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ABSTRACT. This article examines local and global approximation methods
which have been used or have potential future value in economic and econometric
analysis. While these methods are familiar, they are seldom developed within a
general, formal analytical framework, a fact which has hindered understanding of
these techniques and limited their application. We attempt to unify this literature,
showing connections which have been ignored, and pointing out potential new di-
rections. We review the foundations of basic asymptotic, or, perturbation, methods.
We discuss their applications to economic modelling and econometrics. We next
discuss global approximation methods, including orthogonal polynomials, interpola-
tion theory, shape-preserving splines, and neural networks. We present the related
projection method for solving operator equations, and illustrate its application to
dynamic economic analysis, dynamic games, and equilibrium with asymmetric infor-
mation. Finally, we discuss how the hybrid perturbation-Galerkin method combines
the complementary strengths of local approximation procedures and the projection
method to produce a promising new method.
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1. INTRODUCTION
The key technical problem in much of economic analysis is the determination of some
unknown function. Important examples include the optimal policy functions of economic
agents (such as the consumption function in macroeconomics), equilibrium price functions
dynamic models, equilibrium strategies in games, and inference rules and price functions
in asymmetric information problems. The usual approach is to make functional form as-
sumptions on the structural elements of a model which lead to closed-form solutions for
these functions; prominent examples of this approach are the linear-quadratic competi-
tive structures discussed in Hansen and Sargent [60], the linear-quadratic dynamic game
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structure exposited in Kydland [82, 83|, the linear risk tolerance and Gaussian returns
in Merton [96], and the exponential-Gaussian structure in Grossman [54]. Unfortunately,
the desire for a closed-form solution often restricts the analysis. While these special cases
may suflice for some purposes, they are often inadequate for a robust analysis. Such
robustness is important for both theoretical analysis, where important elements may be
ignored in cases with closed-form solutions, and in empirical work where misspecification
of tastes and technology can ruin an otherwise valid approach.

The alternative is to assume more general and flexible functional forms and use ap-
proximation ideas to compute functions which are “close” to the true solution. In the
first section we remind the reader of a variety of theoretical and empirical problems for
which these methods are useful. In the rest of the paper, we will review the two basic
approaches to the approximation of functions and the approximate solution of operator
equations, representing two different kinds of data and objectives, and introduce a third
which combines the strengths of the first two methods. Local approximations take as data
the value of the unknown function f and its derivatives at a point xo and constructs a
function which matches those properties at xo. These constructions rely on Taylor’s the-
orem, the implicit function theorem, and singularity theory, and lead to the construction
of Taylor or Padé series, or other approximations of a simple form. These methods are
called perturbation, or asymptotic, methods. The basic idea of asymptotic methods is
to formulate a general problem, find a particular case which has a known solution, and
then use that particular case and its solution as a starting point for computing approx-
imate solutions to “nearby” problems. These methods are widely used in mathematical
physics, particularly in quantum mechanics and general relativity theory, with much suc-
cess. While economists have often used special versions of perturbation and asymptotic
techniques, such as linearizing around a steady state, they often provide little formal justi-
fications for their procedures, and sometimes proceed in an ad hoc and potentially invalid
fashions. This has lead to some confusion as to the differences among various procedures.
This is plausibly one reason why economists have generally not exploited the full range
and power of these approximation techniques.

We will give simple examples of the perturbation methods and indicate the more sub-
stantive uses which have appeared in the economics literature. These applications include
theoretical analyses of sunspot equilibria as well as quantitative analyses of economic poli-
cies and business cycles. We will interpret the phrase “computational economics” broadly
in this chapter. The perturbation analysis work which theorists have done has been viewed
as pure theory, and the authors made no apparent use of a computer. However, much of
this work is really the outcome of algebraic manipulations which could be automated by
symbolic mathematics software, such as Mathematica, Maple, or Macsyma. We take the
view that in the future much of this type of theoretical analysis will be done by computer
software, and is an interesting new avenue for computational economics. This literature
is included here also because the linear approximations which these authors compute do
have value as numerical approximations, and it is instructive to compare these methods
with other “linear approximation” methods used in economics. Furthermore, these lin-
ear approximations are just the first step in higher—order Taylor series expansions which
themselves may have substantial numerical value, even though this fact is generally not
utilized in either the theoretical or applied literatures.

The other approaches to approximation are more global in nature. LP approzimation
takes a given function f and finds a “nice” function g which is “close to” f in the sense
of some LP norm. To compute an LP approximation of f, one ideally needs the entire
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function, whereas we generally have information about f at only a finite number of values.
Interpolation is any procedure which finds a “nice” function which exactly fits a finite set of
prescribed conditions. Regression is similar to I.P approximation in that a some LP norm is
minimized, an L? norm in the case of least squares and L™ in the case of minimum absolute
deviation. Regression also lies between P approximation and interpolation in that it uses
n points of data to produce an approximation with m < n free parameters which “nearly”
satisfies the data. These approximation methods form the basis for projection methods,
also known as weighted residual methods, for solving functional equations. Projection
methods have been increasingly used in the physical sciences over the past twenty years.
They have been used to solve various economic problems, ranging from dynamic growth
models, dynamic games, and asset market equilibria with incomplete information.

Both perturbation and LP approximation methods are important because of the in-
creasing role of computation in economic analysis. Many computational economists es-
chew sophisticated approximation techniques, believing that simple methods of approxi-
mation combined with supercomputer technology will solve any problem they might have.
This is not the attitude taken in other computationally intensive fields. In fact, an exami-
nation of the numerical analysis literature shows that over the past fifty years advances in
numerical analysis have improved algorithm speed as much as hardware advances. Rice
[108] presents a formal and substantive discussion of this issue for the problem of solv-
ing two- and three-dimensional elliptic partial differential equations, a class of numerical
problems which arise naturally in continuous-time stochastic economic modelling. He
argues that we were able to solve these problems 4 million to 50 billion times faster in
1978 than in 1945, of which a factor of 2,000 to 25 million can be attributed to software
improvements, and a factor of 2,000 to hardware improvements. One reason for this im-
provement has been the application of the basic approximation ideas we present below.
It is clear from examination of the mathematical and economic literature that even a
modest application of modern approximation techniques can substantially improve the
efficiency of most computational methods in economics. The objective of this review is to
be retrospective and review actual applications, but also to be prospective and indicate
where a more intensive use of well-known mathematical techniques can expand the range
and quality of these applications in economics.

After discussing perturbation and projection methods, we move to a third approach to
approximation which combines perturbation and projection methods. The perturbation
and projection methods of solution differ substantially in their focus and procedures. How-
ever, we shall see that their strengths and weaknesses are complementary. This comple-
mentariness implies that a combined analysis using both methods will allow economists to
analyze many economic problems in a robust and reliable fashion. This combined method
is called the hybrid perturbation-Galerkin procedure. We will illustrate its advantages and
potential in a simple example.

2. THE USES OF APPROXIMATION IDEAS: AN OVERVIEW
Economic modelling problems have used a variety of approximation methods. In dynamic
programming problems, one wants to solve out for the value function and the correspond-
ing policy rule. The policy rule is then used for empirical analysis of the data since it
determines the relationships among observable variables. The general approach is to find
primitives — tastes and technology — which would generate observable processes whose
statistical processes match the observed processes. A key step in this is computing the
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behavioral rules which arise from the primitives. The closed-form approach! to this prob-
lem is exemplified in Sargent’s[116] analysis of dynamic labor demand. However, the
linear-quadratic approach has limitations. Rust[111] exemplifies the alternative approach
where one assumes arbitrary tastes and technology and approximately solves the dynamic
programming problem of the agents and for likelihood models for the data. However,
Rust uses the very conservative discrete-state approximation method which is reliable
but slow. The approximation ideas we discuss below have been successful in solving many
dynamic programming problems which are more general than the linear—quadratic case
but with substantially greater efficiency than the discrete—space approximation method.
These solutions could also be used in maximum likelihood econometric procedures where
such an increase in speed would be important.

