute steady state

g(x∗, y∗, x∗, y∗, 0) = 0

x∗ = F (x∗, y∗, 0)

� Construct Taylor series approximation

Y (x, ²)
.
= y∗ + Yx(x, 0)(x− x∗) + Y²(x, 0)²+ (x− x∗)0Yxx(x, 0)(x− x∗) + ...(18)

� Magill and usual linearization method
� Replaced nonlinear problem with a LQ example with same local deterministic
dynamics

� RBC models use special case of Magill exposited in Kydland-Prescott

� Certainty equivalent, hence only valid for variance approximations, not means
or utility. Computes only

Y (x, ²)
.
= y∗ + Yx(x, 0)(x− x∗) (19)

ignoring Þrst order term Y²(x, 0)² as well as higher-order terms.

� Only local validity
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� Want higher-order approximations
� Linear approximations often do poorly away from deterministic steady state

� Linear approximations implicitly assume quadratic utility, which has unappeal-
ing properties: e.g., increasing ARA

� Mathematics literature
� Can compute high-order Taylor series approximation

� Can compute certainty nonequivalent methods

� Recent applications
� Judd and Guu (1993) show how to use perturbation methods to solve simple
one sector optima growth problems.

� Gaspar and Judd (1997) apply perturbation methods to optimal control prob-
lems.

� Zadrozny and Chen (2000), and Collard, Feve, and Juillard (2000) examine
general rational expectations models.

� Mrkaic (1998) uses perturbation methods to evaluate some econometric proce-
dure.
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Bifurcation Methods for Small Noise Portfolio Problems

� Suppose there are assets
� Demand at σ2 = 0 is not well-deÞned since all assets are substitutes

� �Deterministic steady state� is not well-deÞned

� Linear-quadratic examples do not do well - Kim-Kim (1999)

� Campbell - proposes an ad hoc procedure

� Bifurcation methods
� Parameterize simple one-period portfolio problem

Z = R+ ²z + ²2π, (20)

� First-order condition

0 = E{u0 ¡R + ω(²z + ²2π)¢ (z + 2²π)} ≡ G(ω, ²). (21)

� ω is indeterminate at ² = 0 since

0 = G(ω, 0),∀ω. (22)

� Implicit differentiation implies that

0 = Gω ω
0 +Gω. (23)

but appears invalid since Gω = 0

� L�Hospital�s rule says that if Gω(ω(0), 0) = 0 then

ω0(0) = −G²²(ω(0), 0)
Gω²(ω(0), 0)

(24)

� Bifurcation theory says choose ω(0) so thatGω(ω(0), 0) = 0, and use L�Hospital�s
rule (and multidimensional extensions) to compute Taylor series of ω(ε)

� Can be used to compute asset market equilibrium with small noise and multiple
investors - see Judd and Guu (2000)



16

Conclusions

� There is steady progress in computing equilibria in markets with several agents
� Key tools

� Exploitation of approximation theory

� Methods for solving large systems

� Tractable problems
� Dynamic markets with complete or incomplete asset markets

� Strategic interactions, such as time inconsistency problems

� Further progress is likely
� Integration of symbolic and numerical methods make perturbation methods
more tractable

� More advanced integration methods make higher-dimensional problems more
tractable


