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Abstract

We survey recent developments in computational methods for solving
dynamic models with several agents. We examine both advances in solv-
ing perfect foresight models and time homogeneous dynamic stochastic
models. We present the ideas behind both projection and perturbation
methods. Computational methods have been particularly useful in solving
models with incomplete asset markets, so we use them to highlight the
general computational challenges we face in dynamic models.
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1 Introduction

Computational methods have become increasingly important in the analysis
of dynamic general equilibrium problems. These methods are being used, for
example, to study the incidence of tax and monetary policies in dynamic mod-
els of growth, commodity storage in various models of agricultural commodity
markets, and price formation in dynamic models of asset markets. Many early
computational methods relied primarily on intuitive economic tatonnement sto-
ries, and produced moderately successful algorithms. Even when these methods
worked, there were usually slow. Furthermore, as we know from general equi-
librium theory, tatonnement methods may not converge even with good initial
guesses. In the past decade the computational literature has made more use
of formal mathematical tools from numerical analysis and perturbation theory.
This has resulted in more powerful algorithms which can attack increasingly
complex problems. These developments are particularly important when we try
to solve models with several agents. This essay reviews the key ideas used in re-
cent work, gives some examples of their advantages, and indicates the directions
future work will likely take.

It is particularly appropriate that the 2000 World Congress of the Econo-
metric Society include a survey of recent computational literature since compu-
tational methodology is inherently an important part of what is broadly called
“econometrics.” Ragnar Frisch, in his editorial in the initial issue of Economet-
rica, defined econometrics as the “unification of the theoretical-quantitative and
the empirical-quantitative approach to economic problems.” He said:

This emphasis on the quantitative aspect of economic problems
has a profound significance. Economic life is a complex network of
relationships operating in all directions. Therefore, so long as we
confine ourselves to statements in general terms about one economic
factor having an effect on some other factor, almost any sort of
relationship may be selected, postulated as a law, and explained by
a plausible argument. Thus, there exist a real danger of advancing
statements and conclusions which-although true as tendencies in a
very restricted sense-are nevertheless thoroughly inadequate, or even
misleading if offered as an explanation of the situation. To use an
extreme illustration, they may be just as deceptive as to say that
when a man tries to row a boat forward, the boat will be driven
backward because of the pressure exerted by his feet. The rowboat
situation is not, of course, explained by finding out that there exists
a pressure in one direction or another, but only by comparing the
relative magnitudes of a number of pressures and counter-pressures.
It is this comparison of magnitudes that gives a real significance to
the analysis. Many, if not most, of the situations we have to face in
economics are of just this sort.



Dynamic general equilibrium problems are excellent examples of problems
with “a complex network of relationships operating in all directions.” Recent
work on computational methods for dynamic models shows the value of uniting
economic theory and mathematics to create a quantitative analysis of economic
problems, and this essay reviews some of these developments. Frisch also said
that “[Mathematics| is indispensable in a great many cases. Many of the essen-
tial things in the new setting of the problems are so complex that it is impossible
to discuss them safely and consistently without the use of mathematics.” We
will also see examples where intuitive ad hoc schemes lacking a proper mathe-
matical foundation can give unreliable answers to economic questions, but that,
fortunately, there are sound methods from numerical analysis which can be used
instead.

In this paper we address the problem of computing equilibria of dynamic
economic models with special attention to the problems which arise when there
are several agents. Some of these techniques are straightforward generalizations
of methods applied to representative agent models, but heterogeneous agent
models often present new problems requiring new techniques. We stress that
the focus of this survey are the recent advances in computational methods; we
do not attempt to survey all applications in the applied dynamic general equi-
librium literature!. Dynamic models with heterogeneous agents are inherently
difficult to exposit precisely and compactly. Therefore, we use simpler models to
illustrate many computational concepts and then indicate how they have been
applied more generally to heterogenous-agent models.

Most dynamic problems in economics have structure that numerical methods
can exploit. Some problems are time homogeneous and some have time depen-
dencies; we will distinguish between the two cases since computational methods
differ. Our discussion is organized as follows. Section 2 discusses recent devel-
opments in solving perfect foresight models. They are extensively used in the
applied macroeconomics literature to examine problems in large models where
calendar time enters in the analysis because of, for example, unanticipated and
partially anticipated policy or productivity shocks. Many economic problems,
such as real business cycle models, have a time homogeneous character. Section
3 presents simple examples of time homogeneous models that we will use in
our exposition. The projection method from the numerical analysis literature
is a powerful tool for solving dynamic models. The framework of the projection
method allows us to analyze most algorithms used to solve stationary dynamic
economic models and suggests many new, potentially more powerful, algorithms.

1One problem which we had in surveying the literature is the incomplete manner in which
computational issues are often presented. Authors (sometimes because of editors) often treat
computational issues in a casual fashion, declining to cite relevant work or reveal the details
of their method. It is often difficult to get relevant computer code in an understandable
form. This makes it difficult to ascertain the computational contribution of many papers. Our
survey focussed on papers which do reveal to the reader basic details about the computational
methods they use. Many other papers were ignored because any comments would have been
largely speculative.



Section 4 presents the details of projection methods for solving functional equa-
tions. In Section 5 we provide some details on how to apply projection methods
for stationary dynamic economic models. Section 6 describes an infinite-horizon
model with finitely many agents and incomplete markets, and is an example of
asset pricing problems that have received much attention in the past decade.
It is difficult to compute equilibria in these models, and the various methods
used in this literature illustrate the evolution of computational methodology
in economics. Section 7 presents the first methods developed for such models
yielding a rough approximation of the equilibria. Section 8 presents methods
for solving the dynamic incomplete asset market model that combine continuous
approximations of pricing and trading strategies, new methods from the com-
putable general equilibrium literature on solving models with incomplete asset
markets, and projection methods. Section 9 presents an example illustrating
the computational difficulties that arise naturally in asset market models. Sec-
tion 10 presents some recent solution methods for problems where agents, such
as governments, have market power. Section ?? presents some initial work on
numerical methods for solving problems with asymmetric information. Some
models are too large for projection methods to solve, but some large models
can be analyzed using perturbation methods. Section 11 presents perturbative
methods for solving dynamic economic models. Section 12 concludes with some
comments on where the literature seems to be going.

2 Perfect Foresight Models

Perfect foresight models are often used to analyze dynamic economic questions,
and were the first models for which numerical methods were developed. The
typical model has a relatively simple dynamic structure. Let z; € R™ be a list of
time t values for economic variables such as consumption, labor supply, capital
stock, output, wages, etc., and z; € R™ a list of exogenous variables, such as
productivity levels, tax rates, and monetary growth rates, at time ¢. Perfect
foresight models have the form

g(t,X,Z) = 0,t=0,1,2,.. (1)
.To,i = fo,i,llzl,Q,...,nI (2)
Tt bounded (3)
where
X = (zg,21,%9,...,Ts,...)
Z = (20,2122, ., Zsy o)

and g(t, X, Z) : RxR"*>° xR™*> — R" ig a collection of n functions represent-
ing equilibrium. The equations in (1) include Euler equations, market-clearing



conditions, and any other equations in the definition of equilibrium. Some eco-
nomic variables have fixed predetermined values at ¢ = 0 represented by the
ny < n conditions in (2). Boundedness conditions in (3) provide additional
conditions which tie down equilibrium. We need to find a bounded sequence of
values for z; satisfying all the equations in (1,2).

A good example is the optimal growth problem

max 3 Bulc) e
“ t=0
s.t. kt+1 = F(kt) — Ct
The solution to (4) satisfies the Euler equation u/'(¢;) = Bu/(ce41)F' (kt41). In

the notation of (1,2), we define = (¢, k) (there are no exogenous variables)
and express the solution to (4) as

g1(t,X) = u(c;) = pu (cip1) F' (k1) =0, t =0,1,2, ... (5)
g2(t,X) = k't+1*F(kt)+Ct:O, t:1,2,
ko = EO

The capital stock has a predetermined value at ¢ = 0. We shall use (5) below
as an example. (5) is a problem with one type of agent and one good, but
the approach can be used to analyze more general models. When we have het-
erogeneous agents, multiple goods, multiple sectors, and/or multiple countries,
equilibrium consists of Euler equations for each type of agent for each decision
variable, market-clearing conditions for each market, and any other equilibrium
conditions. These are all stacked into the list g(¢, X, Z) in (1). Perfect foresight
models are used to examine stochastic problems by allowing the z; to represent
shocks and then solving (1,2) for many possible realizations of Z2.

The first large, rational expectations models were perfect foresight models
of the form in (1,2,3). The Fair-Taylor (1983) method was the first one devel-
oped for such models. More recently, economists have applied methods from
the mathematical literature on solving large systems of equations, and have ap-
plied projection methods to perfect foresight models. This section reviews and
compares some of methods proposed for solving perfect foresight models.

2.1 General Considerations

Perfect foresight models are essentially nonlinear equations in R*°. The forward-
looking aspect of dynamic general equilibrium analysis creates links between
current and future economic variables, and generates an infinite system of non-
linear equations with an infinite number of unknowns. Under some conditions,

2See Fair and Taylor (1990) for an example of this approach to solving stochastic rational
expectations models.



there will be a locally unique solution. For example, (5) has a unique solution
for any kg. All methods we discuss assume local uniqueness.

These models are often Arrow-Debreu general equilibrium problems but their
large size makes conventional computational general equilibrium procedures like
Scarf’s algorithm and homotopy procedures impractical. Any solution method
must reduce the problem in some way. Most methods use domain truncation
to reduce the problem to a finite-horizon problem. That is, they solve the
truncated problem

9(t,xo, 21, ...,xp, ™2, ..., Z) = 0,t=0,1,2,....,T (6)

.Z‘():Z‘ = fgyi,i:1,2,...,n1 (7)

where z* is the steady state value of z. Some components of x, are also fixed
at their long-run values to make the number of equations in (6,7) equal to the
number of unknowns. Domain truncation reduces (1,2,3) to a system of nT'
nonlinear equations in n7' unknowns. There is no boundedness equation in
(6,7) since (6) imposes x; = 2* for t > T. Since T must be large in order to be
an acceptable approximation for the total dynamic process, we still cannot use
conventional methods.

There is always the question of what 1" should be. Any method should try
alternative values for T" and accept a solution only when the choice of T does
not substantially affect the solution. There are difficulties with this approach.
For example, Kehoe has shown that the solution can be very sensitive to the
choice of T, settling down only for very large values of T'.

2.2 Gauss-Jacobi and Gauss-Seidel methods

Perfect foresight models of the form
9(t, x, 2441, Z) =0 (8)

are solved by using methods from the literature on solving large systems of equa-
tions. Fair and Taylor (1983) introduced an intuitive approach. They begin with
an initial guess X° = (21,9, ..., x7, 2%, 2%, ...), which incorporates the domain
truncation approach. Then they use the time ¢ equation g(t,z;, x;y1,Z) = 0
to compute a new guess for x; given the initial guess for z? 1~ In general, the
i+ st guess for X, denoted X1, is constructed componentwise by solving

gtz 2l 1, Z)=0,t=1,2,.. (9)

for x;‘;“‘l, the time ¢ component of X**!. Their scheme is a block Gauss-Jacobi
scheme since only elements of X’ are used to compute X**1. Solving for xi‘H
given x! 41 in (9) is also a nonlinear equation, but it is generally of moderate size
and solvable by conventional schemes, such as Newton or Gauss-Seidel. They

also suggest that one try different truncation times 7" until changes in T create



small changes in the solution. The Fair-Taylor scheme is reliable but tends to
be slow because of the Gauss-Jacobi structure. The slow speed makes it difficult
to solve with high accuracy since tight accuracy targets would require too many
iterations. Also, Gauss-Jacobi schemes may not converge even if one begins
with a good initial guess.

