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Abstract

This paper examines a dynamic, stochastic endowment economy with two agents and two
financial securities. Markets are incomplete and agents can have heterogeneous tastes. We
develop a new computational method to solve the dynamic general equilibrium model. We
allow for various forms of portfolio constraints, transaction costs, and portfolio penalties.
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1 Introduction

General equilibrium analysis provides an ideal framework to study prices in financial markets. Early
examples of equilibrium asset pricing models include the Lucas asset pricing model (Lucas (1978)),
a model of an infinite horizon economy with a single agent and Markovian exogenous shocks.
While the model is theoretically interesting because there exists a stationary equilibrium which
can be easily computed (see Judd (1992)) it fares poorly in explaining observed security prices (see
for example Mehra and Prescott (1985), Schwert (1989)). With the development of the general
equilibrium theory with incomplete asset markets in the 1980’s it is now well understood how to
extend the Lucas-model to incorporate heterogeneous agents (see Duffie et al. (1994), Magill and
Quinzii (1996)) and one can investigate to what extent the joint hypothesis of agents’ heterogeneity
and incomplete markets helps to explain observed prices (see for example Mankiw (1986), Telmer
(1993), Constantinides and Duffie (1996), Heaton and Lucas (1996), Krusell and Smith (1997) or
den Haan (1997)).

The primary difficulty in examining these models is that generally there do not exist stationary
equilibria where the endogenous variables are functions of the exogenous shock alone. The wealth
distribution affects equilibrium prices and portfolio holdings, and in some cases one would also
expect lagged prices and consumption to be part of the minimal sufficient state space (see Duffie et
al. (1994)). There are no closed-form solutions for equilibrium prices, portfolios and consumption
plans and instead one has to rely on computational methods to analyze equilibria. In computing
equilibrium prices and asset holdings in infinite horizon models with incomplete markets we face
a variety of difficulties — in particular one faces a curse of dimensionality as the dimension of the
endogenous state space increases as the number of agents or assets increases.

There are several papers that develop computational strategies for infinite horizon incomplete
markets models. Den Haan (1997) assumes that there is a single asset and there are infinitely
many ex ante identical agents and parameterizes the cross sectional distribution of asset holdings,
which he assumes to provide a sufficient endogenous state, with a flexible functional form. Krusell
and Smith (1997) follow a similar strategy only that they have two (short-lived) assets and use the
cross-sectional distribution of wealth as a state variable. This approach has the disadvantage that
one cannot incorporate heterogeneous tastes (only random variation in tastes as in Krusell and
Smith) and that it seems almost hopeless to extend it to a model with several (long-lived) assets.

Lucas (1994) and Heaton and Lucas (1996) consider a model with two agents and two securities
and assume that exogenous shocks together with agents’ current period portfolio holdings form a
sufficient statistic for the future evolution of the economy. They discretize the state space (the
allocation of assets) and develop a Gauss-Jacobi scheme which, in each state, finds a pattern of
trades which nearly clears the market. Because of the discrete state space (they allow for only
30 different values for an agents’ holdings in each security) this approach possibly yields large
approximation errors. They report average (not maximum) errors in market clearance of up to
0.84 percent. Since Heaton and Lucas have a discrete endogenous state space they cannot easily
improve their approximation. In particular, they allow trade to occur only once a year — more
precisely, they assume a period discount factor of 0.95. Zhang (1997 a,b) examines a model with
a single asset and he also discretizes the state space, but he uses a linear interpolation rule to
approximate the equilibrium functions between grid points.



In this paper we develop an algorithm for a model with two agents and two securities using
standard methods from numerical nonlinear functional analysis. Following the applied literature,
we assume that portfolio holdings alone constitute a sufficient state space. The innovation of our
algorithm is to approximate the equilibrium functions with two-dimensional splines, to form the
Euler equations for bond and stock holding, and to use collocation to solve the resulting nonlinear
systems of equations for the B-spline coefficients. Our maximum Euler equation errors lie in the
range of one dollar per $§ 100,000 to $ 1,000,000 of consumption. These errors indicate that for
the class of economies we consider lagged prices and consumption do not need to be included in
the state space. We show that smooth approximations of the equilibrium functions are needed
in order to discover important qualitative features of equilibrium. We show that for the class of
models we consider there is a one-to-one equilibrium relationship between wealth and the portfolio
holdings of the first agent. We are also able to compute equilibria for models with heterogeneous
tastes. Furthermore, because of our smooth approximation of trading strategies our method can
potentially be used to allow more frequent trading, an important improvement (with a discrete
state space, the model cannot be calibrated to high-frequency data because per period trading
becomes to small to be captured in a coarse grid).

The paper is organized as follows. In Section 2 we present the model under consideration.
Section 3 develops the algorithm and gives a detailed discussion of both economically and compu-
tationally motivated aspects of the implementation. Section 4 presents numerical examples.

2 The Economic Model

We examine a Lucas asset pricing model with heterogeneous agents. This model is a special case of
the infinite horizon incomplete markets economy discussed in Hernandez and Santos (1996) in that
it assumes that endowments and dividends are Markovian. Duffie et al. (1994) provide a general
theoretical treatment of the model we use.

There is a time-homogeneous Markov process of exogenous income states (y;)ien which are
assumed to lie in a discrete set Y = {1,2,...,S}. The transition matrix is denoted by P. There
are two agents and there is a single perishable good at each state. Agent h’s individual endowment
in period ¢ given income state y is assumed to be a function e : ¥ — IR, depending on the
exogenous income state alone. In order to transfer wealth across time and states agents trade in
securities. There is a (short-lived) riskless bond in each period paying one unit of the good in
each state of the next period and there is a long-lived asset in unit net supply paying a dividend
d:Y — TR, each period. We denote agent h’s portfolio in period ¢ by 8" = (P, 0*) € IR? and
his initial endowment of the stock prior to time 0 by 0"3. Let e; = e'(y;) + €?(y;) + d(y;) denote
the aggregate endowment in period ¢.