The approximation ideas we discuss below have also been used in rational expecta-
tions equilibrium analysis. Closed-form solutions of rational expectations models are rare;
agricultural economists realized the futility of this back in 1958 with Gustafson’s[56] work
on optimal grain stockpiling. A critical aspect of that problem is the nonnegativity con-
straint on grain stockpiles. This constraint leads to kinks in the storage rules and price
functions. Gustafson used piecewise linear functions to approximate the relation between
current price and the current total grain stock. Williams and Wright[123, 124, 125] ex-
tended the Gustafson analysis to include elastic supply. An important innovation in their
solution was their observation that the conditional expectation of the fufure grain price
is a smooth function of the current state of the market, and that this conditional expec-
tation function characterizes equilibrium. This observation suggests that equilibrium can
be approximated by low-order polynomial approximation of the conditional expectation
function which characterizes equilibrium. This leads to a considerable improvement in
efficiency over the alternative of using discrete-state or piecewise linear approximations of
the current price law. Helmburger and Miranda[98] also use this approximation idea to
solve equilibrium. More recently, Christiano and Fisher[32] use the same idea to model
general equilibrium where a nonnegativity constraint on gross investment will occasionally
bind. The history of computational rational expectations is just one example of where
basic ideas in approximation ideas have been used to improve considerably the computa-
tional procedures. These approximation methods are also important in empirical work on
structural models of commodity markets. Deaton and Laroque[43] used approximations
of the rational expectations equilibrium to compute methods of moments estimates in a
fully structural model of several commodity markets.

Dynamic games also have a similar dichotomy. Kydland exemplifies the closed-form
approach to linear-quadratic games. In contrast, Kotlikoff, Shoven, and Spivak?? take a
smooth approximation approach to solving a more general dynamic game. Miranda and
Rui?? use modern approximation theory to solve nonlinear dynamic games.

The most common use of perturbation methods is the method of “linearizing around
a steady state.” Such linearizations tell us how a dynamical system evolves near a stable
steady state. We can also use them to compute how a system reacts to shocks which move
the steady state, such as tax policy or monetary policy changes. A particularly important

lSome may argue that the linear—quadratic model typically does not have a closed-form solution
because it is generally necessary to solve a Ricatti equation, or, as in the case of dynamic games, a
coupled system of Ricatti equations. While there are nontrivial problems associated with solving Ricatti
equations, we currently have methods which are so reliable and accurate that the solutions are treated
as if they were closed-form solutions with no computational error. Since the approximation problems are
much worse when we leave the linear-quadratic paradigm, linear—quadratic modelling is, for the purposes
of this review, more like closed—form modelling than the approximate solutions we will discuss.
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case of this was Magill [93], who suggested that the linear approximations of stochas-
tic growth models be used in macroeconometric analysis. Kydland and Prescott[85], and
many later macroeconomists have successfully used a linear approximation computational
approach to examine the empirical strength of the Real Business Cycle hypothesis. Simi-
larly, many authors used linearization methods to analyze the impact of macroeconomic
policy on dynamic equilibrium.

The key fact is that perturbation methods are just ways to take derivatives in complex
problems. This implies that they have a variety of uses. For example, in maximum
likelihood estimation, one must repeatedly compute derivatives of the likelihood function.
Zadrozny[127] discusses how to compute such derivatives analytically in the case of linear
quadratic models. For more general models, computing such derivatives is generally done
numerically. However, perturbation methods could be used to solve for these derivatives
analytically with considerable gains in accuracy and speed.

These are just a few examples of how approximation ideas are important in com-
putational aspects of both theory and econometrics. We shall now discuss the formal
mathematics behind these approximation ideas and illustrate their applications in simple
examples.

3. THE MATHEMATICAL FOUNDATIONS OF REGULAR PERTURBATION METHODS
Some simple but powerful local approximation techniques are called regular perturbation
methods. They are based on a few basic theorems including the well-known Taylor’s
theorem and the implicit function theorem for R™ as well as extensions to operators
on infinite-dimensional spaces. We will first state the basic theorems which provide the
foundation for regular perturbation methods in this section, and give examples of their
use in the next section.

3.1. The Meaning of “Approximation”. We often use the phrase “f(x) approx-
imates g(x) for x near xp”, but the meaning of this phrase is seldom made clear. One
trivial sense of the term is that f(zg) = g(zp). While this is certainly a necessary con-
dition, it is generally too weak to be a useful concept. Approximation usually means at
least that f'(zo) = ¢'(xo) as well. In this case, we say that “f is a first-order (or linear)
approximation to g at £ = x¢”. In general, “f is an n’th order approximation of ¢ at

x = xo” if and only if
i@ =) |
R e

3.2. Taylor Series Approximation. The most basic local approximation is de-
scribed by Taylor’s Theorem:

Theorem 1. (Taylor’s Theorem:) Suppose f : R" — R!, and is C**1. Then for 2° € R"
If f € C™" Y a, b] and x, xo € [a, D], then

fl@) = fE)+X0, @0 (@-2)
5 Yy mede (2°) (i —a?) (35— a9)

: N
i Yo Yhr e e (@) (@ —ad) e (@, —af)

+O (|| 2 =2 |7
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The Taylor series approximation of f(z) based at z0, (1), uses derivative information
at 2° to construct a polynomial approximation. f is analytic on |a, b] exactly when this
approximation converges to f on [a, b] as k increases. Generally, this approximation is
good only near xz° and decays rapidly away from z°.

3.3. Rational Approximation. Padé approximation uses the same derivative infor-
mation as does a Taylor series approximation, but instead constructs a rational function
to approximate f. The (m,n) Padé approximant of f at z¢ is a rational function

r(x) = M

where p(z) and ¢(z) are polynomials of degree m and n, and
dk
awr |

The m +n + 1 derivative conditions in (3) suffice since ¢(g) can be normalized to be 1.
The problem of computing the coefficients of p and ¢ is a (generally nonsingular) linear
problem.

The experience is that Padé approximants are better global approximants than Taylor
series approximations, that is, the error grows less rapidly as we move away from zg.
There are strong theorems confirming this for analytic functions; see Bender and Orszag
[8] for an accessible treatment.

Rational approximation ideas have not been as widely used in economic analysis as

p_fq) (xo), E=0,---,m+n (3)

Taylor series methods. Padé approximation has proved useful in econometric analysis. See
Phillips [103] for a discussion of various generalizations of Padé expansions; in particular,
he discusses the idea of using information at several points, not just one. Phillips also
reviews applications to finite sample distribution theory. Below we will discuss another
kind of application of Padé approximations..

3.4. Implicit Function Theorem. The next important tool is the Implicit Function
Theorem in Euclidean spaces.

Theorem 2. (Implicit Function Theorem:) If H(z,y) : R" x R™ — R™ is C' and
Hy(z0,y0) is not singular, then there is a unique function C° function h : R® — R™ such
that for (z,y) near (xo,4o)

H(z,h(z))=0.

Furthermore, if H is C* then h is C*~' and its derivatives can be computed by implicit
differentiation of the identity H(x,h(z)) =0.