Since T is typically large, we need to develop special methods. Fortunately,
we can apply methods from the literature on solving large systems (see, e.g., Kel-
ley (1995), Saad (1996), Young (1971)). Some schemes reorder the equations
in order to accelerate convergence. Some examples of this approach are Hall
(1985), Fisher et al. (1986), Fisher (1992), and Hughes Hallett and Piscitelli
(1998). Convergence of such methods depends on the order of the equations
and is linear at best. The advantages are their simplicity and small memory re-
quirements. However, they may not converge even after using various strategies
including reordering of equations and damping factors.

2.3 Newton-Style Methods

More recently, some authors have used Newton and related methods to solve dy-
namic economic problems. Newton’s method for solving the system of equations
g(z) = 0 is the iteration 2%t = 2% — J(2*)~1g(2*). Newton’s method converges
rapidly if the initial guess x° is good. Unfortunately, Newton’s method is im-
practical for general large systems because the Jacobian of a system of a system
of n equations has n? derivatives, an impractically large amount of computa-
tion if n is large. However, Newton methods can be applied to models with the
simple lag structure in (8) because the Jacobian for perfect foresight problems
is sparse, that is, most elements are zero.

The L-B-J algorithm (see Boucekkine, (JEDC, 1995), and Juillard et al
(JEDC, 1998)) takes notice of special structure in many perfect foresight models
and exploits it to apply Newton’s method. Since the time ¢ equation g(t, x4, 2441, Z) =
0 involves only x; and x4 1, each row in a Jacobian involves only a small fraction
of all the unknowns. Let g;(t, x¢, ¢441) denote 0g(t, xy, £441)/0z;. The Jacobian
of (6,7) is

gl(l,x1,x2) 92(1,1131,1132) 0

0 92(2,z2,73)  g3(2,72,73)

0 0 93(3,$3,$4)
J(z) = 0 0 0
0 0 0

and is a sparse matrix for large n. Specifically, J(z) is nearly diagonal here in
the sense that all nonzero elements of J(z) are within n columns of the diagonal
even though there are nT" columns in J(z).



This fact can be used in a Newton approach. More precisely, iteration k + 1
of Newton’s method solves

=

S

=

>
|

—g(z") (10)
P = P4 A

Since J(z) is sparse, one can use sparse matrix methods to solve the linear equa-
tion J(2F)A = —g(2*) for the Newton step A. Juillard et al.(1998) examined a
Newton strategy exploiting this sparseness and was able to solve large problems
faster than Gaussian methods. such as the Fair-Taylor method, and do so with
high accuracy.

Solving (10) can be difficult if z and T are large even if the Jacobian J(x) is
sparse. Gilli and Pauletto (1998) economize on this by using Krylov methods to
compute an approximate solution to (10). An approximate solution is adequate
since the important is to arrive at some A which takes the iteration in the right
direction. Krylov methods find an approximate solution by projecting (10) into
a smaller dimension and solving the projected problem. Gilli and Paulletto
(JEDC, 1998) report significant gains in algorithm speed over sparse Newton
methods.

Some Gaussian methods have an economic motivation, often turning on
learning ideas. For example, one way to interpret Fair-Taylor is to say that
agents compute their actions given expectations, but then those computed ac-
tions form the next set of expectations. While the story-telling approach to solv-
ing dynamic economic models has some intuitive appeal, it produces algorithms
that converge linearly if at all. While Newton’s method and other methods from
the numerical analysis literature have no obvious economic “story,” they bring
the possibility of more rapid convergence and more accurate solutions.

2.4 Parametric Path Method

The parametric path approach proposed in Judd (1999) employs a substan-
tially different strategy to solve (1,2). Instead of treating each component of
X = (%o, 21,...) as independent, it uses information about how the true value
of x; evolves over time. For example, the sequence 1,2,1,2,.. is not likely to
represent a quarterly series for the capital stock or even aggregate consump-
tion. Capital stock sequences will be relatively smooth since the capital stock
cannot change quickly. Consumption sequences are also likely to be smooth
when agents have concave utility functions. This feature of the solutions is
not exploited by standard methods since they treat each distinct x; separately.
Instead, our intuition says that the sequence (zg,x1,...) should be a smooth
function of time ¢. This insight allows us to dramatically reduce (1,2) to a much
smaller system to which we can apply methods that could not be used directly
on (1,2).

The key idea behind the parametric path method can be illustrated in its
application to (5). Theory tells us that the capital sequence which solves (5)



converges asymptotically to the steady state at linear rate A where A is the stable
eigenvalue of the linearization of (5) around the steady state capital stock k°°.
We also know that the time path of capital is “smooth” and that convergence is
asymptotically monotone. This, together with the initial condition & (0) = ko,
suggests the parameterization

K(t; a) = | ko + Z‘ljtj e A 4SS (1 _ 67/\t) (11)
=1

There are two key features of (11). First, for any coefficients a, K (t; a) converges
to k** because of the exponential decay term e~*. Second, kg = K(0;a) for
any a. Therefore, (11) automatically satisfies both the initial conditions and
the boundedness condition for any coefficients a. These facts allow us to focus
on finding an a € R™ that produces a good approximate solution to (5) without
getting sidetracked by convergence problems.

The system (5) is equivalent to the second-order difference equation

W (F(k(t) —k(t+1)) =pu (F(k(t+1)) —k(t+2)) F'(k(t+1))

We want to approximate k(t) with K (¢; a) for some a. Therefore, the parametric
path method defines the residual function

R(t;a) = u' (F(K(t;a)) — K(t + 1;0))—pu (F(K(t + 1;0)) — K(t + 2;a)) F'(K (t+1;a))

and searches for an a € R™ which makes R(t;a) close to being close to zero
for all t. Note that R(t;a) is well-defined for any real value of ¢, not just the
integers, since k(t) is defined for all ¢ in (11). Since K(t;a) — k°° as t — oo,
R(t;a) — 0 as t — co. Therefore, the Euler equation is satisfied asymptotically
for any a, allowing us to focus on making R(?;a) small at finite values of t. To
identify the coefficients a, we define the set of projection formulas

Pj(a) =) R(t;a)t'e Mdt, i = 0,1, .. (12)
t=0

The summation in (12) is infinite, but by combining orthogonal polynomial
theory and appropriate changes of variables, Judd (1999) derives good choices
of weights w; and times ¢; such that

N
Pj(a) =Y wiR(tia)t], j=0,1,...
1=0

is a good approximation of (12). for some weights w; and times , and then uses
Newton’s method to find coefficients a € R™ that solve the system



This is a simple example of the projection method described below detail.
There has been steady progress made in solving large perfect foresight sys-
tems, and we expect progress to continue. The new developments have a com-
mon approach. They all exploit the dynamic structure of the problem more
extensively than did the Fair-Taylor procedure, and they also bring appropriate
methods from the numerical analysis literature on solving large problems.

3 Time Homogeneous Dynamic Economic Prob-
lems

Dynamic economic models often take a stationary form. Equilibrium of sta-
tionary problems can be expressed in feedback rules, expressing the free en-
dogenous variables, such as prices, consumption, labor supply, etc., as functions
of the predetermined variables, such as capital stocks and lagged productivity
levels. They also often involve uncertainty about productivity, policy, or other
exogenous economic factors. These models take the form

0 = E{g($tayta$t+layt+1,Zt+1)|$t}
Ti41 = F(xt,yt,zt)

where x; is a vector of variables that are pre-determined at the beginning of
period t, y; are the free variables, and z; are shocks to the system. The function
F(z,y,z) is the law of motion for the predetermined variables, and g is list of
equilibrium conditions such as Euler equations. The objective is to find some
equilibrium rule, Y'(x), expressing the value of the free variables in terms of the
state x such that

E{g(z,Y (), F(z,Y(x),2),Y(F(x,Y(x),2))|z} =0 (13)

holds for all values of z. The equilibrium rule Y (z) expresses variables such as
consumption, prices, and labor supply as functions of the state variables in x.

For example, the stochastic version of (4), investigated in the Taylor—Uhlig
symposium (1990) and in Judd (1992), is

max, E{32, 8" u(cy)}
kt+1 = F(k’t, 075) — Ct (14)
In 9t+1 = pln Qt + €t+1

where k; is the beginning-of-period capital stock, €, is a productivity parameter
(the productivity shocks e, ~ N (0, 02) are independent), and F(k, #) is the gross
production function. In this problem, both k and 6 are needed for a sufficient
description of the state. Hence, consumption is a function, C(k,6), of both k
and @, and the Euler equation is

u' (C(k,0)) = B E{u/(C(F(k,0)—C(k,0),0))Fi(F(k,0) —C(k,6), 6) | 6} (15)

11



The case of two agents in a competitive economy can be similarly analyzed.
Suppose that type ¢ agents have utility

E {Z B <ci,t)}
t=0

and budget constraint k; ;41 = Rikis + wy — c;¢ where k; is the amount of
capital stock owned by the representative agents of type i, R; is the random
return from capital, and w is the wage from the supply of one unit of labor.
Here the state variable is the capital stock owned by each type as well as the
productivity level. In this case, equilibrium consumption of type ¢ agents is a
function of the distribution of wealth; let C;(k1,k2,6) be the consumption of
type i agents when the wealth distribution is & = (k1, k2) and the productivity
level is 6. We assume that equity is the only asset which can be held; the more
general case is examined in a later section. The equilibrium is defined by the
collection of Euler equations

W(CHk K 0) = BE{W/(C'(K kT 0)R(EY,0) |0}, i=1,2 (16)
kP = YUk, 0) - CUk,0), i=1,2
Yi(k,0) = kR(k0)+wk,0), i=1,2
R(k,0) = F'(k1+ka)
w(k,0) = F(ky+ k) — (ky + ko) F' (k1 + k2)

where Y (k,6) € R? is the distribution of income in a period with initial capital
stock distribution k and productivity 8, and wages are w(k, 8). This example is
a simple one but it illustrates the basic features of models with heterogeneous
agents. In particular, consumption and other decisions depend on the distribu-
tion of income across agents. This example has only one asset. More generally,
we would like to examine the case where there are multiple assets. In that case,
the state variable is even larger since the distribution of holdings of each asset
may be important.

This paper will discuss various numerical methods for solving such models
that have been proposed in recent years. We will discuss both perturbation and
projection methods.

4 General Projection Algorithm

At first, focussing on the functional equations of the sort in (16) appears to be
difficult since we have expressed equilibrium in terms of an unknown decision
rule, an infinite-dimensional problem. Numerical rational expectations methods,
beginning with Gustafson (1958), focus on finite-dimensional approximations of
policy functions and other important functions, and then implement some sort

12



of iterative procedure to find a finite-dimensional approximation that nearly
solves the functional equations defining equilibrium.
For example, solutions to (14) typically use approximations of the form

C(k,0) =" aipi(k,0)
=0

where the ¢; comprise a basis for the space of functions we examine, and focus
on finding good choices for the a coefficients. This is true of both perturbation
and projection methods. This section first presents an extended example of the
projection method, and then describes projection methods in a general context.
We discuss perturbation methods in a later section.

Most methods used to solve dynamic economic models are examples of what
are called projection methods in the mathematics literature.? Suppose that eco-
nomic analysis shows that equilibrium can be expressed as an operator equation

N(f)=0

where f is a function f : D ¢ RY — RM N is an operator N : B; —
By, and the B; are function spaces. The unknown function f express prices,
consumption decisions, and similar economic quantities as a function of state
variable z. Typically N expresses equilibrium conditions such as Euler equations
and consists of a composition of algebraic operations, differential and integral
operators, and functional compositions, and is frequently nonlinear. We shall
show how to implement the canonical projection technique in a step-by-step
fashion.