Each agent h has von-Neumann-Morgenstern preferences which are defined by a strictly mono-
tone C? concave utility function u, : IR, — IR that possesses the Inada property, that is,
lim,_, u'(z) = oo, and a discount factor 8, € (0,1). For any consumption sequence ¢ = (¢p, 1, Co, . . .)
the associated utility for agent h is therefore:

Un(c) = E {Z ﬁguh(ct)} :
t=0



2.1 Transaction Costs

It seems realistic to assume that there is a real cost in acquiring financial assets. The following
specification of transaction costs is from Heaton and Lucas (1996, Section IV D).
At each date ¢ an agent h pays transaction costs of w(6 ;,0"). We assume that w has the
functional form
w(01-1,0r) = 7 (qhO0)? + 7 (a5 (07 — 7)),

b 15 are constants.

where 7
The assumption of strictly convex costs is unrealistic but it is needed to ensure that agents face

a differentiable and convex programming problem.

2.2 Portfolio Restrictions

In order to define equilibrium one has to rule out the possibility of an infinite accumulation of
debt and introduce constraints on agents’ net wealth holdings. Furthermore, with long-lived stocks
and incomplete markets one faces the usual existence problem which arises in GEI models with
real assets and is caused by a discontinuity in the demand function. Magill and Quinzii (1996) and
Hernandez and Santos (1996) describe possible debt constraints and give proofs of generic existence.
For our purposes, however, it is much more useful to directly restrict the portfolio positions agents
are allowed to hold. In this paper we examine three different restrictions on portfolio holdings. In
Section 2.6 we will examine how short-sale constraints relate to debt constraints and in Section 4
we show how different short-sale constraints affect the equilibrium outcomes.

2.2.1 Short-Sale Constraints

The easiest way to obtain a bounded set of portfolios is to impose a short-sale constraint, see Heaton
and Lucas (1996, 1997). Short sales can be constrained through a priori specified fixed exogenous
lower bounds on the portfolio variables, that is,

ohb Z _Bhb and th Z —Bhs,

where B" B"$ > (0. Note that we define the bounds on short sales as agent dependent since it is
certainly realistic to assume that an agent’s income influences how much he can borrow.

2.2.2 Penalties on Portfolios

A second — and perhaps more realistic — approach is to assume that agents are allowed to hold
portfolios of any size but get penalized for large portfolio holdings; the intuition behind such a model
assumption is that there are costs associated with large short positions and in a simplification we
model them as penalties to agents’ utilities; when these penalties get sufficiently large, agents
will avoid extreme positions. The advantage of utility penalties on large short positions is that
this restriction does not constitute an a priori exogenous constraint on short sales. Instead, the
penalties lead to endogenous avoidance of short sales depending on how much agents desire large
short positions.
We use a penalty function of the form



p"(6) = kP min(0,0"° — L"*)* 4+ £* min(0, 9" — L*)*

where k% > 0,a € {b,s} and L"* < 0. Note, there is no punishment for large long positions. If

¢ is sufficiently large the penalty function almost acts like a hard short-sale constraint on the

K
corresponding asset a € {b,s}. For a more general description of the model it suffices that p is a
convex function satisfying p(f) — oo as |#| — co. The portfolio penalties lead our agents to have

utility functions over consumption and portfolio holdings of the form

Va(c,0) = Up(c) — E {Z ﬁtph(Ht)} :

t=0

2.3 Competitive Equilibrium

We define an economy & = (e,d, P, f1, B2, u1,us, 70, 7°) € ]R?ffZSJFSSH X U x U x IR?, where

el(1) e2(1) 1 d°(1)
e= : : , o d=1| :
el(S) €2(S) 1 d*(S)

are the matrices of individual endowments and security dividends, respectively, and U is the set
of utility functions satisfying the assumptions on monotonicity and concavity. If we consider only
economies with portfolio penalties we write £F; for economies with short-sale constraints we denote
the feasible portfolio set of agent h by K and a generic economy of this type by £X.

The notion of a competitive equilibrium for economies £F with portfolio penalties now defined
as follows:

Definition 1 A competitive equilibrium for an economy E¥ is a collection of portfolio holdings
{(8},62)} and asset prices {q;} satisfying the following conditions:

(1) 0} +62° =0 and 0}° + 62 =1 for all t.

(2) For each agent h: (c,0") € arg max Vj,(c, ) s.t.
cp = ef + 0] + 07, (g} +di) — Oqr — w(0-1,6,)

For the definition of equilibrium for an economy £¥ with short-sale constraints condition (2)
must be restated as
(2’) For each agent h: (c,0") € argmax Uy(c) s.t.
Ct = 6?’ + 0?_1 + Hf_l(qts + dt) - tht - w(Ot_l, Ht)
0, € K"
Note that by Walras’ law condition (1) ensures that good markets clear, that is, aggregate con-
sumption equals aggregate endowments minus the resources 'burned’ for transactions.

For the marginal transaction costs and holding penalties we define the notation



dw(0:—1,0
wa = PG _2r(q)2(67 - 67)
w = PGREL = 2r(q1) (07 - 07.)
w, = 2= 20 (0))
t
ho o 9p"(6)
Pb 07
o= 3p" (0r)
s a2
Agent h’s first-order conditions for optimization are:
(af +wpup(e) —phy = BuBi(uj(ci1))) (1)
(¢ +ws2)up(ce) — p' = BB {(gf 1 + dis1 — wsi)up,(crr1) } (2)

Under our assumptions on preferences the Euler equations of both agents together with the market-
clearing conditions are necessary and sufficient for equilibrium.