The Implicit Function Theorem states that A can be uniquely defined for x near zero by
a relation of the form H(x, h(x)) = 0 whenever H, (0, h(0)) is not singular. This allows us
to implicitly compute the derivatives of A with respect to z as a functions of x. When we
combine Taylor’s theorem and the Implicit Function theorem, we have a way to compute
a locally valid degree & polynomial approximation of the implicit function h(x) whenever
H is sufficiently differentiable. The derivative information could also be used to compute
a Padé approximant.

The previous theorem applied to finite-dimensional problems. Frequently in economics
we need to solve for unknown functions which are solutions to some operator equations.
In these cases we need implicit function theorem for infinite dimensional spaces.
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3.5. Generalizations to Function Spaces. 'To solve dynamic economic problems,
we need generalizations of these theorems to functional spaces. It is necessary, therefore,
to first introduce some terminology from functional analysis, and state a generalization of
the implicit function theorem which has a straightforward computational implementation.

Suppose that X and Y are Banach spaces, i.e., normed complete vector spaces. A
map M : X* — Y is k—linear if it is linear in each of its k arguments. It is a power map
if it is symmetric and k-linear, in which case it is denoted by Mz = M(z,z,...,z). The
norm of M is constructed from the norms on X and Y, and is defined by

[|M]|| = sup ||M (21, T2, .., 2r)|]

l|2:]|=1, i=1,2,....k

For any fixed z¢ in X, consider the infinite sum in Y’

Tx = Z My, (x — x0)” (4)

k=1

where each of the M}, is a k-linear power map from X to Y. When the infinite series in
(4) converges, T is a map from X to Y. The majorant series for T is

(o0}
DI [ — o [*
k=0

The important fact is that 7" will converge whenever its majorant series does.

Definition 3. T is analytic at x¢ if and only if, for some neighborhood of xg, it is defined
and its majorant series converges.

With these definitions, we can now state an analytic operator version of the Implicit
Function Theorem, taken from Zeidler[128].

Theorem 4. (Implicit Function Theorem for Analytic Operators:) Suppose that

Fle,z) = Z €" My px* (5)
n,k=0

defines an analytic operator, ' : U C R x X — Y, where U is a neighborhood of (0,0)
in R x X. Furthermore, assume that F(0,0) = 0 and that the operator My : X —
Y, representing the Frechet cross-partial derivative at (0,0), is invertible. Consider the
equation

Fe,z(e)) =0 (6)
implicitly defining a function z(€) : R — X. The following are true:

1. There is a neighborhood of 0 € R, V, and a positive number, r > 0, such that (6)
has a unique solution x(¢) with ||z(¢)|| < r for each ¢ € V.

2. The solution, x(€), of (6) is analytic at € = 0, and, for some sequence of x,, in X,
can be expressed as

z(€) = Z T €" (7)

where the coeflicients &, can be determined by substituting (7 ) into (6) and equating
coeflicients of like powers of €.
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3. The radius of convergence of the power series representation in (7) is no less than
that of the analytic map, 2(€) : R — R, defined implicitly for some neighborhood of
0 by

0= " ||Muxl| 2(6) (8)
n,k=0

Furthermore, for some sequence z, of real numbers,

o0
z(€) = Z €" 2n
n=0
represents the solution to (8) and |z | > ||2x||-

See Zeidler[128] for a proof and discussion of this implicit function theorem. The
mathematics of applying this method turns out to be elementary since the task is reduced
to recursive computation of =, terms, in term-by-term approach described above. The
only requirement is to set up the problem so that it is expressed as an analytic operator
with a nondegenerate radius of convergence. This theorem shows that the logic and
intuition from the finite-dimensional implicit function theorem generalizes naturally and
straightforwardly for analytic operators.

4. APPLICATIONS OF REGULAR PERTURBATION METHODS TO ECONOMICS
There have been many uses of local approximations in economics, implicit and explicit.
The topic of comparative statics is nothing more than applications of the implicit function
theorem. Comparative dynamics are technically more diflicult problems, but fit into
the same general framework. Recognizing these similarities will help us solve difficult
problems. We will review some basic applications which have appeared and give examples
of some possible future uses.

4.1. Comparative Statics: A Simple Rule of Thumb in Tax Theory. The topic
of comparative statics is nothing more than applications of the implicit function theorem.
One simple example of applying perturbation ideas is the impact of a tax on equilibrium.
Suppose that D(p) is demand at consumer price p, that S(p) is supply at producer price p,
and that a per unit tax of 7 is applied. Then the equilibrium consumer price at tax rate T
can be expressed as the function p(7) which is implicitly defined by D(p(7)) = S(p(7)—"7).
We can expand this relation around 7 = 0, the tax—{free equilibrium case, to study the
impact of the tax on equilibrium. This analysis leads, for example, to the useful rule of
thumb that the efficiency cost of a tax equals %(UD + ng)7? where np and 74 are the
demand and supply elasticities at the 7 = 0 case. This quadratic approximation has
been used extensively to intuitively discuss tax policies and as the formal basis for some
quantitative tax analysis, as in the Barro[5] analysis of optimal tax policy.

This tax example is just one simple case where simple perturbation formulas, more
commonly described as comparative statics, are useful approximations. We next examine
dynamic applications of these perturbation ideas.

4.2, Comparative Dynamics: A Canonical Problem. Since it will be frequently
used below, we will now describe a simple continuous-time* model of economic growth. Let

2Tt will be obvious that all of these methods can be applied in the same way to discrete-time models.
Since there is no substantive distinction between the discrete-time and continuous-time literatures, I will
discuss continuous-time and discrete-time papers together.
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k be the capital stock, ¢ the rate of consumption, and f(k) the rate of output. Assume
that the intertemporal utility function of the representative agent is fooo e Plu(c(t))dt,
and that the capital stock evolves according to k= f(&) — ¢. The corresponding optimal
growth problem is

V(ko) = maxgt) fooo e Pt u(c) dt
= f(k)—c (9)
k(0) = ko

where V' (k) is the value function. Our examples will study the solution to this optimal
growth problem. We will also examine the representative agent version of this prob-
lem. The competitive equilibrium will correspond to the social planning problem in the
perfectly competitive, distortion free case, but not otherwise. We will also examine the
equilibrium problem when taxes are present. While this model and its stochastic gener-
alization appears to be special, it is in the same general family of dynamic optimization
problems investigated by the papers of Sargent and Rust.

4.3. Perturbing Dynamic Equilibria. To illustrate the essential features of pertur-
bation methods applied to dynamic equilibria, we apply them to study the eflects of policy
changes in a dynamic model of equilibrium with taxation. Brock and Turnovsky[21] shows
that if we take the simple growth model behind (9) and add a tax on capital income, the
resulting equilibrium solves the system of differential equations

¢ = Aelp=fR)A-T))

ko= f(k)—c—yg

where v(¢) = w'(c) /(cu'/(¢)) is the rate of intertemporal substitution in consumption, 7(t)
is the tax on capital income at time ¢, g(t) is government expenditure (on goods which

(10)

do not affect utility) at . The tax rates are exogenous, and ¢ and k are the unknowns to
be determined. Note that this includes the special case of 7 = g = 0, which is (9). The
boundary conditions for (10) are the initial condition on the capital stock

k(0) = ko (11)
and a stability condition on consumption
0 <] Jlim c(t) |< o0 (12)

The conceptual experiment is as follows. We assume that the “old” tax policy was
constant, 7({) = 7, and that it has been in place so long that, at ¢ = 0, the economy is
at the steady state corresponding to 7. Note that this also assumes that for £ < 0, agents
assumed that 7({) = 7 for all ¢, even { > 0. Hence, at £ = 0, k(0) = k* . Suppose,
however, that at ¢ = 0, agents are told that future tax policy will be different. Say that
they find out that the new tax rates are 7+ 7(¢), t > 0, that is 7(¢) will be the change in
the tax rate at time ¢. Similarly, they are told that the new expenditure policy is ¢+ g(¢).
We also allow the possibility that the capital stock at £ = 0 is changed by k. The new
system is

¢ = 7y clp—f1(k) (1—(T+7())

. (13)
ko= f(k)—c—(g+9@1)
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together with k(0) = k**+k, and (12). We will use perturbation methods to approximate
the effects of the new policies 7 and g on the dynamic paths for k& and c.