The first step is to decide how to represent approximate solutions. We will
assume here that we build the approximation f from linear combinations of
simple functions, but nonlinear representations are also possible. We also need
a concept of when two functions are close. Therefore, the first step is to choose
a basis and an appropriate concept of distance.

Step 1: Choose bases, ®; = {p;}32,, and inner products, < -, - >;, over Bj,
ji=12.

There are many criteria that the basis and inner product should satisfy. The

basis ®; should be “rich”; in particular, it should be complete in B;. We will
generally use inner products of the form

(), g = /D F@)g(@)w(z) d

3The term “projection method” is a catchall term in the mathematical literature which
includes “method of weighted residuals,” “finite element,” “Galerkin,” “least squares,”
“Rayleigh-Ritz,” and other methods.

13



for some weighting function w(z) > 0. Computational considerations also play
a role in choosing a basis. The ¢; should be simple to compute. They should
be similar in size to avoid scaling problems. Practical success requires a basis
where only a few elements will do the job. This requires that the basis elements
should “look something like” the solution. In particular, we should use smooth
functions to approximate smooth functions, but use splines to approximate func-
tions that may have kinks or other extreme local behavior. Orthogonal bases
will enhance efficiency and accuracy. Because of its special properties, a gener-
ally useful choice is the Chebyshev polynomial family. If, on the other hand, one
has a basis that is known to efficiently approximate the solution, one should use
that instead or combine it with a standard orthogonal family. A good, problem—
specific, choice of basis can substantially improve algorithmic performance over
the generic approximation methods discussed above.

Next, we decide how many basis elements to use and how to implement N

Step 2: Choose a degree of approximation n, a computable approzimation N
of N, and a collection of n test functions from Bg, p; : D — RM i=1,---,n.
Define f(z) = X1, a; pi(x)

The ¢; should increase in “complexity” and “nonlinearity” as ¢ increases.
The best choice of n cannot be determined a priori. Generally, the only correct
choice is n = oo. Larger n should yield better approximations, but one is
most interested in the smallest n that yields an acceptable approximation. One
initially begins with small n and increases n until some diagnostic indicates that
little is gained by continuing. Similar issues arise in choosing N. Sometimes
we can take N' = N , but more generally some approximation is necessary. The
test functions p; are used to identify the unknown coeflicients a.

Step 1 lays down the topological structure of our approximation and Step
2 fixes the flexibility of the approximation. Once we have made these basic
decisions, we begin our search for an approximate solution to the problem.
Since the true solution f satisfies N (f) = 0, we will search for some f that
makes A ( f ) “nearly” equal to the zero function. Since f is parameterized by
a, the problem reduces to finding a coefficient vector a that makes A ( f ) nearly
zero. This search for a is the focus of Steps 3-5.

Step 3: For a guess a, compute the approzimation, f =X a;9(x), and
the residual function,

R(z; a) = (N(f)) (2).

The first guess of a should reflect some initial knowledge about the solution.
After the initial guess, further guesses are generated in Steps 4 and 5, where we
see how we use the inner product, < -, - >, defined in the space Bs, to define
what “near” means.
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Step 4: For each guess of a, compute the n projections,
Pi(a) =(R(-; a),pi(-))2,i=1,--- n.
or the L? norm (R(z; a), R(x; a)).

Step 4 reduces the original infinite-dimensional problem to a finite dimen-
sional problem. Step 5 finishes the job.

Step 5: By making a series of guesses over a and iterating over steps 3 and
4, find a value for a that sets the n projections equal to zero or minimizes the
L? norm of R(z;a).

There are many ways to implement the ideas in steps 3-5. First, the least-
squares approach chooses a to minimize the “weighted sum of squared residu-
als”:

min (R(z; a), R(z; a)).

a

This replaces an infinite-dimensional operator equation with a nonlinear mini-
mization problem in R". This method often performs poorly since there may
be local minima that are not global minima, and the objective may be poorly
conditioned. Least-squares methods are easy to implement and can use the
excellent optimization software packages available.

While the least-squares method is a direct approach to making R(x; a) small,
most projection techniques find approximations by fixing n projections and
choosing a to make the projection of the residual function in each of those n
directions zero. Formally, these methods find @ such that (R(z;a), p;(x))2 =0
for some specified collection of functions, p;. Different choices of the p; defines
different implementations of the projection method.

One such technique is the Galerkin method. A Galerkin method uses the
first n elements of the basis for the projection directions, and a is chosen to
solve the equations:

Pi(a) = (R(x; a), pi(z)) =0, i=1,--,n

Notice that here we have reduced the problem of solving a functional equation
to solving a finite set of finite—dimensional nonlinear equations.

There are obviously many ways to implement the projection idea. A col-
location method takes n points from the domain D, {z;}? ;, and chooses a to
solve

R(zi; a) =0, i=1,---,n

This is a projection approach since R(x;;a) equals the projection of R(z;a)
against the Dirac delta function at x;, 6(x—x;). Orthogonal collocation chooses
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the collocation points in a special way. The chosen z; are the zeros of the
n’th basis element, where the basis elements are orthogonal with respect to
the inner product. The Chebyshev Interpolation Theorem says that the zeroes
of Chebyshev polynomials are particularly good choices. The performance of
Chebyshev collocation is often surprisingly good.

Choosing the projection conditions is a critical decision since the major com-
putational task is the computation of those projections. The collocation method
is fastest in this regard since it only uses the value of R at n points. More gener-
ally, we generally require numerical quadrature techniques to compute the inner
products in P(a). A typical quadrature formula approximates f: f(z)g(z)dx
with a finite sum Y. | w; f(z;) where the z; are the quadrature nodes and the
w; are the weights. Since these formulas also evaluate R(z;a ) at just a finite
number of points, x;, quadrature-based projection techniques are essentially
weighted collocation methods, but may be better since they use information at
more points.

Step 5 determines a through either a minimization algorithm (in the least-
squares approach) or a nonlinear equation solver applied to the system P(a) = 0.
Many alternatives exist, including successive approximation, Newton’s method,
and homotopy methods, all of which have been used in the economics applica-
tions of the projection method.

The projection method is a general approach for numerical solution of func-
tional equations which arise in economic analysis. This section has presented
the general framework. We next illustrate its application to some specific ap-
plications in dynamic economics.

5 Projection Methods for Time Homogeneous
Models

The various approaches to solving rational expectations models differ in three
basic ways; first, in the choice of finite-dimensional approximations to func-
tions, second, in the way the expectation in (16) is computed, and, third, in
the method used to find an approximate solution. The work discussed below
touches on two of the three critical elements — the method used to approxi-
mate equilibrium policy and pricing functions, and the method for solving the
identifying conditions. In this section we focus on various combinations of ap-
proximation and solution methods that appear to be promising in the context
of large multiagent rational expectations models.

5.1 Approximating Equilibrium Functions

The first key step in solving problems with heterogeneous agents is approxi-
mating the decision rules and pricing functions in an economical fashion. For
example, to solve (16) we need to approximate two functions, C!(k1, ko, 6) and
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C?(ky, ko, ), each of which is a function of two variables. One obvious possibil-
ity is to use polynomials. For example, we could set

Ji Ja

ik, O0) = > > Z al o KRR O™ =12 (17)

J1=0 j2=0 m=0

However, ordinary polynomials are not advisable since conditioning problems
(similar to multicollinearity problems in regression) make it difficult to identify
the a coefficients. Judd (1992) and Gaspar and Judd (1997) instead advocated
the use of orthogonal polynomials, resulting in approximations of the form

Ji Ja

k 9 CL Z Z Z a]ljzm Pi1 kl) SDZZ(kQ) ¢m( ), i=1,2

j1=0 j2=0m=0

where ¢;(.) (¥m(.)) is a degree i — 1 (m — 1) polynomial from some appropriate
orthogonal family. For example, Chebyshev polynomials are natural to use in
the k dimensions since k is expected to stay in some compact domain, but
Hermite polynomials should be used for the 6 dimension since 6 is a Normal
random variable. One could also use splines to approximate equilibrium policy
functions when the number of types is small. This is discussed more extensively
below in the discussion of incomplete asset markets.

For problems with several kinds of agents, forms like (17) suffer from a curse
of dimensionality. To counter that Judd and Gaspar (1997) advocate the use
of complete polynomials. The key fact about complete polynomials is that
one eliminates from (17) terms of high total power. In particular, a degree d
approximation would use approximations of the form

Ci(k’ 0; (L) = Z J1J2m kh ka o, 1=1,2

0<j1+j2+m<d
0<31,52,m<d

In general, if there are n agents and we wanted to use a multivariate orthogonal
polynomial approximation we would use

C'(k,0;a) = > a5, jue i (k1) - 04, (kn) e (0)

0<ji 4+ +jn+L<d
0<jit<d

Further simplification is possible if symmetry properties are present. For
example, suppose there are three types of agents with identical preferences but
different wealth. Then, type 1 agents do not care if type 2 agents are poor
and type 3 agents are rich or if the reverse is true, but type 1 agents do care
about the distribution. This symmetry condition imposes further conditions on
the a coefficients, further reducing the number of unknowns. Specifically, the
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approximate consumption function for type 1 agents would take the form

C*(k,0;a) = Z aj, .o pilk1)pj(ka, ..., kn) 1e(0) (18)

0<i+j+e<d
0<i,5,0<d

where each ¢;(ke, ..., k) is a symmetric polynomial in (ka, ..., k) of total degree
j. The symmetric polynomials have a particular structure, built up from a few
basic symmetric polynomials. For example, the degree 1 symmetric polynomial
in (z,y,..,2) is x+y + ...+ 2, the degree 2 symmetric polynomials in (z, v, .., 2)
are linear combinations of 22 + 32+ ...+ 22 and (v +y + ... + 2)2, and degree 3
symmetric polynomials in (z,y, .., 2) are linear combinations of 23 + y + ... +
22ty + 222+ .+ y?z+ ., and (x4 y+ ..+ 2)3. Consumption of type m
agents is defined using the same coefficients used in (18) but reversing the roles
of k1 and k,,, resulting in the consumption function

Cm(kvgaa) = Z Aji...5nl Qpi(kmypj(klv";k7n71ak7n+17---7kn) 1/18(9)

0<i+j+e<d
0<i,j,¢<d

Krusell and Smith (1997) take this process one step further. They examine
a model with a continuum of agents. At first, it would seem impossible to use
the approach in (18), but the key insight is to us moments. They assume that
the consumption rule for any agent depends on his wealth and the moments of
the distribution of wealth. This dependence on moments is a further extension
of the idea of using symmetry to reduce the complexity of the approximation
used for the consumption function. This is clearly seen from the definition of
moments. For example, the mean capital stock is ), k;, which is the degree 1
symmetric polynomial in the k;. The variance is a linear combination of ), k?
and (3, k;)?® which are the degree two symmetric polynomials. The theory of
complete polynomials tell us that the complete degree two approximation would
consist of a linear combination of the mean, the variance, and the square of the
mean. It also says that a third-order complete representation would involve
the mean cubed, the third moment, and the skewness. Using their moment
approach, Krusell and Smith are able to analyze how the distribution of wealth
interacts with idiosyncratic and systematic risks in a Real Business Cycle model.
Surprisingly, they find that a scheme using a few moments produces an excellent
approximation of aggregate fluctuations.

den Haan (1997) examined a similar problem where equilibrium depends on
the distribution of wealth, but takes a different approach. He approximates
the distribution function with some functional family with coefficients b and
then assumes that an individual’s consumption depends on his wealth and the
coefficients b that describe the distribution of wealth. This is more general
than Krusell and Smith since one way to parameterize a distribution is through
its moments. Even if one just focuses on the moments, there is always some
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implicit mapping between the moments and the distribution being used. den
Haan’s approach makes that mapping explicit.