2.4 Stationary Equilibria

In order to compute an equilibrium for an infinite horizon model it is necessary to focus on equilibria
which are dynamically simple; it must be possible to describe the state of the system by a small
number of parameters which provide a sufficient statistic for the evolution of the system. Contrary
to the complete-markets model the state space for our models will also include endogenous variables
since they obviously influence the evolution of security prices in equilibrium. In particular one
expects the distribution of agents’ portfolio holdings to influence equilibrium prices. We denote
the set of agent 1’s possible equilibrium portfolio holdings by ® C IR%2. Note that in the case of
short-sale constraints © is compact.

Duffie et al. (1994) define an endogenous state space Zp g which includes current and last
period portfolio holdings, the asset prices of the current period, and the agents’ consumptions in
the current period. They need this large state space in order to be able to convexify the equilibrium
correspondence with sunspots. However, for computational purposes the approach cannot be used.

2.5 Recursive Equilibria

The usual assumption in the applied literature (see for example Telmer (1993) or Heaton and Lucas
(1996)) is that the exogenous state and the agents’ portfolio holdings alone constitute a sufficient
state space for the evolution of the infinite horizon economy. Moreover, the existence of continuous
policy functions f and price functions g is postulated, which map last period’s portfolio holdings
and the current exogenous income state into the current period portfolio holdings and asset price,
respectively. For our model these assumption mean that © is the endogenous state space and that
there exist a continuous function f : ¥ X ©® — © which determines agent 1’s optimal portfolio
choice in the current period given an exogenous income state y € Y and portfolio holding 0_ € ©.
Similarly, a continuous price functiong: Y x©® — IR?i_ 4 maps the current period exogenous income
state y € Y and agent 1’s portfolio holding #_ € © into the current period prices of the securities.



We formalize the notion of a recursive equilibrium for an economy 7. Let C be the set of
continuous functions and let and U be the set of all continuous functions f : Y x © — © where

F= 20D (35 £3), -, (F8 F2)),

and let V be the set of all continuous functions g : ¥ x © — IR?2 | where

g = ((glljagf)a (ggag;)a sy (ggagg’))'

Define

cMy,0-) =e'(y) + 0" +0° (g(y,0-) + d(y)) — f(y,0-)g(y,0-) — w(b_, f(y,6-)).
Then we have,
CZ(yao—) = e(y) - cl(yve—) - 2w(0—af(ya9—))'

Let W C U x V be the set of all f and ¢ such that c'(y,0_) > 0 and ¢?*(y,0_) >0 forally € YV
and all _ € ©. For all y € Y and §_ € © we define a functional ' : W — C' x C as follows:

FY(f.9)(0=) = (g"(y.0-) +w)u (c'(y,0-)) — pl! — BLE [ (c' (5, f (y.0-)))] (3)
FY(f.9)(0-) = (9°(y,0-) + wlui(c! (y,0-)) — pl —
BLE[(9° G, f(y,0-)) + d(§) — @) (cH (3, £ (4,0-)))] (4)
FY(f.9)(0-) = (g"(y,0-) + w])uh(c*(y,0-)) — pl! — BaEy[uih(c* (3, f (y,0-)))] (5)
FY(f.9)(0-) = (g°(y,0-) +wly)ub(c*(y,0-)) — pli —
BaEy[(9° (i, f (y,0-)) + d(i) — &) ) (c* (3, £ (4,6-)))] (6)
where
wz{ = Whlgr=po(y,0_); ‘7{{1 = Wsilps sps=rs(y,0_ ) ‘”52 = Ws2lge=fo(y.0-);
and

h h
Py = Polop=pb(y,0_)» Ps = Pslos=rs(y,0-)-

We define the notion of recursive equilibrium for an economy & with portfolio penalties.

Definition 2 A recursive equilibrium for an economy & is a pair of functions (f,g) € W satisfying

F(f,g) =0.

The main reason for our interest in a recursive equilibrium is that we want a endogenous state
space of small dimension. However, Kubler and Schmedders (2002) show that recursive equilibria
do not always exist. The non-existence result of Krebs (2001) is not relevant for our purposes since
we include portfolio constraints.

The following argument justifies our assumption of a recursive equilibrium. Suppose, we have
a computational procedure that finds continuous approximations ( f ,§) to the policy and price
function satisfying

sup peoF'(f,9)(0) < e



for some small error tolerance €, where 13’( f , §) denotes the relative error in the functional equations,
that is each equation in F'( f, g) divided by the current-period utility derivative term (for the first
equation, for example, F¥,(f,9)(0-) = F{,(f,3)(0-)/((¢"(y,0-) + w{)ui (c' (y,0-))).

In such a case we have clearly found an approximation to a recursive equilibrium; we could say,
we have a ”computational proof” of existence of a recursive equilibrium justifying our assumption
to consider only such equilibria. In all the examples we have computed so far we always found a
recursive equilibrium indicating that the class of economies for which a recursive equilibrium exists
appears to be rather large.

As we will see below, it turns out that wealth is in a one-to-one equilibrium relationship with
the state variables, that is, the portfolio holdings of one agent. Along the equilibrium path, it
never happens that two different portfolio holding, price pairs occur which yield the same wealth.
A possible interpretation is that for each given wealth level there is a unique continuation for the
economy because equilibrium is globally unique. These results merit further research since using
wealth as a state variable would reduce the endogenous state space and allow for arbitrarily many
assets, see Kubler and Schmedders (2001).

2.6 Bounding the Endogenous State Space

Both to prove existence of an ergodic equilibrium and to approximate such an equilibrium it is
important to ensure that the set of portfolios that can be part of an optimal solution for the agents
is bounded; Duffie et al. (1994) discuss the role of compactness for existence; for computations
boundedness is important because we compute equilibrium prices and portfolios as a function of
some state variables and we want to approximate this function with splines with a finite number of
nodes. Obviously, we cannot expect to approximate the equilibrium price and portfolio functions
well on the endogenous state space © if this set is unbounded.