We need to parameterize the new policy so that it fits the perturbation approach; that
is, we need to imbed the shocked system (13) in a parameterized collection set of problems
of the form F(c, k,t,e) = 0. We do this by defining

T(t,e) =T+ er(t), glt,e)=g+eg(t), k(0,6) =k +er
and the corresponding continuum of BVP’s
alti) = elt.9) elt,e) (p— f(k(t, ) (1 —7(t,6)))
ki(te) = f(k(t,€)) —cft,€) —g(t.€) (14)

k(0,e) = Kk +er

plus (12).

The system (14) implicitly defines consumption and capital paths for any value of €. In
that way, it fits into our general implicit function framework in that we have an expression
F(e,k,t,e) = 0 which implicitly defines the paths ¢(t) and &(t). As long as the functions
involved in (14) are locally analytic, we can apply Theorem 4 above. With this apparatus
in hand, we can now solve for the first-order perturbation of (14).

To solve for first—order approximations of the impact of € on ¢ and &, we differentiate
(14) with respect to ¢, evaluate the resulting differential equation at ¢ = 0, and arrive at
the following linear differential equation system for the unknown functions ¢, (¢,0) and

ke(t,0):

cet(t,0) = 7(e) ¢ (=f"(F*) (1 =T)ke(t,0) + (p — f1(F*)(=7c(2,0))))
ke(t,0) = f(k**)ke(t,0) — ce(¢,0) — g(t) (15)
k. (0,0) = &

plus the condition that c. and k. are both bounded. This is a linear boundary value
problem with constant coefficients, which can be solved analytically. This is typical of
perturbation methods: differentiate a nonlinear problem and one will arrive at a linear
problem of the same type.

We then solve for ¢.(t,0) and k.(¢,0) from(15). The result will allow us to compute a
linear approximation for ¢(¢,1) and k(¢,1), the consumption and capital paths under the
tax and spending changes; they are

o(t,1) =2 F(k*°) =G+ cc(t,0)
k(t,1) =2 k4 k(t,0)

One can also compute the derivative of any dynamic quantity, such as lifetime utility and
tax revenue, with respect to €, thereby computing the marginal change in the consumption
and capital path per dollar of extra revenue, per util of extra utility, or relative to any
other quantity.
The resulting solutions can be very informative. For example, the initial shock to net
investment (denoted by the derivative of I = f (k) — ¢ — g with respect to ¢ at ¢ = 0) is
vep

10) = = —— T() + (F'(¥**) = p)w + uG(n) = 9(0) (16)
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where

= Lﬁ 14+ \/ 14+ M (17)
T) o0k

is the positive eigenvalue of the linearized system (15), 0k is capital’s share of income,

01, is labor’s share, and 8. is the steady state share of output which goes to consumption.

G(s) and T'(s) are the Laplace transforms® of the policy perturbations ¢(t) and 7(t).

Perturbation methods yield algebraic formulas for quantities of interest. For exam-
ple, the formula (16) tells us many things. First, future tax increases reduce investment.
However, their effect is proportional to T'(1t), which is essentially the average tax increase
discounted at the positive eigenvalue, p. From (17) it is clear that u exceeds f'(k), the
marginal product of capital and p, the after-tax return. Hence, future tax increases are
heavily discounted when determining their impact on current investment. Second, govern-
ment spending has an ambiguous impact on investment — current government spending
depresses investment and future spending increases investment, but again the future im-
pact is discounted at rate . Third, since investment and output are related, we also know
the initial impact of this policy shock on output. For example, if a future tax increase
causes current investment to fall, then output in the future will also fall. Note that these
shocks could be nonconstant, allowing us to consider partially anticipated shocks. These
simple calculations address basic issues in macroeconomics.

Fourth, the presence of & in (14) allows us to use the same approach to compute the
effect of changes in the initial capital stock on consumption. The effect is intuitive: an
increase in the capital stock of x will increase output by sf'(k*°) = kp/(1 —7) but will
increase consumption by px, with (17) indicating that the increase in consumption is
greater. Therefore, this procedure also tells us that the slope of the equilibrium policy
function for consumption is p/(1 —7) — p.

We can also use this method to approximate solutions to the optimal growth model.
We chose the tax example to make clear that the presence of a social planning equivalent
plays no role in this procedure. However, if taxes and government spending are zero,
then the problem reduces to the social planner’s optimal growth problem. For example,
the presence of the parameter x in (14) means that the linear approximation to the
consumption policy function near the steady state is ¢*° + (p — p)k.

4.4, The Stable Manifold Theorem and Applications to Economic Theory.
The analysis above is just a simple example of what perturbation analysis can do. Ex-
tending this type of analysis to several states is important in economics. These additional
states will arise when we include heterogeneous capital or heterogeneous agents to our
model. In this section we review the stable manifold theorem?, which is the general state-
ment of the linear approximation theory in dynamical systems, and its applications to
economics. However, we will also note that we can compute approximations which go
beyond those derived from the stable manifold theorem.

Multidimensional Dynamics. The methods used above can be extended to the
case of several state variables by applying basic linear algebra and differential equation

31t f(t) : R' — R™, then the Laplace transform of f(t) is L{f} : R' — R®, where L{f}(s) =

S et ()t
4We shall just discuss the procedure which is justified by the stable manifold theorem. An interested
reader can find a formal statement of the stable manifold theorem in Coddington and Levinson[35].
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theory. The most used mathematical theorem in this regard is the stable manifold theo-
rem. Suppose we have a dynamic system

Z=g(Z) (18)

with a stationary point at Z*; that is, g(Z*) = 0. Then the local behavior of (18) for Z
near Z* is linearly approximated by the linear system

i=Az (19)

where A = gz(Z*) and 2 = Z — Z*. The solution to (19) is 2(t) = e 20°. The stable
manifold theorem essentially says that the local behavior of (18) near Z* is approximated
with first-order accuracy by the local behavior of (19). In particular, if the linear system
(19) has a k-dimensional stable space near Z*, then (18) has a k-dimensional stable
manifold® near Z*.

This is a common situation in dynamic growth models, with and without distortions.
Let Z = (ﬁ) where X is a list of predetermined variables and Y is a list of free variables;
we use here the terminology of linear rational expectations models, as in Blanchard and
Kahn[12], for example. The predetermined variables are the state variables, such as the
distribution of the capital stock across sectors, or the distribution of wealth. The free
variables are the decision variables, such as consumption and labor supply, and prices,
all of which are endogenous at each moment. Suppose that there is a stationary point
at /* = (})f: ) Then the local behavior of the system is linearly approximated by (19)
and the solution is 2(t) = eA? (;g), where x = X — X*, y =Y —Y*, and o is chosen to
keep z(t) bounded asymptotically. Let V(o) be the set of all possible values for the free
variables which together with the predetermined variables being equal to g will imply a
bounded path for z(t). YV(xo) may be a single value or a set of values.