A key element of any algorithm is the manner in which equilibrium decision
rules and pricing functions are approximated. We want to use a method that has
few unknown parameters but is flexible, capable of approximating equilibrium
with small errors. Recent papers have shown that it is important to exploit
known features of equilibrium, such as symmetry, since they can drastically
reduce the number of free parameters without creating unreasonable approxi-
mation error.

5.2 Solving For the Unknown Coefficients

The next critical choices are creating identifying conditions for the coefficients
a and then solving form a. We first create some projection conditions P(a),
which amount to a finite number of finitistic conditions on the coefficients a.
For example, in the case of (16), we define the residual function to be the Euler
equation errors, as in

R(k,0;a) = ui(C(k,0;a)) — BE {u/(C'(kT,0;a))R(k*,0) |0}, i=1,2 (19)

Due to the presence of the expectation operator in (19), we need to form the
approximate residual function for agent i,

Ri(k,0;a) = u(Ci(k,0;a)) — BE (W} (Ci(kt,0;a)) Fi(kF.0) | 0}, i =1,2

where E represents some numerical approximation of the enclosed integral. This
approximation can be Monte Carlo integration, Newton-Cotes integration, or
a Gaussian integration formula. Judd and Gaspar (1997) uses Gauss-Hermite,
but notes that a variety of integration methods, such as monomial rules and
good lattice points may be better in the multidimensional context.

With the approximate residual function defined, we define the identifying
conditions. Define the projections

Ont pkar pka
/ / / Bi(k. 0;a) ; (k. 6) wk, 6) dki dkode, i = 1,2

where the ¢;(k, 0) are distinct functions. The projection conditions themselves
can be simple orthogonal conditions computed using Monte Carlo methods, or
they can be conditions motivated by orthogonal polynomial theory and Gaussian
quadrature.

Once we have specified the projection, or identifying conditions, P(a), we
need to choose a method for solving P(a) = 0. There are several ways to
solve for the projection conditions. Newton’s method?* treats the conditions

41t is well-known that one should not apply the original Newton’s method. It is more
advisable to use an implementation of Powell’s hybrid method, such as that contained in the
MINPACK collection. One could also use the more advanced TENSOLVE package.
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P(a) = 0 as a system of nonlinear equations and solves for a by repeated
linear approximations. Newton’s method is locally quadratically convergent, but
each step uses O(n®) time because it computes a Jacobian. Some refinements
economize on this by approximating the Jacobian, but the computational cost
per step is still a problem.

Two other procedures are motivated by economic intuition. Time iteration
also uses the Euler equation to solve for C?(k, ) but instead uses the equation

ai’j'H(k,@) _ (u/)—l(ﬁﬁ{u;(@i,j(y(k,e) — ai,j—}—l(k,Q),é))

X Fp(Y (k,0) — C% (k,0),0) | 6}) 2

to generate the necessary data. For a fixed (k,8) vector, (20) is a nonlinear
equation in ™+ (k, 6). Solving (20) for several choices of (k,6) generates val-
ues for ai’j"‘l(k’, 0), information which is then used to compute the coefficients
for éi’j"‘l(k, #). Time iteration corresponds to solving the corresponding dy-
namic program problem backwards in time. Successive approximation methods
proceed more directly, using less computation per step. Specifically, successive
approximation takes the policy functions computed in iteration j, C%/, and
applies the computation

Corti(h0) = () HBE{(CH(Y(h0) - Cik0)D)
Fe(Y (k,0) = C*(k.6).0) | 6})

at a finite number of points (k, ) to produce C%+1(k,6) data sufficient to fix
the unknown coefficients of C+1,

Both successive approximation and time iteration are only linearly conver-
gent. Since C*T1(k, 0) is expressed directly in terms of the right hand side of
(21), the computation cost is smaller for successive approximation. Successive
approximation was used in the rational expectations by Miranda and Helm-
burger (1988) who observed that it was an efficient method for computation.
It can also be motivated by learning arguments in Marcet and Sargent (1989).
Successive approximation is often quite stable, converging to the equilibrium.
Judd (1998, pages 557-8) presents a stability analysis of an example of successive
approximations and shows that it is locally convergent except for some extreme
choices of tastes and technology. However, the computational demands of each
iteration are only O(n?). Time iteration is more reliable but generally slower
than successive approximation when the latter converges. Time iteration was
used by Gustafson, and in the Wright and Williams work and theory indicates
that it will be much slower than Newton’s method for small problems and slower
than the successive approximation results below.

The time iteration method is also used by Rios-Rull (1999), who solves for
individual value functions as well as policy functions in recursive equilibria.
Sometimes equilibrium is best expressed in terms of individual value functions.
See Rios-Rull (1999) for a detailed presentation of that approach. Of course,
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Newton’s method or similar nonlinear equation methods could also be used to
solve problems formulated in terms of value functions since the equilibrium is
approximated by a nonlinear set of conditions on the coefficients of the param-
eterization of the value and policy functions. That approach is taken when
solving dynamic games, a topic discussed below, but we are unaware of it being
applied to recursive equilibrium problems.

6 Incomplete Asset Markets with Infinitely-lived
Agents

The incomplete asset market model with infinitely-lived agents is one that has
been analyzed using computational methods in several recent papers. We will
review that literature in some detail to highlight the critical numerical issues
that arise in asset market problems, and to give some more detail on the general
ideas discussed in previous sections.

6.1 A Model of Incomplete Asset Markets

Consider a Lucas (1978) economy with heterogeneous agents, a single commod-
ity and incomplete asset markets. There are H infinitely-lived investors. At
each period t = 0,1, - - investor h receives a stochastic labor income el'. In ad-
dition there is a Lucas tree (which we will refer to as the stock) with stochastic
dividends d;. At t =0 each agent h owns a fraction of the tree st 1 >0, so that

aggregate endowments (output) at each time t equals Zthl el +d;. All un-
certainty can be described by a time-homogeneous finite-state Markov process.
Let Y = {1,2,...,5} denote the exogenous states, and y; be the time ¢ value.
Individual labor endowments e : Y — R, and the dividends d : ¥ — R,
depend on the current state y alone.

Each agent h maximizes the expected utility function

Up(c) = F {ZﬁtUh(Ct,y)}
t=0

over possible infinite consumption streams c. We assume that the utility func-
tions up(.,y) : Ry — R are strictly monotone, C?, strictly concave, and satisfy
lim, 0 uc(z,y) = co. We also assume that the discount factor 3 € (0,1) is the
same for all agents, and that agents have common beliefs about the transition
matrix for the exogenous states.

Agents trade two securities in order to smooth their consumption across
time and states. They can trade shares of equity denoting ownership in the
Lucas tree and a one-period bond in every time period. One bond at time ¢
delivers one unit of the consumption good at time ¢+ 1 for any y;41. Bonds are
in zero net supply. Markets are incomplete if S > 2 and perfect risk-sharing will
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generally be impossible. Let b" denote an agent’s bond holding, s" his stock
holding, ¢° the price of the stock, and ¢® the price of the bond. At each time ¢
agent h faces the budget constraint

o = €"(ye) + b1 + 501 (q] + d(ye)) — bl'gp — si'q;.
In addition we assume the short-sale constraints
b > KPand s > KM vh=1,.. H

These last constraints play an important role in equilibrium and present special
challenges for any computational strategy.

6.2 Recursive Equilibria

It is well known that the model always has a competitive equilibrium, i.e. their
exist prices and allocations such that all markets clear and all agents maximize
utility subject to their budget restrictions (see e.g. Magill and Qunizii (1996)).
However, in order to compute an equilibrium for an infinite horizon model it is
necessary to focus on recursive equilibria. Recursive equilibria are dynamically
simple, expressing prices, trades, and consumption as a time-invariant function
of a finite number of state variables. In this problem, the state variables include
the exogenous states y and the agents’ portfolios. This problem is more difficult
than Lucas (1978) where everything depended solely on the exogenous state.
Because of agent heterogeneity, the state space includes the portfolios because
the distribution of wealth will influence equilibrium prices. For the incomplete
asset model it is standard to assume that the exogenous income and dividend
state y € Y together with the agents’ portfolio holdings © := (b", s")IL | con-
stitute a sufficient state space. We proceed under this assumption and return
below to discussing its validity.

We denote the endogenous state space of all possible portfolio holdings of all
agents by Z. Due to the short-sale constraints the set Z is compact®. Further-
more, we assume that the recursive equilibrium can be described by a continuous
policy function f* = (£, f"%):Y x Z — Z which determines agents’ optimal
portfolio choice given portfolio holdings and the income state of the current
period, and by a continuous price function g = (¢°,¢°) : Y x Z — Ri 4 which
maps the current state into the asset prices ¢® and ¢°.

The equilibrium functions f and g are defined by the following requirements.

(RE1) Market clearing:

H H
ST Mw,0)=0, 3 fy.0)=1 wev,0eZ
h=1 h=1
5In fact, short sale constraints imply that

7 =TIy (IS0 = S K31 % (K01 = T, K1)
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(RE2) Consumption choices are consistent with wealth and asset trades for all
y€Y andall © € Z:

" =c"y,0) =e"(y) + V" + " (9(y,0) + d(y)) — f(4.©) - 9(y, ).

(RE3) Choices are optimal; hence, for any two subsequent exogenous states y
and y4 and all © € Z consumption satisfies

b ="(yr, f(y,0))

qa; =9°(y+, f(y,09))

AP = ()¢ (y,0) — BE(uj(c})) > 0

A" = uy(0)g°(y,0) — BE(uj,(c)(g5 + d(y+))) >0
Ae(fo(y,0) - K)) = 0
NO(f(y,0) =K = 0

The macroeconomic literature often assumes stationary growth for endow-
ments. If all agents have identical constant relative risk aversion utility, (RE1)-
(RE3) can be rewritten in terms of consumption/wealth ratios, transforming
the nonstationary growth problem into a problem confined to a compact set of
ratios..

6.3 Kuhn-Tucker Conditions as a System of Equations

Due to the short-sale constraints the agents face utility maximization problems
with inequality constraints resulting in first-order conditions of optimality which
include shadow prices and inequalities, see equations (RE3). The inequalities
greatly increase the difficulty of computing an equilibrium; in the dynamic gen-
eral equilibrium literature three different approaches have been used to tackle
this problem.

The discrete state-space approach of Heaton and Lucas (1996) captures the
short-sale constraints by allowing agents to hold only pre-specified portfolios
which automatically satisfy the constraints. While this approach is very easy
it has some disadvantages as we will describe below . Marcet and Singleton
(1999) use an combinatorial approach examining many possible combinations of
binding constraints. They solve the model as if all agents face no constraints on
their portfolio transactions. If an agent violates one of the constraints, then they
check all possible combinations of portfolios (each agent being constrained in
each asset) until they find a solution to the system of equations and inequalities.
Judd et al. (1999) transform the collection of equations and inequalities into
a nonlinear system of equations via a simple trick (see Garcia and Zangwill
(1981)) which can be solved using a nonlinear-equation routine.
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Let [ be a natural number and o® €R for h = 1,2 and a € {b, s}. Note the
following relations:

ha\l ha
havi | (@) ifa™ >0
(maX{O, & }) - { 0 if aha S 0

(max{0, —a"*})! = { |a19a|l ii ZZZ ; 8
Moreover,
(max{0, ah“})l >0, (max{0, —ah“})l >0, and (max{0, ah“})l-(maX{O, ah“})l =0.
We define

At = (max{0,a"})" and f*(y,0) — K} = (max{0, —a"*})’

a

which allows us to state first-order conditions of optimality as a system of equa-
tions which is equivalent to (RE3):

l

o O o ©o

—3"(y, ©)uj,(c) + BnEi(uj () + (max{0, o}

—fb(y, 0) + K,i1 + (max{0, —ahb}

—9%(y,©)up,(¢) + BBy {(a5 + d(ys))up(c+)} + (max{0, o}
—f*(y,0) + K[ + (max{0, —a"*}

l
l

—_— — — —

l

We have transformed the system of optimality conditions into a system of 4
equations for every agent with the variables 6" and o/ = (a"*, a"®).