As mentioned above, from a theoretical point of view, there are a variety of possibilities to
rule out Ponzi-Schemes - the most commonly used being implicit or explicit debt constraints.
However, unlike in the case of a single asset (see Judd et al. (1999)), a debt constraint does not
imply restrictions on the norm of agents’ portfolios when there are two assets. An agent can go
arbitrarily short in one asset if he covers that position with sufficient holdings of the other asset.
For example, consider the case where agents are not allowed to hold negative wealth, that is,
e+ 60°(q + d) + 6° > 0 has to hold at all times. Then for any stock position * € IR it is possible
to find a sufficiently large 6 such that the debt constraint is satisfied. For this reason we have to
introduce portfolio restrictions in order to obtain a bounded region for which we need to evaluate
the policy and price functions. The short-sale constraints immediately result in a compact feasible
portfolio set for the agents. The portfolio penalties result in endogenous bounds on possibly optimal
portfolio choices which in turn also allow us to restrict our computations to a compact set. We
emphasize that both constraints are more than just a technical or computational artifact helping
with the analysis. Indeed, as our simulations in Section 4 show, the short-sale constraints are often
binding; similarly, the agents frequently hold portfolios for which they receive a utility penalty.
Henceforth, each of these constraints does influence the nature of the economic equilibrium. Most
likely, the nature will be altered in comparison to the equilibrium of an economy without any
portfolio restriction. It is important to keep these facts in mind when analyzing the computational



results. Zhang (1997 a,b) provides a thorough analysis of the effect of different specifications of
debt and short-sale constraints for a model with a single asset and shows that the specifications
affect the results considerably.

In summary, the impossibility to state reasonable exogenous bounds on the space of agents’
portfolios represents a serious problem in the computation of stationary equilibria. It appears to
us that there is no simple approach to circumvent this problem.

3 A Spline Collocation Algorithm

In order to examine the equilibrium behavior of our model we need to know the portfolio policy
functions f = ((f7, f7), (3, f5),-- -, (f&, f&)) and price functions g = (g7, 95), (95, 95), - - - » (9% 9%))-
Since we cannot compute closed-form expressions for these functions, we describe a new method
for computing very good approximations of these functions.

3.1 Representation of the Approximating Functions

We approximate f(y, 0°,0°) = (f°(y,6°, 6°), f*(y,6°,6%)) parametrically by functions
n

f(y,6",6%) ZZa”yB 6")B;(6°)

=1 j=1

and
n

Foy, 0 6% ZZasyB (6°)B;(6°)

=1 j=1

and g(y, 0°,0°) = (¢°(y,6°,60°),¢°(y,0°,6°)) by

Qy, 6%, 6%) ZbeyB 6°) B;(6°)

i=1 j=1

and

5(y,0°,0°) Z Z by Bi(6") B, (6°)
i=1 j=1
where n? is the number of terms used. This tensor-product approach to two-dimensional approxi-
mation is reasonable because the dimension is low and the approach constitutes a straightforward
extension of the one-dimensional techniques (see Judd et al. (1999)) to higher dimensions. The
functions B}, are B-splines of order 4. These functions yield a linearly independent basis for one-
dimensional cubic splines. For our approximations we use cubic splines instead of orthogonal poly-
nomials since our price functions sometimes exhibit high curvature, in particular as the penalty
function gets large. As Judd (1992) points out, orthogonal polynomials fair poorly in approximat-
ing functions with high curvature. On the contrary, the cubic splines produced very small errors in
all regions of the domain.
Given a grid of knots (z;) order k B-splines are recursively defined by:

ki) — L =% pk-1 Litk+1 =L pk-1
Bi(z) = B+ By (2)
Titk — T4 Titk+1 — Tit+1



with

0 T < x;
BY(z) =X 1 z;<z<miy
0 T > x;

For an overview about B-splines see Judd (1998). De Boor (1978) gives a detailed introduction
into the representation of B-splines and how they can be applied to the approximation of functions.
Moreover, he provides numerous subroutines that we use for our computations.

3.2 Collocation

Given an income state y, approximating functions f and ¢ and agent 1’s beginning-of-period port-
folio holding 8 we define the following notation.

CIZ

e y) + 0"+ 0°(°(4,0) + d)) — F(y,0)3(y,0) — (0, f(,6)) (7)

&= )+ w0+ .0 |96 F5,0) +d)| -

95, F .01 (@, £ (5,0)) — w(F(.0), £ (3, F(3,0)))

¢ = ely) - -2, f(y,0))
)

¢ = ey

|

™
+

|

[\]
&
S, o
<

S
\>

(9, f(y,0)))

where ¢! denotes the approximation for agent i’s current period consumption, and ¢ Y denotes the
approximation for agent i’s random next period consumption. Moreover, w,{ , !1, £2, pb’f , P h f
defined by substituting f for f into the corresponding terms. Substituting our approximations into

the functional equations F(f,g) = 0 results into the following system of equations.

@w,0) +wDui(c) = o BB WE) = 0 ®)
@°(4,0) + W) (") = pbF = 318, {(@° @ (9, 0) +d@) —wlui@)} = 0 ()
(8*(1,0) + () — o = BBy (Wh(@)) = 0 (10)
(5°(49,6) + wl)is(®) = ploT = BB, {(3° (5, (3, 0) + d@) -l up@)} = 0 (D)

by
@jj

mesh-points (HZ , 93) ij=1,...n, 3 we have unknown coefficients for the approximating functions. We

take these points to be equal to # and obtain 4 equations for each point and each income state

To compute the coefficients (a;?), (a sy) (bby) and (bf]y) we select a collocation grid of as many

from (1). Notice that the problem has been transformed from finding functions f and g solving the
Euler equations over the continuous state space to finding a zero of a system of 4 - S - n? nonlinear
equations that has the real coefficients a = ((a%y), (a;7)) and b = ((bf;/), (b;7)) as unknowns.