In many economic models, Y(xp) is a single-valued function which generates much
valuable information, such as the dependence of prices, output, labor supply, and con-
sumption on the state variables. As in the one-dimensional case, in general, they will allow
one to compute linear approximations to the multidimensional equilibrium decision rules,
even when the equilibrium cannot be reduced to a social planning problem. This proce-
dure (which is equally valid for continuous-time and discrete-time systems) for computing
a linear approximation is well-known; it is presented, for example, in detail in Chapter 6
of Stokey and Lucas[119]. Anderson[2] presents computer programs in Mathematica for
solving such problems in discrete-time.

Comparative Dynamics. The general theory of such perturbations for optimal
control problems has been worked out in a variety of papers. Oniki[101], and Araujo
and Scheinkman[3] proved that optimal paths were differentiable with respect to param-
eters. Treadway[121] and Mortenson[100] used a heuristic approach to derive explicit
formulas for local approximations near steady states. Lucas[92] and Otani[102] provided
approximation formulas and formal justifications for them, the latter for the general op-
timal control problem. Caputo[25, 24] derived Slutsky—like expressions for comparative
dynamics problems, and Lafrance and Barney[86] extended the analysis to the case of
nondifferentiable constraints.

5For discrete time systems, Zyr1 = g(Zt), Z* = g(Z*), 2441 = Az, and z¢ = Alzg.
6 A stable manifold is a manifold, M, such that if z(to) is in M than Z(t) is in M for t > tp and
converges to Z*.
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While the tax example in (15) above was quite simple, the robustness of the method
to dynamic equilibrium analysis is obvious. This approach has been used to analyze many
questions in dynamic economic policy. One can add labor supply, and other tax instru-
ments. Judd [66, 68, 67] used this method to calculate the marginal efficiency cost of
various tax innovations, and related impulse responses to tax changes for several macroe-
conomic variables. Laitner [87, 88, 89, 91] has written a series of papers on comparative
dynamics, and applying them to difficult problems in dynamic tax incidence. His work in-
cludes overlapping generations applications of perturbation methods and large-dimension
applications of the linearization procedure. Bovenberg [16, 18, 17] has used these methods
to analyze international economic questions. He has computed the impact of taxation on
capital flows, trade patterns, and terms of trade in dynamic models of international trade.
All of these authors’ use linearizations around the steady state to compute quantitative
estimates of the impact of policy shocks. It is clear that these procedures can be used to
analyze models with imperfect competition and externalities as well.

The linearization procedures appear to be much faster than alternative numerical
methods, such as shooting. The disadvantage is that linearization procedures can produce
only the first-order effects, and may miss higher—order effects. We next turn to that issue.

Higher-order Approximations. The stable manifold theorem calculation yields
just linear approximations. However, proceeding as we did above, one could also compute
second order approximations. This is typically not done, but there is no theoretical
difficulty. In fact, when we compute the second differential of (14) one finds that the
differential equations for c.(t) and ke(t) are the same as the differential equations for
c(t) and k() in (15) except for different forcing terms. More specifically, if we write
(15) in the form z, = Az + ¢(t), where x = (¢, k), then the corresponding equation for
Cee(t) and ke () has the same form except for the ¢(f) term. Since the difficult part of
solving any linear differential equation lies in dealing with the linear operator A, we see
that solving for c.(t) and k() is essentially the same as solving for ¢.(¢) and k(¢). More
generally, the methods used in Bensoussan [10] presents the mathematical foundations
for these methods in the finite-horizon case. In many models, these higher—order terms
will be as easy to compute as the first—order effects. By adding a few higher—order terms
to the linear term, one will end up with an accurate procedure far faster than standard
differential equation solution methods. Below we will return to the problem of higher—
order approximations in recursive equilibrium contexts.

Determinacy of Perfect Foresight Equilibria. The discussion above presumed
that Y(zo) is a single-valued function. There are many interesting cases where Y(xo) is
a correspondence, indicating that there are many choices for yy which satisfy the bound-
edness conditions. In fact, when there are too few unstable eigenvalues of the Jacobian
gz(Z*), that is, the number of stable eigenvalues exceeds the number of predetermined
variables, then Y(x) is a linear space. This implies that we have indeterminacy, that is,
there is a linear continuum of prices and/or allocations which are consistent with equi-
librium. They have proven useful for qualitatively analyzing many issues in dynamic
general equilibrium. Kehoe and Levine[79] used this approach to study indeterminacy
in infinite-horizon economic models. This, and many other papers, show that indetermi-
nacy is possible in robust examples, and that the dimension of the indeterminacy can be
large. Local determinacy of equilibrium is an important example where a key qualitative
property of a model can be determined by straightforward computation.

7This is by no means a complete list of such analyses.
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4.5. Perturbing Functional Equations from Recursive Equilibrium Analyses.
A large variety of economic problems can be reduced to various kinds of functional equa-
tions, some more complex than the simple ordinary differential equations in time as in the
example above. Stochastic models, in particular, do not generally reduce to such equa-
tions. In this section we shall take a functional approach to a simple growth model to
illustrate the general applicability of perturbation methods to those functional equations
arising from dynamic programming and recursive equilibrium.

Stationary, Deterministic Growth. We will first look at a single-sector, single
good, continuous-time optimal growth problem, (9). The Bellman equation defining V (k)
is

PV (k) = max u(c) + V'(k) (f(k) = ). (20)

By the concavity of u and f, at each k there is a unique optimal choice of ¢, which satisfies
the first order condition u'(¢) = V’/(k). We will let C'(k), the policy function, denote that
choice. (20) implies a differential equation for C(k):

u(C(R) C'(R)(f — C(k) + & (C(R)) ([ (k) — p) = 0 (21)

At the steady state, k%%, f(k*®) = C(k*®), which, when substituted into (21) implies the
condition p = f'(k*°) which determines &°°.

Our goal is to compute the Taylor series expansion of the policy function around the
steady state. Specifically, we want to compute the coeflicients of

C(k) = C(E™) + C'(k**) (k — k) + C"(k**) (k — k**)2/2 + .. (22)

We have so far computed £°°, C(k°%), and f'(k°*). We next move to C'(k*°). At this
point we must assume that C(k) is C°°. This assumption is clearly excessive, but not
unrealistic if we also assume that u(c) and f(k) are also C*°. In fact, Santos and Vila
[115] shows that if  and f are C* then the policy function is C*~2 near any stable steady
state.

Differentiating (21) with respect to k yields®

0= umC/C/(f _ C) + u//c//(f _ C) + u”C’(f’ _ C/) + u”C’(f’ _ ,0) + u’f” (23)
which holds at each &k and at the steady state, £°°, reduces to
0= —UH(C,)Q + u”C”f’ + u’f” (24)

Hence C'(k**) must solve the quadratic equation (24), implying

u”f’:l:\/(ullf,)Q _|_4u//u/f//
= 2!

o (25)
where all derivatives are evaluated at the steady-state levels for the capital stock and
consumption. Since « and f are increasing and concave, (25) has two real solutions of
opposite signs. The quadratic equation (24) is implied by the first-order conditions of
the problem. We pick the positive root since only that solution is consistent with the
second-order conditions.