6.4 Bounded Portfolio Space

The computational challenge will be to approximate the equilibrium functions f
and g. At this point, it is important to stress that the short sale constraints are
essential for the computations. From a economic modeling perspective short-
sale constraints are an undesirable part of the model. The bounds on shorts sales
have to be chosen exogenously and since in reality explicit short sale constraints
rarely exist, this choice cannot be guided by data. Although economic agents
do face trading restrictions and debt constraints there are often no legal limits
on short-positions in individual securities.

From a theoretical point of view, in order to close the model, one must
rule out Ponzi schemes, i.e. the possibility of an infinite accumulation of debt.
However, the standard approach (see e.g. Levine and Zame (1996) is to impose
an implicit debt constraint,

sup [} + g7 | < oo, Vh. 22)
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Since this constraint merely requires that agents must always be able to pay
back their debt in finite time this is clearly not an unrealistic restriction.

For a model with only a single bond implicit debt constraint can often be
reformulated as a short-sale constraint. Zhang (1997a, 1997b) develops algo-
rithms to compute equilibria in models with a single asset and implicit debt
constraints.

Unfortunately, his approach does not generalize to models with more than
one asset. Since the price of the Lucas tree is endogenous, the state space Z
cannot be reduced to the set of possible wealth distributions. Any algorithm
has to approximate the equilibrium functions over the distribution of portfolio-
holdings. For any initial distribution of portfolio holdings in Z, one has to ensure
that agents’ new equilibrium choice also lies in Z. However, when there is more
than one asset, this is generally not possible without explicitly restricting agents’
choices to lie in Z. Whenever an agent faces a bad idiosyncratic shock, he will try
to reduce the value of his portfolio, g,b" 4 ¢ss™. In models which are calibrated
to yearly data, an implicit debt constraints (22) will often imply that the agents
can borrow up to 10 times his average endowments (see Zhang (1997a)). After
sufficiently many bad shocks an agent’s actual debt will approach this value.
Since in addition to the idiosyncratic shock there is uncertainty about the stocks
dividends, the agents’ equilibrium (unrestricted) portfolio holdings will then
consist of a very short position in one asset and a very large long position in the
other security. Agents can inflate their portfolios without any bounds without
violating the above debt constraint.

This is a familiar problem in general equilibrium models with incomplete
asset markets and real assets. In extreme cases, s +b" can become unbounded.
Without short-sale constraints, equilibria do not always exist because demand
functions are not everywhere continuous.

For all practical purposes it is therefore crucial to ex ante fix a bounded
set of admissible portfolio holdings for all agents. The easiest way to obtain a
bounded set of portfolios is to impose a short-sale constraint. As we have done
in our model, short sales can be constrained through a priori specified fixed
exogenous lower bounds on the portfolio variables. In equilibrium, when all
financial markets are required to clear, all agents’ portfolios are also bounded
above resulting in a compact set of admissible portfolios for the entire economy.
Note that we define the bounds on short sales as agent dependent since it is
certainly realistic to assume that an agent’s income influences how much he can
borrow.

We show below that in many cases, when there are two assets, short-sale
constraints will be frequently binding. We must keep this fact in mind when
interpreting the results of our simulations.
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6.5 Existence of Equilibrium and Computational Errors

Unfortunately, recursive equilibria do not always exist — Kubler and Schmedders
(2000) construct some counterexamples. However, these examples crucially rely
on multiplicity of competitive equilibria and for many realistically calibrated
economies where competitive equilibria are unique recursive equilibria will ex-
ist. However, their are no known conditions on the fundamentals which ensure
existence. It is necessary to develop methods which give the user some confi-
dence that the computed approximations of the equilibrium functions are indeed
very close to a true equilibrium.

When approximating policy and price functions one has to deal with various
kinds of computational error and it is impossible to determine the equilibrium
functions exactly. This fact of life leads to the central question how large an
error is acceptable and when to stop an approximation algorithm. The typical
procedure used to solve our model is of iterative nature and terminates when
a stopping rule is satisfied. Such stopping rules do not specify when the ap-
proximate equilibrium prices are close to the true equilibrium prices but instead
when the difference between consecutive approximations is small. The method
is then thought to have stabilized around an approximate solution. At this
point, however, it remains unclear how close the computed prices and portfolios
are to the true equilibrium prices and portfolios and if we actually have an ap-
proximate description of a recursive equilibrium. There is an obvious need for
a close evaluation of the computed solutions.

Ideally, one wants to derive error bounds or accuracy estimates of the com-
puted solutions. While bounds like this exist for finite dimensional problems
(see e.g. Blum et al. (1998)) and for numerical dynamic programming (see San-
tos and Vigo-Aguiar (1998)) there exist no comparable theories for the general
equilibrium model under consideration.

A popular approach to verify the quality of a solution is to compute the
maximum relative errors in the agents’ first-order conditions. For the case where
short-sale constraints are not binding and the related shadow prices are zero,
conditions (RE3) imply that the maximum relative errors are given by

BE(uj,(ch)) — u},(c)g*(y,©) H
u}, (¢)g°(y, ©)

max
0

and

max
0

’ BE((g% + d(y))up(ct)) — uh(c)g°(y. ©) H
uj,(c)g*(y, ©)

Unfortunately, low errors in agents’ Euler equations do not give any indica-
tion of how close we are to an equilibrium. This well-known fact has various
interpretations in the literature. Judd (1992) argues that it is not sensible to
expect infinite precision from agents and that therefore the computed prices and
allocations are likely to be a good description of the actual economic outcome.
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For this line of reasoning it is important to show how small the errors actually
are. Without knowing the actual solution this is not unambiguously possible.
Judd (1992) suggests to evaluate the Euler equations at the computed prices
and allocation and compute the wealth equivalent of the Euler equation resid-
ual when projected in directions not used to compute the approximation. A
small error here would be consistent with the interpretation of an approximate
equilibrium in the sense that agents are close to rational.

Heaton and Lucas (1996) and Telmer (1993) use a slightly different error
criterion. For each agent, they compute the asset prices which support the
agents’ computed decision. When there are two agents, they therefore get prices
q5,q% for the first agent and ¢3,¢5 for the second agent. They then report
(4f — ¢3) /a5 and (¢} — ¢3) /ai.-

When the short-sale constraint is not binding, these two formulations are
very similar since

g2u1(¢) — BE(ui(es)) _ (@ —a2)ui(0) — BE(ui(es) _ a1 —a2

qauy (c) a qauy (c) 2
The errors in both agents’ Euler equations can presumably be decreased by set-
ting ¢* = (¢1 + q2)/2, the errors reported in Heaton and Lucas and Telmer are
therefore likely to slightly overstate the errors in the Euler equation. In most
cases, however, the difference will be negligible.

7 Approximating Asset Market Equilibria Over
a Discretized State Space

A crucial feature of every approximation method is the way it deals with the
endogenous state space Z. This set Z is uncountable and it is therefore impossi-
ble to explicitly compute the equilibrium functions at every point in Z. Existing
algorithms to approximate equilibria can be divided into two classes. This sec-
tion discusses algorithms in the first class that discretize the set Z and allow
only finitely many values of the endogenous state variable. Other algorithms
using polynomial approximations are discussed later.

Telmer (1993), Lucas (1994) and Heaton and Lucas (1996) are examples of
papers which approximate recursive equilibria by discretizing the endogenous
state space Z, that is, agents’ portfolio holdings can take only values in a pre-
specified finite set. We describe the basic ideas of these methods in the context
of Lucas’ (1994) two-investor two-asset model.

(D1) Under the assumption that there are only two investors, market clearing
implies that the endogenous state space reduces to [K}, —KZ] x [K}, —K?2].
In each set of the product choose a finite number of N points. Thus, the
continuous two-dimensional state space has been collapsed to N2 points.
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(D2) The agents must choose their portfolios to always be exactly one of these
N? points. Put differently, given an ”old” portfolio in the discrete state
space and a new exogenous shock y € Y the agents must choose a "new”
portfolio that also lies in that discrete set. Therefore, the equilibrium
policy function f", h = 1,2, can be represented as S collections of N2 pairs
of portfolio points in the discrete set, one collection for every exogenous
state y € Y. Similarly, the price functions g are also only a collection of
S - N? points.

(D3) The algorithm searches for asset prices and an allocation of assets which
comes as close as possible to agents’ optimality. The algorithm considers
only those portfolio combinations of the agents that satisfy the market-
clearing equation. Due to the discretization of the state space it is im-
possible that all agents’ decisions are optimal. The goal of the algorithms
must be to find functions g and f which minimize the errors in the agents’
Euler equations or equivalently minimize the relative difference between
supporting prices.

The discrete methods have the advantage that due to their simplification
of the equilibrium solution problem they are numerically stable and easy to
implement. For applications with only a single state variable (e.g. versions of
the model where either the bond market or the stock market are shut down)
they perform very well. However, we explain below that for models with more
than one endogenous state variable these methods are generally too slow or of
far too low a precision to be effective tools.

The distinguishing feature of discrete methods is how they solve the agents’
Euler equations, that is, how they perform Step (D3) of the basic approach
setup. We discuss this point now in more detail.

7.1 A Single Security: No Equity

Telmer (1993) considers a greatly simplified version of our model and assumes
that equity is not tradable, instead agents are only active in the bond market.
The state space then simplifies to the one-dimensional interval [K| I}, -K g] which
can be easily discretized choosing N points of the interval.

In order to minimize the error in the Euler equations Telmer (1993) uses a
Gauss-Seidel method. Recall that every Euler equation concerns two subsequent
time periods and therefore portfolio terms for three time periods. For the third
of these portfolios (”tomorrow’s”) and the corresponding prices some decision
rule as a function of the second ("today’s”) portfolio is assumed. For a given
first portfolio (yesterday’s”) the algorithm now minimizes the Euler equation
error by choosing the second portfolio. This (”today’s”) portfolio impacts both
terms in the Euler equation. Today’s portfolio is computed for every point in
the state space. The error-minimizing portfolios and prices at every point in

28



the state space lead to new updated decision rules. These new rules are then
used for tomorrow’s decision rules in the next iteration. This iterative process
continues until the difference between two subsequent iterates (in an appropriate
norm) are tiny. Actually, the difference in the portfolio functions will be exactly
zero due to the discrete-valued nature of the functionals.

For this case of only one bond, Telmer can discretize the endogenous state
space into 150 points per interval length of 0.1, he uses a total of more than
1000 points. Since he only considers 3 exogenous shocks, the problem remains
feasible. With such a fine discretization the resulting errors turn out to be very
low — for in the interior of the interval of possible bond-holdings he reports
maximum pricing errors of 0.0001 percent. Even though the errors are likely to
be substantially higher at the boundary, for models with a one-dimensional state
space discrete methods generally achieve very good approximations. However,
many interesting economic questions require a higher dimensional state space.

7.2 Two Assets and the Curse of Dimensionality

Lucas (1994) and Heaton and Lucas (1996) use a discrete state-space to approxi-
mate equilibria for the full model. They employ an auctioneer algorithm - which
in essence is very similar to a Walrasian tatonnement process. Starting with
a (approximating) policy function f;, the algorithm computes the supporting
asset prices for both agents (which will be different). For that agent whose sup-
porting stock price is higher, the stock holding is increased, for that agent whose
supporting bond price is higher, the bond holding is increased. The amended
portfolio holdings are then used for the new policy function fi+1' Tteration con-
tinues until the difference between the implied prices becomes sufficiently small,
or cannot be improved further.