Two theoretical questions of central importance are whether or under what conditions the
system possesses a solution, and if the functions f and § converge to the true policy functions f
and ¢ as the number of collocation points tends to infinity. We do not examine this problem here,
the interested reader should consult Zeidler (1986) or Krasnosel’skii and Zabreiko (1984) for related

problems.

10



3.3 Time Iteration

The described system of equations can be very large. With S = 8 exogenous income states and a
grid of 15 by 15 collocation points, as in the example in Section 5, the system has 7200 equations
and unknowns. While there is some sparsity in this system due to the structure of B-splines it is
difficult to exploit it. To solve the entire system with Newton-style algorithms is extremely difficult
due to the enormous amount of memory needed and because the system is rather ill-conditioned.
Iterative Gauss-Seidel methods (see Ortega and Rheinboldt (1970)) are unlikely to work since the
system lacks the desirable diagonal dominance structure; furthermore, Gauss-Seidel methods would
require costly recomputation of the B-spline coefficients after solving each specific equation.

We instead follow a simple Gauss-Jacobi approach which can be motivated by the following
economic intuition. It seems reasonable to hope that finite-horizon models with a very large num-
ber of time periods are a good approximation to the infinite-horizon model under consideration,
although this fact has not been proven rigorously. A natural approach for computing portfolio
holdings and prices in a finite-horizon model is backward induction. Therefore we compute the
approximate policy functions f and ¢ through an iterative process starting with some initial guess
fo and gp. In each iteration k£ = 1,2,..., the algorithm solves the Euler equations for all colloca-
tion points @ = (6°,0%) € G and income states y € Y by computing current portfolio decisions 6
and corresponding asset price ¢ given functions fk_l and gi_1 governing the policy process in the
subsequent period. The coefficients a and b for the new functions fk and g , respectively, are then
determined through interpolation. The algorithm terminates if

max g goyecyey k(s 0) = fro1(y,0)1, 19k (y,0) — Ge—1(y,0)|} <e.

3.4 Solving the Euler Equations

During each iteration for given functions fk_l and §i_1 it is necessary to solve the system of 4
Euler equations at all collocation points # = (6°,6%) € G for each income state y € Y. Newton-type
algorithms regularly fail to solve these systems because they are highly nonlinear and ill-conditioned
for many collocation points. The key insight for solving these systems is that they are similar to
the equilibrium conditions of the well-known General Equilibrium Model with Incomplete Asset
Markets (GEI Model). Therefore, in order to solve the Euler equations we can apply - with some
modifications - the homotopy algorithm developed by Schmedders (1998) for the GEI Model. For
a general description of the homotopy principle see Garcia and Zangwill (1981).

We denote the homotopy parameter by A and the collocation point under consideration by

6_ = (#°,6%). Our 4 homotopy equations are now defined as follows:
0 = (¢"+wui(e'(y) +0% +6°(¢° + d(y)) — 0g — w(6-,6)) — py —
BLEy[ui (€' (§) + 0"+ 0° [531(5,0) + d(@)] — G5—1(5,0) fr—1(5,0) — w(0, fr1(7,0))))(12)
0 = (¢ +wsui(e'(y) +0° +6°(¢° +d(y)) — g — w(0-,0)) — pli —
BLEy[(97-1(5,0) + d(§) — ws1)u! (e (§) + 6° + 6° [33_1(5,0) + d(§)] —

gkfl(gao) kfl(gae) _w(oa fkfl(gae))) (13)

]
0 = ¢+ wp)uh(e*(y) — 0° — 05 (q+ d(y)) + Og — w(6_,0)) — ppl —

11



BaBy[ub (e () — 0" — 0° [G7_1(#,0) + d(§)] + Gr—1(5,0) fe=1 (7, 0) — w(B, fr—1(7,0)))]]

—(1 = X) (6" — 6" (14)
0 = A(¢®+wsuy(e’(y) — 0" — 0° (¢ +d(y)) + 0q — w(0—,0)) — pli —

BaBy (95 1(#,0) + d(§) — wsr)ub(e* () — 6° — 6° [g5 1 (5,0) + d(5)] +

Gk=1(7,0) fr—1(7,0) — w(0, fr—1(F,0))]] — (1 = \)(6° — 6%) (15)

Note that the first two equations do not include the homotopy parameter. Only the Euler
equations of agent 2 are perturbed. For A = 0 these two equations have a trivial solution, namely
6° = 6® and ° = 6%, that is, there is no trade on the financial markets. Substituting these values
in the Euler equations of the first agent lead to two remaining equations with the two unknowns ¢°
and ¢°. This small system can easily be solved, both in closed form and numerically via Newton’s
method; it has a unique solution, which is the starting point of a homotopy path. Although we
cannot prove convergence of the homotopy, in practice, the path always leads to a solution of the
four equations with A = 1. This solution is the desired solution of the Euler equations at the given
collocation point.

While the homotopy approach always finds a solution it can be very time-consuming. After a
few iterations the difference between the old and new policy functions is usually fairly small. We
can therefore take the old policy function as a starting point for a Newton method which then
finds a solution to the Euler equations rather quickly. Whenever the Newton method fails to find
a solution, the homotopy approach is used.

3.5 The Algorithm

Our algorithm can be summarized as follows:

Time Iteration Spline Collocation Algorithm

Step 0:  Select an error tolerance € for the stopping criterion, a set G of collocation
points, and a starting point fo, Jo-

Step 1: Given functions fi_1, k1 , V0 € G , Vy € Y compute ' (y,0) and q(y, 0)
finding a zero of the residual functions.

Step 2:  Compute the new approximations fk, Jr. , that is, the
new coefficients a and b using interpolation
and 6*(y,0), q(y, 9).

Step 3:  Check stopping criterion: If
max g gseqyey U, 0) = fe-1(y,0)], |9k (¥, 0) — gr—1(y, 0)[} <e.
then go to Step 4. Otherwise increase k by 1 and go to Step 1.