8We drop arguments when they can be understood from context.
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To demonstrate the ease with which higher-order terms can be calculated, we next
C"(k**). Diflerentiating (23) with respect to k and imposing the steady state conditions
yields an equation linear in the unknown C”'(k°%). Therefore, solving for C”'(k°®) is easier
than solving for C’(k°?). In fact, the solution for C”'(k%) is

2(p _ C/)u///C/C/ + ?)UHC,fH + u/f///
u"(3C" — 2p)

C”(kss) —

where all functions are evaluated at k°°. Note that the solution for C”(k*%) involves
C'(k®%). The critical simplifying feature is that once we have solved the quadratic equation
for C'(k°®), we have a linear equation for C”(k°%). Similarly, continued differentiation of
(21) shows that every other derivative of C' at £** can be defined linearly in terms of the
steady—state derivatives of u, f, and lower order derivatives.

Judd and Guu [75] present Mathematica programs which compute arbitrary order
Taylor and Padé expansions based on the derivatives of C at the steady state. Judd
[74] shows that the 100 degree polynomial approximation to C' is easily computed via
a recursive formula. Table 1 displays the results for a variety of approximations. The
assumptions are that u(c) = ("= /(1 ++) and f(k) = pk®/p with p = .04, v = —2,

and o = .25. To evaluate the quality of the approximations, we compute a normalized,
unit—{ree version of the problem, (21), which is
"Ck) C'(k)(f — Clk "C(k "(k) —
() = 2100 CRIS = C) + ' (CHN (R = p) -

pu/(C(k)

We display the values of F(k) for various values of k degree of approximation, and type
of approximation. The notation a(—n) denotes @ x 10~™. The theoretical properties
of the Taylor and Padé approximations are displayed in this example. As the degree
of approximation increases, both approximations improve at all capital stocks in [0,2].
Outside of [0,2], the Taylor approximation is poor and getting worse; however, the Padé
approximation is doing very well even at k = 3 when n = 15.

Table 1: Euler Equation Errors

k n==06: n=10: n=15:

Taylor Padé Taylor Padé Taylor Padé
0.1 9.7(-1) 2.7(-1) 5.2(—-1) 3.0(-2) 2.6(—-1) 1.5(-3)
0.3 6.3(—2) 5.0(-3) 1.2(=2) 5.3(—5) 1.6(=3) 1.3(—5)
0.6 6.2(—1) 1.5(-5) 1.2(=5) 5.5(-9) 1.0(=7) 6.3(=8)
0.8 3.6(—6) 4.7(-8) 4.4(=9) 1.5(-12) 1.2(-12)  7.8(-9)
1.0 0(0) 6.3(—16) 0(0) 6.3(—16) 0(0) 0(0)
1.3 3.6(—=5) 1.5(=7) 2.3(—7) 3.8(-12) 4.6(—10) 7.9(—10)
1.6 3.7(-3) 8.7(—6) 3.7(—4) 2.2(-9) 2.4(=5) 1.4(-9)
2.0 1.0(-1) 1.3(—4) 79(-2) 1.5(-=7) 6.8(—2) 3.1(-9)
2.5 9.6(—1) 8.7(—4) ( 1) 3.0(-6) 1.7(2)  7.1(-9)
3.0 4.3(1) 3.0(-3) 1.3(3)  2.0(-5) 7.1(5) 3.7(-8)

Just because the Fuler equation error is small does not imply that the approximation
is close to the true solution. We make two points. First, in this case, we can check for



APPROXIMATION, PERTURBATION, AND PROJECTION METHODS IN EcoNoMIC ANALYSIS 16

accuracy; in this case, we do find that the Euler equation error is a good indicator of
accuracy. Second, if the Euler equation errors are small than the associated decision rule
is one in which the agents are making decisions which are nearly optimal in the sense
that the gain from doing the exactly optimal action improves the agent’s welfare slightly.
Since computation is costly for economic agents, we can only expect them to follow rules
which are nearly optimal, and the appropriate sense of nearly optimal is not the distance
from their decision and the optimal decision but the value to the agent of determining
and taking the optimal action.

Non-Steady State Perturbations. The examples above computes a Taylor series
for C'(k) around a particular capital stock, the steady state. There are other formulations
which can also produce useful approximations. Recall that perturbation methods begin
with a soluble case out of a continuum of cases, and uses differentiation to produce an
approximation based on the soluble case. Instead of constructing an approximation based
on knowing the value of C at some point, we can begin with a case where we know
the entire solution and use that case to construct approximations. An example of this
alternative is the continuum of problems

0="C'(k,€) (f(k,€e) — C(k,€)) +vC(k,€) (p— f'(k,€)) = F(k,e) (27)
where v is the constant relative risk aversion parameter, and
F(k,6) = (L= Ok + ck®p/a

At € = 0, we have a linear production function with a marginal product of capital equal
to p, the pure rate of time preference; in this degenerate case, the solution is C'(k, €) = pk,
that is, consumption equals output. At all positive values for ¢, the production function
is concave and the unique steady state is k = 1. Suppose that we are really interested in
the € = 1 case where f is the standard Cobb-Douglas production function.

The first perturbation of (27) implies that for all & and e,

which at ¢ = 0 and C' = pk reduces to

0=Cu(fe — C) +vC (—fre)

and implies the solution

Ce(k,0) = k%pla™" = 7) + (v — p)k

Continued differentiation will yield more terms which can be use in a Taylor series ap-
proximation for the Cobb-Douglas production function (¢ = 1) case of the form

C(k,1) = C(k,0) + Ce(k,0) + Cee(k,0) /2 + Ceee (k,0)/6 + - - - (28)

Note that this approximation is an approximation at all k, and theory tells us that it is
good only for small €. To determine how good this approximation is for C(k, 1) we could
substitute it into the Euler equation and check to see if the Euler equation errors are
small. They often turn out to be acceptable, but we will see below that even if (28) does
not, solve (27) well, the C(k,0), Ce(k,0), etc., functions can still turn out to be very
useful.
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Single-Sector, Stochastic Growth. We next take the deterministic model above,
add uncertainty, and show how to use the approximation to the deterministic policy
function around £*° in the deterministic case to compute an approximate policy function
in the model with a small amount of uncertainty. While the assumption of small shocks
may seem limiting, it is sensible in many applications, such as macroeconomic and related
financial analysis.

The stochastic problem is

V(k) = sup E{[; e P u(c)dt}
(29)
dk = (f(k) — c) + \/2¢o(k) dz
The Bellman equation becomes
0= max [—pV (k) + u(c) + Vi (k) (f(k) — ¢) + €0 (k) Vir ()]
Tt is straightforward to show that C(k) solves
0= a(k)u"(C(k)) + ¢(k) u"(C(k)) + (k) ' (C(k)) (30)
where
a(k) = e () [C"(1)]?
o(k) = [f(k) — C(k) 4 e’ (k)] C'(k) + ea(k) C" (k)
v(k) = f'(k) = p
Formally, we are again looking for the terms of the Taylor expansions of C',
Ck,e) = C(k°°,0) + Cr(k°%,0)(k — £°°) + Ce(k%°,0)e
+Crr(k°%,0)(k — k)2 /2 4+ Cer (K%, 0)e(k — k%) (31)

+C (k%5,0)€2/2 + ...

Before proceeding as before, we should note that the validity of these simple methods in
this case is surprising. Note that (30) is a second order differential equation when ¢ # 0,
but that it degenerates to a first-order differential equation when € = 0. Changing € from
zero to a nonzero value is said to induce a singular perturbation in the problem because
of this change of order. Normally much more subtle and sophisticated techniques must be
used to use the € = 0 case as a basis of approximation for nonzero €. The remarkable feature
of stochastic control problems, proved by Fleming[48], is that this is not the case, that
perturbations of €, the instantaneous variance, can be analyzed as a regular perturbation
ine?.