In principal, by employing a fine enough discretization, they could achieve a
similar precision as Telmer in his simple setting. However, despite the speed of
modern computers it is still not nearly feasible to allow enough discrete points
for the endogenous state space. Heaton and Lucas (1996) allow for 30 - 30
different holdings. This coarse discretization results in high errors. They report
average (not maximum) errors of up to 0.4 percent. For the purposes of many
economic insights this might well be sufficient. In particular, the purpose of
their paper is to investigate how missing asset markets might help to explain
the equity premium puzzle, i.e. the first moment of asset returns. It is very
unlikely that the true equilibrium is so far away from their approximation that
it has an influence on average returns (in fact, Judd et al. (1999a) repeat their
calculations with a different algorithm and come to the same conclusions).

However, for many other applications which investigate welfare effects or
higher moments of security prices, discrete methods are of limited use. It seems
that running times would increase drastically if one tried to reduce these errors.
The main problem lies in the fact that for a discretized state space the system
of Euler equations cannot be solved by efficient algorithms, such as Newton’s

29



method, which are designed for smooth systems. Instead they must be solved
by some search procedure such as in Lucas’ and Telmer’s papers. For more
than one endogenous state variable, it therefore seems worthwhile to develop a
alternative approach.

8 Continuous Endogenous State Space: A Spline
Collocation Algorithm

Some algorithms approximate equilibria with two assets over a continuous en-
dogenous state space. The central theme of these algorithms is to approximate
the policy functions f and g not only at finitely many points but instead on
the entire state space Y x Z. For such a continuous approximation a family of
polynomials is used to approximate these functions. In this section we review
the spline collocation method used in Judd et al. (1999) Below we examine the
method used in Marcet and Singleton (1999)

There are obviously two crucial issues one has to face when developing an
algorithm to approximate recursive equilibria. First, one has to find a scheme
to approximate the true equilibrium functions f and g. Generally, they the
approximating functions will be determined by a finite number of parameters.
The second step must then be to solve for these unknown parameters.

Judd et al. (1999) use cubic splines to approximate the equilibrium func-
tions and compute the spline coefficients using collocation methods. They solve
the collocation equations with an iterative approach. We will briefly describe
their algorithm and use a simple example to show where the difficulties lie in
approximating and in solving for the equilibrium functions.

The main steps of the algorithms are as follows:

(C1) The equilibrium functions f and g are approximated by piecewise polyno-
mial functions. They can therefore be parameterized by a finite number
of coefficients.

(C2) In each set of the endogenous state space [K}, —KZ] x [K}, —K2] choose
a finite number of N x N points, called collocation points.

(C3) The algorithm searches for coefficients of the approximating functions
which ensure that at the collocation points, the Euler equations and mar-
ket clearing conditions hold.

8.1 Representing the Equilibrium Functions

The equilibrium functions are defined on an uncountable set and so we can-
not specify all their values exactly. Instead it is only feasible to approximate
the functions f and g using a fairly small number of parameters. As we show
below, these functions are likely to have extremely high curvature in certain
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regions. In fact, if the short-sale constraints are modeled explicitly, these equi-
librium functions fail to be C!. A global polynomial approximation (using e.g.
so-called orthogonal polynomials) therefore does not work unless one is willing
to allow for large computational errors. The most sensible approach turns out
to approximate the equilibrium function in a piecewise fashion by finitely pa-
rameterized functions f , g using relatively few parameters. We use piecewise
cubic polynomials (cubic splines) to approximate them.

One-dimensional cubic splines are easily defined. Given m points of a real
valued function (x;,y;)"™, a cubic spline s(z) is defined by the requirement that
s(xz;) =y, for all i = 1,...,m, that in each interval [x;,2;11] the function s is a
cubic polynomial and that s is C2 on [z, z,,]. By representing them as a linear
combination of a collection of so called B-splines, the splines can be used for
approximating higher dimensional functions. See de Boor (1978) for a thorough
description of splines and their approximating properties.

Note that by approximating the equilibrium functions via piecewise linear
combinations of polynomials the equilibrium computation has been transformed
from finding function values on an uncountable set to finding finitely many
weights for the appropriate linear combinations. Put differently, the problem
has been reduced from computing infinitely many values to finding a reasonable
finite number of parameters.

8.2 A Time-Iteration Algorithm

Using the collocation method to finding approximating functions f and g the
crucial problem has now become to solve for the spline coefficients. In order to
obtain sufficient accuracy, the number of unknown coefficients turns out to be
rather large. For the example below we have 9600 unknown coefficients. This
large number of parameters makes it difficult to solve for them directly — we
apply an iterative approach instead.

The basic idea of this iterative approach can be viewed as a continuous gen-
eralization of Telmer’s (1993) approach, see Section 2.1. The basic intuition is
that at each iteration ¢, we take next period’s policy functions as given and com-
pute at every collocation point this period’s portfolio holdings and prices which
satisfy the Euler equation. Given functions fz and g; we obtain fi+1 and §i4+1
by interpolating the computed portfolio holdings and prices at the collocation
points. Recursive infinite-horizon equilibria are approximated by finite-horizon
equilibria as the number of periods becomes very large. For discount factors
close to one the number of iterations needed to obtain a satisfactory approxima-
tion lies around 200. It is therefore important, that in each iteration, an efficient
way is found to solve the Euler equations — we come back to this problem below
in the context of our example

The algorithm can be summarized as follows:
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Time Iteration Spline Collocation Algorithm

Step 0:  Select a set G of collocation points and a starting point fo, Jo-

Step 1:  Given functions fi, Ggi, V0 € G, Yy € Y compute portfolios and prices
solving the Euler equations and market-clearing conditions.

Step 2:  Compute the new approximations fi+1, Gi+1 Vvia interpolation.

Step 3:  Check stopping criterion: If the errors are sufficiently small,
then go to Step 4. Otherwise increase ¢ by 1 and go to Step 1.

Step 4:  The algorithm terminates. Set f = fiH,g =0i+1,
these are the approximate equilibrium functions.

9 The Main Computational Challenges and an
Example

As it turns out, approximating equilibria for models with more than one asset
is a difficult task. In this section we use a simple example to illustrate the
following two problems.

1. Short-sale constraints are frequently binding, resulting in non-smooth pol-
icy functions. Global polynomial approximation schemes cannot be used
to approximate these functions.

2. Even in regions of the state space where constraints are not binding, the
system of equalities describing equilibrium is extremely ill-conditioned.
Without an extremely good starting point, Newton-methods cannot find
a solution.

T

There are two investors with identical CRRA utility, up(c) = T with
coefficient of relative risk aversion of v = 1.5 and a discount factor 5 = 0.96.
There are 4 exogenous states, idiosyncratic shocks to labor income are

3
1 3 2 1
e =1 - , e“(s) =10 —e"(s)

7

and the stochastic dividends — the only source of aggregate uncertainty in our
simple example — are given by d = (2.5,2,2.5,2)".

The transition matrix II is chosen to ensure that idiosyncratic shocks are
very persistent. This seems to be a stylized fact and, as we will see below, it
causes substantial computational difficulties. II is given by

04 04 01 01
04 04 01 0.1
01 01 04 04
0.1 01 04 04

II =
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9.1 Short-Sale Constraints

As explained in Section 6.4, short-sale constraints are an essential part of our
model. We set the short sale constraints to be K! = —2.5 and K" = —0.1
for both agents h = 1,2. Figure 1 depicts investor 1’s computed equilibrium
demand for bonds, f;b, for the exogenous shock of y = 1 for our example. For
large regions of the endogenous state space the short-sale constraint on the bond
is binding. The economic interpretation of this is straightforward: Investors
cannot use the stock to insure against bad idiosyncratic shocks ex ante. Given
a bad shock the only possibility to smooth consumption is therefore to borrow.
Such can be either achieved by selling the stock or the bond. However, for
most levels of stock holdings, the investor prefers to sell the bond and does
so up to the short-sale constraints. Although the given parametrization is a
very stylized example, this phenomenon is very likely to occur in models with
realistically calibrated persistent idiosyncratic shocks.

(FIGURE 1 ABOUT HERE)

The main computational problem with short-sale constraints is the fact that
the resulting policy functions f are no longer smooth. Clearly, the plotted fllb
does not approximate a smooth function. At those values of last period’s portfo-
lio holdings where the short-sale constraint becomes binding, the policy function
is not differentiable. This fact shows why it is impossible to approximate these
functions globally with polynomials. Even with splines a good approximation is
only possible if the number of collocation points is very high — in this example
we chose 20 x 20 collocation points. Of course, by the definition of cubic splines,
the approximating function is still C? while the true function is not. In fact, one
can see in Figure 1 that the approximating function is slightly "hump-shaped’
close to the 'theoretical non-differentiability’. This hump leads to substantial
errors in the Euler equations. While the resulting average errors are very low
(around 0.0001 percent), the maximum error in the Euler equation lies around
0.3 percent. Furthermore, if only 225 collocation points are used the maximum
error jumps up to 0.9 percent.

For many applications, particularly if there are more than two endogenous
states, it is impractical to have 20 collocation points in each dimension. There-
fore it is useful to consider variations of the model which lead to less extreme
shapes of the policy functions.

9.1.1 Transaction Costs

One easy way to avoid extreme trading is to assume that trading the stock and
the bond is costly. In fact, it might even be realistic to assume that there is a
real cost in acquiring financial assets. The following specification of transaction
costs is from Heaton and Lucas (1996, Section IV D).
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At each date t an agent h pays transaction costs of w(A" |, 61). We assume
that w has the functional form

w(f—1,0) = 7°b° + 7° (g5 (s¢ — 5¢-1))*,

where 7%, 7% are constants. The assumption of strictly convex costs is unrealistic

but it is needed to ensure that agents face a differentiable and convex program-
ming problem. We set 7° = 0.0001 and 7° = 0.0001. Note that these costs
are so small that they are not likely to have a huge effect on agents’ welfare.
Trading 2.5 units of the bond (the biggest possible amount) will cost 0.000625
percent of aggregate endowments, trading 1.2 units of the stock (1.2 times the
entire tree) will cost 0.00144 percent of aggregate endowments.

Costs this low are likely to have small effects on equilibrium prices. However,
they substantially affect equilibrium trades. Figure 2 is the analogue of Figure
1 for the case of small transaction costs. The policy function is now much
better behaved. Not surprisingly, the errors are much smaller. Even with 10-10
collocation points maximum errors lie around 0.0001 percent.

(FIGURE 2 ABOUT HERE)

Figures 3 and 4 show §® and §° for the case with transaction costs. They are
visually indistinguishable from the case of no transaction costs, indicating that
transaction costs have negligible effects on asset prices. In fact, in simulations
first and second moments of returns to out to be within 0.01 percent of each
other.

(FIGURES 3 AND 4 ABOUT HERE)

9.1.2 Penalties on Portfolios

An alternative approach which allows us to drop the assumption of short-sale
constraints altogether is to assume that agents are allowed to hold portfolios
of any size but get penalized for large portfolio holdings. The intuition behind
such a model assumption is that there are costs associated with large short
positions and in a simplification we model them as penalties to agents’ utilities;
when these penalties get sufficiently large, agents avoid extreme positions. The
advantage of utility penalties on large short positions is that this restriction
does not constitute an a priori exogenous constraint on short sales. Instead, the
penalties lead to endogenous avoidance of short sales depending on how much
agents desire large short positions.
We use a penalty function of the form
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p"(s,0) = kP min(0,b — L"*)* 4+ £* min(0, s — L"*)*

where k% > 0,a € {b,s} and L"* < 0. Note, there is no punishment for large
long positions. If k® is sufficiently large the penalty function almost acts like
a hard short-sale constraint on the corresponding asset a € {b,s}. For a more
general description of the model it suffices that p is a convex function satisfying
p(b,s) — oo as |(b,s)| — oo. The portfolio penalties lead our agents to have
utility functions over consumption and portfolio holdings of the form

Vi(e,b,8) = Up(c) — E {Zﬂtph(bt, st)} :
t=0

The main problem with this approach is that the portfolio penalties p" have
to be chosen a priori, to guarantee that the resulting policy-function maps into
the endogenous state space Z. The exact choice of these penalties influence the
computed equilibrium prices substantially.