Step 4: The algorithm terminates. Set f = f, § = .

12



3.6 Important Aspects of the Algorithm

We concisely discuss a number of issues which are important for the implementation and application
of our algorithm.

3.6.1 Collocation Grid

For a satisfactory approximation we chose a collocation grid of size 15 by 15; the results suggest
that this is much finer than necessary. The reader should note that we use the collocation grid for
collocation and interpolation purposes, and that we allow agents to hold any portfolio between the
collocation points. In contrast, Heaton and Lucas (and several other papers) force agents to choose
portfolios that always lie on the same grid. Their grid of 30 points per agent appears to be finer
than ours but actually results in a far cruder approximation. In their model, an agent must trade
an amount equal to the distance between two grid points; since there are only 30, this amount is
about 3% of the range in permissible holdings.

3.6.2 Starting Points

The choice of the starting points fg, Jo significantly affects the running times. As is always the case,
it is advantageous to have good starting points. When solving multiple examples, we typically use
previously computed coefficients from earlier problems as starting points for new problems, in
particular when we only slightly alter the model parameters during the sensitivity analysis. This
approach to initial guesses produces substantial savings when doing many problems.

3.6.3 Shape Preservation

So far we have not addressed the possibility of shape problems in our calculations. Using cubic
splines for the approximation of the equilibrium transition functions does not ensure that the shape
of the true functions is preserved. For example, it could happen that the functional points at the
collocation points exhibits a property such as monotonicity or convexity which is lost through
the spline approximation. A safer approach for the approximations would therefore be a shape-
preserving method (see Judd (1998)). However, looking at the Figure 2 in Section 4 we see, that
such shape problems apparently did not arise in our calculations.

3.6.4 Boundary Condition for Splines

The economic model does not naturally impose a condition on the slope of the policy and price
functions at the boundary of the state space. Therefore, we also do not want to impose a boundary
condition on the spline approximation. Instead we use the not-a-knot condition in our implementa-
tion. The jump in the third derivative at the second collocation point from the boundary is forced
to zero; thus, the first and the second cubic polynomial pieces are made to coincide.

3.6.5 Interpolation on a Bounded Set

The interpolation of the policy functions f (y,) : © — © on the compact set © could lead to
problems with the simulation of the model. A typical interpolation procedure does not take into
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account any bounds on the function being interpolated. For every grid point §_ € O the first-order
conditions ensure that f (y,0_) € ©. However, the interpolation might result in the existence of
points 6 € O such that f (v, é) ¢ O. In the model with short-sale constraints these constraints would
be violated at such a point. In addition, such a function would lead to an error in the simulation of
the model, when the function f is effectively composed with itself many thousand times. Since the
interpolation is only valid for the set ©, an evaluation of f at a point f (y, é) ¢ © could generate
huge simulation errors.

We have always checked our simulations for the occurrence of function values outside the set
©. While such values are theoretically possible, we have so far never detected them in any of our
examples. In particular in the models with utility penalties these penalties result in a very strong
inward-pointing form of the policy functions once the penalty becomes sufficiently large.

3.6.6 Implementation in FORTRAN

We implemented our algorithm in FORTRAN on a PENTIUM-233 computer. For the homotopy
path-following in Step 1 of the algorithm we used the software package HOMPACK, a suite of
FORTRAN 77 subroutines for solving systems of nonlinear equations using homotopy methods
(Watson, Billups, and Morgan (1987)). The necessary computations involving the B-splines were
done with the FORTRAN subroutines provided in deBoor (1978). For the Newton-solver we used
HYBRD, a suite of FORTRAN subroutines for solving nonlinear equations using Powell’s hybrid
method.

3.6.7 Euler Equations with Short-Sale Constraints

So far we have described our algorithm for economies with portfolio penalties. In order to apply it
to the computation of equilibria with short-sale constraints we have to make only one significant
adjustment. With short-sale constraints the agents face utility optimization problems with inequal-
ity constraints resulting in first-order conditions of optimality which include Lagrange multipliers
and inequalities. Denoting by u?* and u}* the Lagrange multipliers for the short-sale constraint on
the bond and stock, respectively, at time ¢ we obtain the following first-order conditions for agent
h :

(af + wp)up(cr) BrBe(up(ce41))) + pi

ne’ (07 +B") =0
ut’ >0
o4 B > 0

(@7 +ws2)up(cr) = BuBr {(git1 + dirr — wsr)up(cipr) } + g
p*(0; +B") = 0
utt > 0
0; +B" > 0

Due to the inequalities the first-order conditions cannot be simply solved by a nonlinear-equations
algorithm such as Newton’s method or the homotopy method we are using. However, through

14



a simple trick (see Garcia and Zangwill (1981)) we can eliminate all inequalities and state the
optimality conditions as a system consisting solely of equations.
Let I be a natural number and 7"® € IR for h = 1,2 and a € {b, s}. Note the following relations:

ha)l if ,’,’ha >0

0. ") — (n

0 if ne >0

0. — hayyl _
(ma‘X{ y 1 }) { |77ha|l ifnhafo

Moreover,
(max{0,7"**})" - (max{0, =n"*})" > 0, and (max{0,7"*})" - (max{0,7"*})" = 0.

We define
uh“ = (max{O,nh“})l and 6} + Bho — (max{0, —nh“})l

which allows us to state first-order conditions of optimality as a system of equations which is
equivalent to the system above:

(@) +wo)up(cr) = BrEi(uh(ciy1))) + (max{0,n"*})!
0 = —B" + (max{0,—n""})

(¢ +wsoup(c) = BuEi{(gp1 + dis1 — wer)up(cig1) } + (max{0, n"*})!
0; = —B" + (max{0,—n"})

We have transformed the system of optimality conditions into a system of 4 equations for every
agent with the variables 6" and 1" = (", n"*). At every collocation point we have thus to solve
a system of 8 equations in the unknowns 6,q,n' and n%. By a proper choice of the number | we
can obtain any desired degree of differentiability of the functions in our equations. Typically we
used | = 3 or | = 4 so that the function (max{0,7"*})! was twice or three times continuously
differentiable, respectively.