With Fleming’s analysis in hand, we will now proceed. We assume that we know all the
k derivatives of C at k = k°° and € = 0. This is what the previous section on deterministic
problems produced. We now move to computing C, by differentiating (30) with respect to
€. When we impose the deterministic steady state conditions f(k%%) = C (k°%), f'(k°°) = p,
and € = 0, we arrive at a linear equation which implies that

9 A more modern analysis of this problem relying on viscosity methods instead of probabilistic methods
as in Fleming and Souganides[49]. Their approach is also more general, possibly including distorted
economies.
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umo}% 4 Ckk

w'Cl,
where all the derivatives of C' are evaluated at & = k°® and ¢ = 0 . Note that the solution
for C. is a function not only of the deterministic steady state value of u, ¢/, and u’,
it also depends on %"/, and Cyy, which in turn depends on f"’. If u were quadratic, f
linear, and o'(k) = 0, then (32) shows that C. = 0, as we expect from the certainty
equivalence results for linear-quadratic control. Again, continued differentiation of (30)
with respect to ¢ and k leads to solutions for Ct., Ce, Chee, etc. Judd and Guu [75]
present Mathematica programs for computing these coefficients. They also show that the
approximations are valid over a substantial range of values for € and k.

Ce= o(k)+o'(k) (32)

Dynamic Programming. The optimal growth examples above are just special
cases of dynamic programming problems. Albrecht et al. [l] showed that one could
differentiate the Bellman equation with respect to an exogenous parameter. Even the
higher-order aspects of the computations above can be justified. Blume, Easley, and
O’Hara[l4] discuss when dynamic programming solutions are smooth in the state vari-
ables. Bensoussan also provides a general treatment.

Adjustment Cost Models. The problems above were based essentially on first-
order conditions. We can apply perturbation methods to other problems which are not
as simple. Dixit ?? studied the dynamics of models where a controller wants to keep
the state of a system close to some optimal value and incurs a fixed adjustment costs
whenever he adjusts the state. This leads to (9,¢, s) rules; that is, when the state moves
up to S or down to s the controller incurs the adjustment cost and pushes the state
to a target t. There are many models which fit this description, but they seldom have
analytical solutions to the problem of determining S, s, and ¢ in terms of structural
parameters. Dixit used perturbation methods to derive algebraic formulas for S and s
in terms of structural parameters. He also demonstrates that first-order approximations
yield very good approximations when the adjustment cost is empirically reasonable. On
the qualitative side, he makes rigorous the fact that the region of inaction, S — s, is quite
large for small variance; more precisely, he proves a fourth—power law which states that
S — s oc €1/ when the adjustment cost is e. This result is quite important since it says
that the region of inaction is quite large relative to the cost for small costs. Dixit??
discusses a number of applications of this result. This is an excellent example of how
one can use the perturbation method to get an analytically simple rule of thumb which
provides important intuition about a problem.

Stochastic Equilibrium Analysis Without Pareto Efficiency. Many equilib-
rium problems do not reduce to optimal control problems, such as dynamic equilibria with
taxation or money. While the discussion above concerned an optimal control problem, the
same methods can be used to study the behavior of an economy distorted by taxation.
The basic fact is that near the deterministic steady state, the linear approximation to law
of motion in the stochastic model is

de = A(z — (z°° — A))dt + Xdz (33)

where A is the linearization of the deterministic model and ¥ is the covariance matrix of
the shocks to the state. In the deterministic model, z°¢ is the target state and A “pushes”
the state towards the target. This expressions shows that the linear approximation to the
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stochastic model involves the same linear law of motion locally but with a new target,
where the adjustment A arises due to certainty nonequivalence.

With this observation, Balcer and Judd[4] studied the effects of taxation in a simple
capital accumulation model where (33) reduces to

dk = Mk — (K°° — A))dt + Sdz (34)

where X is the negative eigenvalue of the linearization of the dynamic system describing
the taxed equilibrium (similar to (10)). Therefore, the effects of taxation on business cycle
fluctuations reduce to its effect on A. They show how the level and the composition of
the effective tax rate affect important business cycle statistics.

One can also compute an equilibrium value function under distortions. If we have a
tax of 7 on all income but have all revenues rebated in a lump-sum fashion, there is an
equilibrium value function, V7 (%), which gives the present value of future utility if the
current capital stock is k. This value function will be quite different from the dynamic
programming value function, which, in this notation, is V°(k). If C7 (k) is the consumption
policy function under the tax 7, the defining equation for V7 (k) is

pV7 (k) = w(CT (k) + Vi (k) (f (k) — C7(k)) + co (k) Vi (k) (35)

An optimal policy chooses consumption to maximize the right-hand side, but the equilib-
rium policy under taxation does not. To see the difference, recall that the deterministic
steady state is the k7 which satisfies f'(k7) = p/(1 — 7) in the deterministic case. At &7,
saving is zero and V (k™) = u(C7(k))/p. Differentiating (35) with respect to k yields

pVi (k) = ' Cp+ Vi (k) (f = CL) + ViR (f = C7) (36)

which reduces at &7 to

v ViU =) Vi T
Cy Cil—1
which shows that the social marginal value of capital deviates from marginal utility of
consumption when the tax rate is not zero.
This fact is important when we come to evaluate the impact of uncertainty on the
equilibrium value function. Differentiating (35) at ¢ = 0 and k& = k7 we find

pVo = (W =V )CT + o Vi (k) (37)

which implies that the true first-order approximation to V7 around the deterministic
steady state is

V(k,€) = u(C7(k,0))/p+ (k= ")V, (£, 0) + e((v' = Vi) Ce(k,0) + 0 Vi (k) /p - (38)

shows that the impact of uncertainty on the equilibrium value function depends on the
degree of certainty nonequivalence, C., when the tax rate is nonzero, and that dependence
increases with increasing taxation. This is an example of a question where certainty—
equivalent methods of approximating the stochastic economy will not produce reliable,
first—order accurate answers.
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Multidimensional, High—Order Approximations. Theexamples explored above
have only one dimension. These methods can be extended to multidimensional problems,
yielding high-order approximations to multidimensional problems. Bensoussan[10] dis-
cusses these problems for the finite-horizon case, and Judd [74] presents these procedures
for the infinite-horizon case. A nontrivial difficulty in dealing with the higher—order ap-
proximations is the messy notation associated with multivariate versions of Taylor’s the-
orem. Judd[74] extends the Finstein tensor notation, which was introduced to drastically
simplify expressions in general relativity theory, to make these higher—order approximation
techniques in optimal control contexts more tractable. Judd [74], following Fleming[48],
further extends the multidimensional case to include uncertainty. The basic fact is that
all the higher—order terms of the Taylor series expansion, even in the stochastic multidi-
mensional case, are solutions to linear problems once one computes the first—order term in
the state variables. This indicates that the higher—order terms are easy to compute. Ini-
tial experiments indicate that they are also good approximations well beyond the steady
state values. These procedures have not been exploited much, but can be obviously ap-
plied to problems in the real business cycle, finance, public finance, and dynamic general
equilibrium literatures.