9.2 Ill-conditioned systems

The system of Euler and market-clearing equations which define a recursive
equilibrium, (RE1)-(RE3), tends to be numerically very unstable. We measure
numerical stability of a system by computing is condition number. The condition
number of an invertible real n xn matrix A is defined as k(A) = ||A||||A~!||where
||A]| is the operator norm,

A
4 = sup 1221
220 |||

It is a useful measure of a matrix being nearly singular and used to measure
the relative error of solutions to the linear problem Az =b (see Judd (1999) or
Blum et al. (1998)).

A large condition number implies that a system is sensitive to small changes
and difficult to solve. Newton’s method iterates on @y = 2 (D f(xk)) "1 f(zk)
and a large condition number of the Jacobian D f(xz)) implies that Newton’s
method cannot be used if one does not have a starting point very close to the
solution. On normal computers with machine precision around 10~!® condition
numbers above 100 are considered unacceptable since it indicates that an input
or round-off error of € leads to an output error of 10'Ce.

In models the assets have strongly correlated returns the choices are nearly
indeterminate and the condition number of the Euler equations will be very
large. In dynamic models with infinitely lived agents and transitory shocks, the
choice between stock and bonds is usually uniquely determined but of second-
order importance to the investor. Since shocks are transitory, a bad idiosyn-
cratic shock can generally be smoothed out by borrowing. Agents are therefore
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primarily interested in their total debt-level sl'gf + bf'g?. In regions where the
short sale constraint is not binding, they are nearly indifferent between stock
and bond. In our example, the condition number of the equilibrium system at
the solution lies around 107, in some regions of the state space it even reaches
10'0. This causes substantial numerical difficulties.

9.2.1 Transaction Costs

If, in our example, we impose a substantial trading cost for the stock, the con-
ditioning of the system improves drastically. For example, if we set 7° = 0.05,
the condition number goes down to around 10%. However, a large transaction
cost clearly also has a substantial impact on trading and prices. An alternative
is to impose transaction costs on both bonds and stocks. With the above spec-
ification of 7° = 0.0001 and 7% = 0.0001 the condition number of the system
goes down to 107.

9.2.2 Solving the Euler Equations with Homotopy Methods

In many applications one is interested in equilibria which result without any
restrictions on transactions. In this case, special care is needed to solve the
Euler equations. If we do not have a good starting point, Newton-method-
based algorithms for solving (2) are not likely to perform well because they
are not globally convergent and because the system of equations is not well-
conditioned for many values of the endogenous variables. In this case we have
to use homotopy methods to solve (2). The key insight for solving system (2)
is that it is similar to the equilibrium conditions of the well-known General
Equilibrium Model with Incomplete Markets (GEI Model). Therefore, in order
to solve system (2) we can apply — with some modifications — algorithms which
have been developed for the GEI Model (in particular Schmedders (1998)).

The main idea of homotopy methods is to deform a system of equations into
an simple system that can be easily solved. Then this easy system is contin-
uously transformed back into the original system. Beginning with the known
solution of the easy system a path of solutions to the encountered intermedi-
ate systems is followed leading eventually to a solution of the given system of
equations. Eaves and Schmedders (1999) give an intuitive description of the ho-
motopy principle addressing many issues in the framework of simple economic
examples.

In the context of problems involving endogenous portfolio choices it is often
useful to set up the easy system such that the agents are forced to hold a
prespecified portfolio. Such a system can be easily achieved by adding a portfolio
penalty term to the agents’ utility functions. In the easy system this penalty
has maximal force inducing the agents to hold the specified portfolio. As the
penalty is relaxed and driven to zero a path of portfolio choices leads to the
agents’ equilibrium portfolios.
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9.3 Economics and Computations

The example we consider in this paper is obviously highly stylized and oversim-
plified. However, Heaton and Lucas (1996) carefully choose parameters for the
model to match annual US data. When interpreting the results of their sim-
ulations, Heaton and Lucas (1996) claim that short-sale constraints are rarely
binding in their equilibrium approximation. They claim that the constraints
are a technical artifact without any economic consequences.

Judd et al. (1999) show that this is not due to the parameterization but
that due to their computational procedure. Indeed, without transaction costs,
the algorithm described above approximates an equilibrium in which the short-
sale constraints are often binding and which is very similar to the equilibrium
computed above.

The reason why in Heaton and Lucas (1996) the short-sale constraints rarely
bind even without transaction costs is simple. Allowing only for fairly large dis-
crete jumps of agents’ portfolio holdings implicitly introduces a transaction cost.
This transaction cost has a particularly severe impact on the agents behavior
when they are fairly poor. That is, they hold large short-positions in the assets
and would like to trade only minimal amounts of the assets. This, however,
is prohibited by the discrete portfolio space in which agents have to trade ac-
cording to the numerical procedure. Therefore, the agents hardly trade at all
anymore long before they hit the short-sale constraints.

As mentioned above, with respect to pricing implications of the model,
these additional transaction costs are not significant. Many of the computa-
tional problems in this model are caused by the fact that small errors in trading
strategies have almost no impact on welfares or prices. However, it is generally
not possible to prove this formally and one might feel uncomfortable adopting
a computational strategy which does not try to approximate the true trading
strategies but relies on some form of transaction costs to make the algorithm
more efficient.

9.4 A Parameterized Expectations Algorithm Approach

Marcet and Singleton (19996) used Marcet’s version of the parameterized expec-
tations algorithm to solve a model with equity, a bond, and idiosyncratic shocks
to income. Let W; be the wealth of type ¢ agents, p the ex-dividend price of
equity, d the dividend, and y the current state of aggregate and idiosyncratic
shocks. They focus on the expectations functions

0i(Whe, War,ue) = E{ui(cips1)| Wi, Wor, e}, 1 =1,2
CoriWre, War,ye) = E{ui(Ciarr)es1 + der )| Wae, W, ye}, 0= 1,2

6Tt should be noted that Marcet and Singleton (1999) was essentially the same as the 1991
working paper version.
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for next period’s marginal utility of consumption and stocks. They use the
Euler equations for bond and equity investment to fix consumption and asset
holdings at time ¢ in terms of the (W7, Wa, z) functions. This parameterization
has the advantage, as first demonstrated in Wright and Williams’ (1982a, 1982b,
1984) application of this approach to commodity markets, that conditional ex-
pectations functions will be smoother than consumption and pricing functions
since borrowing constraints may produce kinks in the relationship between con-
sumption and wealth. This procedure worked very well in Wright and Williams
even though they had to model nonnegativity constraints on storage, similar to
the borrowing constraints modelled in Marcet and Singleton. Therefore, it is
natural to use the smoothing idea of Wright and Williams in this context also.

Marcet and Singleton approximate the ¢ functions with low-order exponen-
tial polynomials of wealth and the exogenous shocks of the form

¥;(8, W1, Wa,y) = exp(Bj,1 + (85,2, 85,3, Bj,4) logy + B s W1 + B 6Wa)  (23)

They combined simulation methods and a successive approximation method to
fix the § coefficients in (23). More precisely, they make a guess for the un-
known coefficients, they simulate the process with those parameters. They use
the data generated by the simulation to estimate the Euler equation errors im-
plied by the candidate parameterization, and then adjust the parameterization
using learning ideas of Marcet and Sargent (1989). This is repeated until the
parameterization has converged.

Marcet and Singleton report that their algorithm had problems converging.
This is not surprising in light of the ill-conditioning in the Euler equations and
the nature of equilibrium displayed in Figures 1 and 2. The ill-conditioning
implies that small changes in the coefficients will produce large changes in the
Euler equation errors, making it difficult for any nonlinear equation procedure
to converge, particularly the first-order, successive approximation scheme used
in Marcet and Singleton. Second, the graphs in Figures 1 and 2 show that
the equilibrium properties are not going to be well-approximated by low-order
polynomials.

10 Dynamic Models with Strategic Power

Previous sections discussed only problems of competitive markets. There are
many dynamic problems where some agents do not take the actions of others
as fixed, and instead realize that their choices will affect the future behavior
of other agents. Outside of some linear-quadratic cases, these models typically
do not have closed-form solutions. Numerical methods are therefore crucial to
analyzing these problems.

There were some efforts to solve strategic problems in the 1980’s. Exam-
ples include Wright and Williams (1982a) analysis of oil policy, and Kotlikoff,
Shoven, and Spivak’s (1986) analysis of strategic bequests. These papers used
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intuitive polynomial approximation methods. Kotlikoff et al. solved a dynamic
bargaining problem by approximating the value function with low order poly-
nomials. The approximation was generated by computing solving the value
function at 80 values and then using regression to approximate the value func-
tions. They allowed their iterative schemes to continue until economic variables
agreed in the first two significant digits. Since the scheme is linearly convergent,
this indicates that the accuracy was somewhat less than two digits.

Recently the more formal approach suggested by projection methods from
the mathematics literature described in Judd (1992) have been used to solve
strategic problems, in particular problems about time consistency of govern-
ment policy. Rui and Miranda (1996) use a projection method to solve a game
between countries using commodity storage policies to affect prices. Ha and
Sibert (1997) also use projection methods to solve games of tax policy between
open economies. They used projection methods with orthogonal polynomials,
and had little difficulty in producing stable and reliable algorithms. Vedenov
and Miranda (2000) use collocation methods to solve dynamic duopoly models.
The Euler equation errors of their solutions were very small, on the order of 1
part in 10,000, indicating high accuracy in their solutions.

The success of these three recent papers indicate that much more complex
dynamic games can be reliably and quickly solved numerically.

11 Asymptotic Methods

Perturbation methods and other asymptotic methods are often used in eco-
nomics, and recent developments in mathematics are beginning to be applied
in economics. They are similar to projection methods in that they try to com-
pute a polynomial or similar approximation but they use different information.
Perturbation and asymptotic methods use implicit function theorems. They are
quite different from projection methods in terms of the underlying mathemat-
ics and the computer software needed to use them. We examine both regular
perturbation methods for rational expectations models and an example of a
problem where bifurcation methods can solve a problem with a singularity.

11.1 Regular Perturbations and Rational Expectations Mod-
els

We illustrate regular perturbation in the context of the basic rational expecta-
tions equations in a simple optimal growth model and then in the more general
context of (13). Consider first the simple stochastic optimal growth problems

maxe, Zoi ﬂtu(c )
s.t. kt_il 0: F(ktt— c)(1+ez) 24)
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where the z; are i.i.d. with unit variance, and € is a parameter expressing
the standard deviation. The solution of the deterministic case, ¢ = 0, can be
expressed as a policy function, C(k), satisfying the Euler equation

u' (C(k)) = Bu’ (C(F(k = C(K)))) F' (k= C(k)).

Standard linearization methods produce C’(k). However, we are not satisfied
with the linear approximation. We want more terms in the Taylor series expan-
sion

C(k) = C(k*) + C"(k*)(k — k*) + C"(k*)(k — k*)?/2 + ...

Successive differentiations of (24) produce higher-order derivatives of C(k) at
k = k*. For example, the second derivative of (24) together with the steady-
state condition k = k* implies that C”(k*) satisfies the linear equation

uNCN + u///c/c/ — Igu/// (C/F/(l _ C/))Q F/ + Igu//C// (F/(l _ C/))2 F/
+2,8UNC/F/(1 _ 01)2 F// + Igu/F///(l _ CI)Z
+ﬁu/F//(_C//)

where all functions are evaluated at the steady state value of their arguments.
Linear operations combined with successive differentiations of (24) produce all
higher-order derivatives.