Note that the reason why we can add short-sale constraints with relatively little effort lies in
the fact that we use a time-iteration algorithm. If we wanted to use a Newton-Method to solve the
collocation equations directly this would double the number of unknowns.

4 Example

In this section we consider an example of an exchange economy roughly calibrated to yearly US
data. We illustrate the various conceptual difficulties in computing equilibria. We show the behav-
ior of our algorithm and report running times and maximum errors for all the computations.

=7
1=
, and a discount factor of 8 = 0.96. There are eight exogenous income states, the individual labor

There are two agents with constant relative risk aversion preferences of the form u"(c) =

incomes and the stock’s dividends are given by
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3.15 7.35 1.4

3.15 7.35 1.8
7.35 3.15 1.4

BRI IR P B SUI I .
4 6 1.4

4 6 1.8

6 4 1.4

6 4 1.8

Individual endowments in the stock are given by 91_51 = 0351 = 0.5. The Markov transition
matrix is given by

0.3 0.2 0.125 0.125 0.075 0.075 0.005 0.005

0.2 0.3 0.125 0.125 0.075 0.075 0.005 0.005
0.125 0.125 0.3 0.2 0.05 0.05 0.075 0.075
0.125 0.125 0.2 0.3 0.05 0.05 0.075 0.075
0.075 0.075 0.05 0.05 0.3 0.2 0.125 0.125
0.075 0.075 0.05 0.05 0.2 0.3 0.125 0.125
0.005 0.005 0.075 0.075 0.125 0.125 0.3 0.2
0.005 0.005 0.075 0.075 0.125 0.125 0.2 0.2

The persistence of the income distribution process is comparable to the process in Heaton and
Lucas (1996) (of course, Heaton and Lucas consider a growing economy while we limit ourselves to
an economy which is stationary in endowments).

To fix ideas we start with the case where there are no transaction costs (i.e. 7° = 7° = 0 ) and
where the short sale constraints are given by o = —2.5, af =0, o} = 2.5 and a3 = 0. That is
we do not allow short sales of the stock but agents are allowed to borrow a substantial fraction of
their yearly income when poor.

[FIGURE 1 ABOUT HERE]

Identical Preferences

We first assume that both agents have identical relative risk aversion of v = 1.5. As explained
in Section 3 above we calculate the equilibrium policy functions as functions of portfolio holdings.
Figure 1 shows the pricing function for the stock price for state 1. In order to obtain a symmetric
scale we always refer to agent 1’s net (actual portfolio minus initial portfolio) asset holdings as
equilibrium portfolios. The figure tells us for every possible portfolio of agent 1 in period ¢t — 1 the
stock price in period ¢, but it does not tell us which of these prices actually occur on the equilibrium
path.

Figure 1 is not very informative, because one needs to know which portfolio holdings occur
along a given equilibrium path. In order to investigate the equilibrium behavior of the model we
simulate the economy for 20000 periods (We actually simulate for 21000 periods and only use the
last 20000 periods in order to eliminate any effects which might be caused by initial conditions.).
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Figure 2 shows a scatter plot of all portfolio holdings which occur along the equilibrium path.
[FIGURE 2 ABOUT HERE]

The result is very surprising: There is only a one-dimensional subset of equilibrium portfolio
holdings; we refer to this set as the ’'invariant’ set. Note that the 8 diagonal lines in the figure
can be associated with the 8 different states. Figure 2 suggests that for models without trading
frictions there exists a one-to-one equilibrium relationship between the wealth of an agent and his
portfolio holdings.

Note that although we chose the short-sale constraints on the bond to be very weak they are
binding for most of the time. When they are not binding equilibrium stock holdings are very small
and they only increase as they hit the short-sale constraint.

In order to investigate the relationship between wealth and portfolio holdings we plot the result-
ing equilibrium wealth levels against portfolio holdings and prices for each state. For the purposes
of this section we define wealth as agent 1’s wealth net of initial asset holdings i.e. wealth in period
t is defined as e'(y;) + 0/, + (0}, — 02%)(q; + d(y;)). This has the advantage that the economy’s
total wealth always sums up to aggregate endowments and is therefore independent of the wealth
distribution (the wealth distribution for a model with H agents is thus (H — 1) -dimensional).

Without frictions the wealth level is in a one-to-one equilibrium relationship with the portfo-
lio holdings (Kubler and Schmedders, 2001, provide a theoretical foundation for using the agents’
wealth distribution as the only endogenous state variable for stationary equilibria and develop an
algorithm for computing such equilibria.). In all subsequent figures we will plot the computed policy
functions against agent 1’s wealth level since it provides a good way to illustrate our results. Note
that we plot actual simulated values along the equilibrium path. The only reason this is possible
is that our results are very accurate so that even after 21000 periods the simulated equilibrium
portfolio holdings still almost lie in the one-dimensional invariant set. Using wealth as the state
variable has the huge advantage that it allows us to plot the equilibrium values as a function of
a single variable. While it can be rather hard to interpret three-dimensional surface plots of the
equilibrium functions a two-dimensional graph is easy to interpret. We will therefore report all
transition functions as functions from wealth, although we have actually computed them as func-
tions from portfolio holdings.

[FIGURES 3 - 6 ABOUT HERE]

Figure 3 shows the equilibrium portfolio holdings in state 1 associated with different wealth
levels (the figures for the other states look very similar and are therefore not shown). The function
which is increasing for large wealth levels denotes the stock holding - the stock holding only decreases
for the region where the extended short-sale constraints are not binding. Note that the short-sale
constraints are binding for most of the time. The two ’kinks’ in the equilibrium functions are
caused by the fact that one agent reaches a binding constraint at that point and is forced to hold
fewer bonds for more stocks. As discussed in Section 2 above this is an unpleasant feature of the
model and there is no easy solution to this problem, if one wants to use portfolio holdings as a
state variable. As we show below this is also necessary if one wants to investigate an economy with
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transaction costs. Figure 4 depicts a histogram of the wealth levels from a simulation over 20000
periods; thus, 3000 occurrences of a particular wealth level correspond to a occurrence 15 percent
of the time. Figures 5 and 6 show the equilibrium bond and stock price in state 1 as a function
of agent’s 1 wealth levels. Note that these figures — in conjunction with the histogram — prove
that there is substantial variation in equilibrium prices. In state 1 agent 1 is rather poor — as he
agent one has to borrow more and more money, agent 2 accumulates more wealth his precautionary
demand for savings (assets) increases, and the asset return decreases.

Heterogeneous Risk-aversion

We now compute an equilibrium with coefficients of relative risk-aversion of y; = 2.5 and vy, = 0.5
Figures 7-10 are the analogues of Figures 3-6 for this case.

[FIGURES 7 - 10 ABOUT HERE]

The average wealth level of the more risk-averse agent is slightly higher than in the case with
identical preferences. As his wealth level increases his demand for assets increases hugely and the
price (of all assets) rises.

Heterogeneous Discount Rates

With complete markets it is not interesting to consider examples where agents’ differ with respect
to their discount rates because the agent with the higher 8 will eventually hold all the wealth and
asymptotically the economy will behave like an economy which is populated only by agent with
high 8 ’s. With incomplete markets however, this is usually not the case. We return to the case of
identical risk-aversion but we assume now that §; = 0.955 and s = 0.96.

Figures 11-14 show the analogues of Figures 7-10 for this case. The wealth-constraint (i.e. the
short-sale constraint on the stock) is usually not binding for the impatient agent. Even though he
is in debt most of the time his average debt level is significantly above his effective debt-constraint.
The variation in equilibrium prices for the stock is substantial.

[FIGURES 11 — 14 ABOUT HERE]

Portfolio Penalties

For more realistic models it is much easier from a numerical point of view to restrict agents’ port-
folio holdings not by short-sale constraints but by penalizing portfolio holdings as explained in
Section 2 above. We return to the case of identical preferences and — instead of assuming short-sale
constraints — we assume a penalty of the form x* = 0, K = 1.0 and L" = —2.25. That is the
agents start experiencing a utility penalty if their bond-holding goes below —2.25 Figures 15-18
show the results.
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[FIGURES 15 - 18 ABOUT HERE]

For most wealth levels the penalty function approach seems to work very well. The actual
bond-holdings almost always lie above —2.85. Note, however, that at the points where the portfolio
penalty sets in their is substantial inaccuracy in our computations.

If one wants to use the penalty approach to restrict agents’ portfolios one has to be well aware
of the fact that one does compute a slightly different equilibrium. Note, however, that both pricing
functions are almost identical to the pricing functions in Figures 3 and 4 and that the histogram of
possible wealth levels is also very similar to the histogram in case of short-sale constraints. Overall,
taking into account the running-times and maximum errors which we report in the Appendix, it
seems like portfolio-penalties can be a useful alternative to short-sale constraints.

Transaction costs

We now examine how positive transaction costs on stock-trading affect the equilibrium outcome.
We consider the basic case of identical preferences and short-sale constraints from above and as-
sume that there are substantial transaction costs on trading the stock, 7, = 0.5 (this number seems
high at first but one has to take into account that the entire stock represents the total productive
wealth of the economy and assuming that trading this costs 5% of aggregate consumption might
not even be too unrealistic). Figures 19-22 show the results.

[FIGURES 19 — 22 ABOUT HERE]

The figures show that wealth is not a sufficient statics for portfolio-holdings and prices any-
more. Somewhat surprisingly, the savings-behaviour (i.e. bond-holding) is completely different
with transaction costs while the stock-holdings are only affected slightly.

Patient Agents

To demonstrate the ability of our algorithm we also compute equilibria for the case of identical
tastes but where each agents’ discount factor is 3" = 0.99 — this roughly corresponds to quarterly
data (note however that we leave the calibration for income states unchanged). From an economic
point of view the results are not overly interesting. The pricing functions are very similar to the
pricing function for 5 = 0.96 - this is not very surprising because tastes are identical. However,
the fact that we can compute economies calibrated to quarterly data offers possibilities for further
research.

4.1 Errors and Running Times

In order to evaluate the quality of our approximations to the true equilibrium transition functions,
we compute the residuals of the Euler equations. In order to obtain relative errors we divide them
by the price times the agents current period marginal utility. We evaluate these errors at 100 times
100 points in our state space and report the maximum error, the average errors usually lie around
one to two orders of magnitude below these maximum errors. This way of reporting errors is similar
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to the errors reported in Heaton and Lucas (1996). For each agent’s Euler equation they compute
the price which makes it hold exactly and then take the difference of these prices.

The reported running times always refer to running times with f = ¢ = 0 as a starting point.
Running times can be improved with better starting points.

Errors and running times for Section 4.1

For relatively low beta and a model with only few states the running times appear very reasonable.

Table 3: Running Times and Errors

Maximum error in % | Running Time in hours.minutes
identical 1.01-107° 2.16
different -y 9.89-10°° 3.29
different /3 7.29-1076 2.02
trans. cost 5.34 - 1076 1.54
penalties 3.85-107° 2.02
B =0.99 5.21-107% 8.12

5 Conclusion

This paper develops a computational strategy for incomplete asset market analysis which allows
agents to hold any portfolio, and which allows them to trade more frequently than is allowed by
earlier methods. We also allow for various forms of portfolio constraints, transaction costs, and
portfolio penalties.
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