The solution in the general case is a policy function, C'(k, €), which expresses
consumption as a function of the capital stock k as well as the standard deviation
€. C(k,e) satisfies the Euler equation

W' (C(k)) = BE{u' (g(e, k, 2)) R(e, k,2)} (25)

where
gle k, z)
R(e, k, 2)

Differentiation of (25) shows that

C((1+ex)F(k—C(k)))
(1+€2) F' (k- C(k))

C. = 0
w!” C/C/FZ L 0'C'F + u//C//FZ
CEE = uw'C'F’ + BU’F”

where all the derivatives of u and F' are evaluated at the steady-state values of
c and k. This can be continued to compute higher-order derivatives as long as
u and F' have the necessary derivatives.

This approach can also be used to analyze multidimensional problems. In
general, if there are several endogenous variables, Y (z), which are functions of
a multidimensional state variable = then we can compute the steady state, com-
pute the linearization Y (x) through standard eigenvalue decomposition methods
from linear rational expectations, and then proceed as above to compute the
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higher-order derivatives of Y. To use a perturbation method we express (13) in
the form

0 = E{9(®,ye, Tes1, Yes1,€)|Te} (26)
T = F(xe,ye,€zt)

where € is a scaling parameter for the disturbance terms z. If the components
of z; have unit variance then ¢ is the standard deviation. Different values for €
represent economies with different disturbances. The key observation is that we
often know much about the e = 0 economy since (26) reduces to a deterministic
problem. We build on that fact by using implicit function theorems.

The objective is to find some equilibrium rule, Y (z,€), such that

E {g(ag, Y(z,€), F(z,Y(z,€),e2), Y (F(z,Y (z,€), 2), e)|$} =0

Perturbation methods aim to approximate Y (z,€) with a polynomial, just as
projection methods do’. However, perturbation methods fix the unknown co-
efficients by computing the derivatives of Y (z,€) at some value of (z,€) where
we know exactly Y (z,€). Perturbation methods begin with the deterministic
steady state, which is the solution to

g($*ay*ax*7y*a0) =0
@ = F(z%y*,0)

The objective is to find the derivatives of Y (x, €) with respect to  and € at the
deterministic steady state, and use that information to construct Taylor series
approximations of Y (z, €), such as

Y(z,€) = y* + Y, (2%,0)(x — 2*) + Ye(2*,0)e + (x — 2*) Vo (2%, 0) (z — %) + ...

The second step in perturbation methods is to compute the linear terms of
the approximation Y, (x*,0). Standard linearization methods show that the co-
efficients Y, (2*,0) are the solution, y = Yz, to the linear rational expectations
model

91T + g2ys + 93Ti41 + Gayi41 = 0 (27)

where all the gradients of g in (27) are evaluated at the deterministic steady
state. Anderson et al. (1996) and Anderson, Evans, Sargent, and McGrat-
tan (1996) survey methods for solving such models. This is the difficult step
computationally, but can be handled by conventional methods.

"Perturbation methods can be used more generally to construct approximations which are
nonlinear in their coefficients, but this is seldom done in economics. See Judd and Guu (1997)
for an example of where Pade’ approximations are generated from perturbation data and
significantly outperform standard Taylor series expansions.
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Computing the higher-order derivatives, such as Y, (z*,0), Y. (2*,0), Yz (z*,0),

etc., is actually easier than computing Y (z*,0) since they are solutions to lin-
ear algebraic equations. Judd and Guu (1993) show how to use perturbation
methods to solve simple one sector optimal growth problems, and show that
the results are very accurate in that the Euler equation errors are small. Gas-
par and Judd (1997) exposit the details of applying perturbation methods to
optimal control problems.

Zadrozny and Chen (2000) and Collard, Feve, and Juilliard (2000) extends
the perturbation method to general rational expectations models. Zadrozny and
Chen proposes using Kronecker product and vectorization notation instead of
the tensor notation used in Gaspar and Judd. Both Zadrozny and Chen, and
Collard, Feve, and Juilliard combines perturbation and projection methods to
compute the deviations from certainty equivalence.

Perturbation methods are the only methods which can handle problems with
large dimension. Projection methods will suffer from various curses of dimen-
sionality. The number of unknown coefficients in the policy and value functions
become large, the number of nonlinear equations used to identify the unknown
coeflicients becomes large, and the conditional expectations are multidimen-
sional integrals. The combination of those two factors make it difficult to solve
multiagent problems similar to (16) for more than a few agents. Judd and Gas-
par find that problems with five agents and one asset are tractable but their
computations indicate that that is close to the limit of existing technology. Per-
turbation methods have the advantage of reducing the integral calculations to
moments of the random variables and linear operations. Therefore, large prob-
lems become more feasible.

11.2 Bifurcation Methods for Small Noise Portfolio Prob-
lems

The problems above began with a unique steady state for the deterministic
version. Many interesting problems with heterogeneous agents lack a unique
steady state, implying that the techniques discussed above do not apply directly.
One such case is where there are multiple assets traded among agents with
different tastes for risk. Suppose, for example, that there is trade in both a risky
equity asset and a safe bond. In the deterministic steady state all assets must
have the same returns, implying that investors are indifferent among various
assets. Hence, there is not a unique steady state holding of assets even though
the equilibrium holding of assets may be unique whenever there is positive
amounts of risk.

There have been some attempts to use simple linear quadratic approxima-
tion methods like the perturbation methods described above. For example,
Tesar (1995) used a linear-quadratic approach to evaluate the utility impact
on countries of opening up trade in bond. Each country had a stochastic en-
dowment and the issue was how much risk sharing could be accomplished only
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through trade in a bond. This was a model with only one asset. Some of her
examples showed that moving from trading in one bond, a case of incomplete
asset markets, to complete markets would result in a Pareto inferior allocation, a
finding which contradicts the first welfare theorem of general equilibrium. Kim
and Kim (1999) have shown that the ad hoc linear quadratic approach will often
produce incorrect results. These examples illustrate the need for using methods
from the mathematical literature instead of relying on ad hoc approximation
procedures. Again, we see the value of Frisch’s observation that mathematics is
necessary for safe and consistent analyses.

More typically we would like to solve models with multiple assets. Judd
(1996, 1998) and Judd and Guu (2000) describe bifurcation methods, and show
that the basic portfolio demand problem is a good example where bifurcation
methods can be used. Suppose that an investor has W in wealth to invest in
two assets. The safe asset yields R per dollar invested and the risky asset yields
Z per dollar invested. If a proportion w of his wealth is invested in the risky
asset, final wealth is Y = W((1 — w)R + wZ). We assume that he chooses
w to maximize E{u(Y")} for some concave, von Neumann-Morgenstern utility
function wu(-).

We want to “linearize” around the deterministic case. To do this we pa-
rameterize the problem in terms of a scaling parameter € and compute a Taylor
series expansion for asset demand around the case of € = (0. The first problem
we encounter is that if we eliminate risk by replacing Z with its mean, Z, the
resulting problem is unbounded if R # Z and indeterminate if R = Z. Since
the former case is untenable, we opt for the latter. We create a continuum of
portfolio problems by assuming

Z =R+ ez +ém, (28)

where E{z} = 0. At € = 0, Z is degenerate and equal to R. We assume that
m > ( since risky assets pay a premium. Note that we multiply z by € and 7 by
€2. Since the variance of ez is €2 02, this models the standard result in finance
that risk premia are roughly proportional to variance.

We now investigate the collection of portfolio problems indexed by € in (28).
The first-order condition for w, after dividing by €W is, for all €, equivalent to

0= E{u (WR+wW(ez+ €°m)) (2 + 2em)} = G(w,e). (29)

Equation (29) defines the solution to the asset demand problem even when
e = 0. We know from concavity of u(c) that there is a unique solution to (29)
for w if € # 0. However, at ¢ = 0, w can be anything since the two assets are
perfect substitutes. The indeterminacy of w at € = 0 follows from the fact that
0 =G(w,0) for allw.

We want to solve for w(e) as a Taylor series in €. If there is such a series,
implicit differentiation implies

0=G,uw + G, (30)
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where

Ge = F{'(Y)W(wz+ 2wer) W (2 + 2er) + o/ (Y7}

G, = E{(Y)(z+er)%}
At e =0, G, =0 for all w. This implies that at no point (w,0) can we apply the
implicit function theorem to (30) to solve for w’(0). Moreover we do not know

lime_,ow(e). However, let’s proceed as if we can apply the implicit function
theorem. Then (30) can be written as

w’*fGE
=G

This looks bad since G, = 0 at € = 0 until we remember L’Hospital’s rule.
Suppose that we found a point wqg satisfying

0= Ge (w()v 0)
Then L’Hospital’s rule says that
w/ _ Gee
N Gwe

which is well-defined as long as G, # 0. So, let’s proceed in this way. At e = 0,
the second derivative of (29) reduces to 0 = u”(RW) woo2W + u'(RW)m which
implies that /
wo=— = WVR) (31)
o2 Wu"(WR)

Now that we have found a candidate bifurcation point, we can continue to
derive the Taylor series. The formula (31) is the simple portfolio rule from linear-
quadratic analysis, indicating that w is the product of risk tolerance and the risk
premium per unit variance. However, wg is not an approximation to the portfolio
choice at any particular variance. Instead, wg is the limiting portfolio share as
the variance vanishes. If we want the linear and quadratic approximations of
w(e) at e = 0, we must go further, since the quadratic approximation to w(e) is
w(e) = w(0) + e’ (0) + S " (0).

To calculate w'(0) and w”(0), we need to do two more rounds of implicit
differentiation. If we differentiate (29) twice with respect to €, we find that

0=Gupww +2G,cw + Guw” + G,
where (without loss of generality, we assume that W = 1)

Gee =  E{W"(Y) (wz + 2wer)? (z + em) + (V) 2wr(z + )
+2u/(Y) (wz + 2wem) T},

Guw= Elu"(Y)(z +em)e},

Gue = E{W"(Y) (wz + 2wer) (z + em)? e + (V) (2 + er) 2me
+u”(Y) (2 + em)?}.
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At € = 0, Gee = v (R)w3 E{2%}, G = 0, and G, = u”(R) E{2?} # 0.
Therefore the L’Hospital’s rule applies and
oo Lum) B
2 v'(R) FE{z?}

(32)

Equation (32) is a simple formula. It shows that as riskiness increases, the
change in w depends on u" /u" and the ratio of skewness to variance. If u
is quadratic or z is symmetric, w does not change to a first order. We could
continue this and compute more derivatives of w(e) as long as u is sufficiently
differentiable.

We end the development of this example here. However, it is clear much
more can be done. Judd and Guu (2000) develops this approach using formal
tools from bifurcation theory and applies it to problems of asset demand with
several assets, asset equilibrium with incomplete asset markets, and problems
of optimal asset innovation. Since the key bifurcation theorems are also true in
Banach spaces, these methods can presumably be used to approximate equilibria
in stationary dynamic models.

12 Conclusion

The work in the past decade indicates that there is steady progress in computing
equilibria in markets with several agents. The key tools have been exploitation
of approximation theory and of methods for solving large systems of equations.
These efforts have shown that it is now tractable to solve some dynamic markets
with complete or incomplete asset markets, and even problems with strategic
interactions, such as time inconsistency problems.

Further progress is likely since economists have just begun to exploit the
full range of available numerical tools. For example, economists are just begin-
ning to make use of methods which combine symbolic and numerical methods.
Also, more advanced numerical and symbolic methods make higher-dimensional
problems more tractable.
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