The other development is the work of Fleming and Souganides[49]. They derive asymp-
totic results for problems written in viscosity form. One advantage of these problems is
that they can handle infinite—horizon problems, whereas the results described in Ben-
soussan are proven mostly for finite-horizon cases. While discussing viscosity, a relatively
recent advance in nonlinear partial differential equations, is beyond the scope of this chap-
ter, we should note that these methods surely cover the equations which arise in dynamic
programming, and might generalize to cover equilibrium problems.

Dynamic Games. Perturbation techniques can also be used to analyze dynamic
games. Because of the notational burden of a formal treatment, I will here just give the
basic idea behind the perturbation approach. Suffice it to say here that we are discussing
dynamic game equilibrium concepts which can be written as solutions to ordinary or
partial diflerential equations, or some similar system of functional equations.

As with any perturbation method, we begin with a “point” (possibly in a function
space) where we know the solution. In game theory, such cases do arise. For example,
suppose that we have two players who each influence their own state variables, but that
the payoff functions and the laws of motion are such that neither player is affected by the
actions of the other. This would, for example, be the case of two differentiated duopolists
where the cross-elasticity of demand is zero, and the state variable of the game is the
vector of the firm’s capital stocks. Then the equilibrium of such a “game” is trivial,
reducing to an optimal control problem for each player. Using the techniques above, we
can compute local approximations for each player’s strategy around steady states of the
degenerate game.

Now suppose that the payofls and/or laws of motion are slightly perturbed so that each
player now cares about the other’s actions. By differentiating the functional equations
which characterize equilibrium with respect to the perturbation parameter and imposing
the implicit function theorem and Taylor’s theorem, we will be able to compute how
equilibrium is affected by the alteration.

Another kind of starting point is to specify a game with general interactions, but make
some parametric assumption such that the players have no interest in the dynamics. This
is the case when the interest rate is infinite. In such cases, the dynamic game reduces to
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a static game and, in equilibrium, neither player expends any effort to affect the future.
With this degenerate case in hand we can then compute expansions in the inverse of the
interest rate to determine what happens as the firms begin to care about the future. There
are two examples of papers using these methods.

Judd[69] applied Theorem 4 to a patent race model. He assumed a duopoly model
where the players had two kinds of research strategies and it is necessary to complete a
sequence of steps. Analytic solution of such a general problem is clearly impossible. He
began by assuming that the patent race had a zero prize for the winner, which, of course,
implies a Nash equilibrium of no effort. This is also equivalent to the infinite interest rate
case. He then proved local existence of equilibrium as well as constructed local linear and
quadratic approximations.

Budd et al.[23] contains the most complex perturbation analysis of a dynamic game.
They analyzed a stochastic market share duopoly game. Specifically, current profits for
each firm is a function of firm one’s market share, s, which is the state of the game. Each
player expends effort to increase his share, which moves stochastically. The result is a
stochastic dynamic game. The two degenerate cases they use are the infinite interest rate
case and the case of infinite instantaneous variance of random movements in s. In these
cases the firms either don’t care about future market share or essentially have no control
over future market share, implying a Nash equilibrium of zero effort. They compute
asymptotic expansions in the inverses of the interest rate and the disturbance variance.
With these expansions they are able to examine the dynamics of competition, determining
when, for example, the laggard firm will work hard to catch up, when the leading firm
will work hard to keep its advantage, etc.

There have been few applications of perturbation methods to game analyses thus far,
but they do indicate the potential of the method. Srikant and Basar [118] develops regular
perturbation methods for a large class of dynamic games different from those examined
in Judd and Budd et al. Given the general applicability of these methods, the increased
interest in dynamic econometric analyses, and the difficulties of game theory computation,
one suspects that these procedures will become increasingly popular.

The Macroeconomic “Linear—Quadratic Approximation”. The perturbation
methods described have been used to approximate a wide variety of optimal control and
economic equilibrium problems, and can be used much more extensively. While many
macroeconomists have also studied stochastic growth models, many have eschewed the
procedures above and instead use ad hoc procedures which replace nonlinear growth
models with hopefully similar linear-quadratic models. Since the latter strategy bears
some similarity to perturbation methods and often uses similar terminology, we will next
describe it and discuss the many differences between it and perturbation methods.

As discussed in Magill[93] and Kydland and Prescott[84, 85], one basic idea is to replace
a stochastic nonlinear control problem with a “similar” linear-quadratic control problem
which “approximates” the nonlinear model, and then apply linear-quadratic methods to

solve the model'®. This procedure is described precisely in McGrattan[95]ll. She takes

10The procedure described here is applicable only to optimal control problems, and those equilibrium
problems which reduce to optimal control problems.

11'While many have used the “linear-quadratic” method, McGrattan’s is the only precise statement of
how to apply the procedure to the general discrete-time multidimensional control problem which I have
seen in the published literature.
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the nonlinear stochastic optimal control problem

V(zg) = maxy, F {Z;ﬁo 3t W(u,x)}
(39)
Ti4+1 = g(xmuuﬁt)

where = is a vector of state variables, u is a vector of controls, and 7 is concave. She
solves for the steady state of the deterministic version of (39), and replaces (39) with the
linear regulator problem

V(zg) = maxy, B{> oy 0" (21Qu; + u,Ruy + 2x,Wu,)} 0
40
L1 = A.’Ilt + But + Cﬁt

where ' Qz + v’ Ru 4 22'Wu is the second-order Taylor expansion of 7, and Az + Bu is
the first-order Taylor expansion of ¢, both taken at the deterministic steady state!'Z.

The linear-quadratic procedure outlined in McGrattan[95] differs from the pertur-
bation method in its approach, objective, and results. Despite using the term “linear
approximation,” the objective is not to compute a locally valid Taylor series for the equi-
librium behavior rules. In fact, this procedure may produce an “approximation” which
differs substantially from the Taylor series produced by perturbation methods. This is
immediately seen by applying it to (29): f"(k°®) appears in the solution to C'(k°%) in
(25) but appears nowhere in (40) after we apply McGrattan’s procedure to (29); therefore,
the linear decision rule computed by McGrattan’s method applied to (29) would not be
the linear approximation of the true decision rule at the steady state, (22), even in the
deterministic model. In fact, those who use this procedure generally make no claim that
they are computing the linear approximation of the true decision rule.

If one were to use investment instead of consumption as the decision rule in (29) then
the result from McGrattan’s procedure does yield the true linear approximation in many
cases (further work is needed to see how general this fact is). This does not say that
McGrattan’s procedure is correct. Instead it points out an undesirable sensitivity to eco-
nomically inessential details in the formulation of the problem. In contrast, perturbation
methods are not sensitive to such changes.

No matter how one proceeds, the approach in McGrattan, Magill, and Kydland and
Prescott, makes no adjustment for variance. The approximation is a certainty equivalent
approximation even though the true problem is generally not certainty equivalent. At
best, this procedure computes the first two terms of (31) above but drops the third
term. The result is only half of the true linear approximation at the deterministic steady
state since the approximation includes the linear Taylor expansion term for the state
variables but excludes all Taylor expansion terms for the variance terms. Multidimensional
generalizations of the rules computed in Judd and Guu [75] have no such problems.

This intuitive way of approaching the problem can lead to some conceptual problems
in thinking about approximations. The linear-quadratic intuition behind (40) says to

12Kydland and Prescott use a slightly different procedure. They choose linear rules which satisfy the
Fuler equation at a collection of points near the steady state, where the collection is determined by the
variance of the shocks. In this respect, their procedure is similar to the projection method we discuss
below. They comment that in the case they examine, the differences are slight, but there is no reason
to believe that this is always true. Their procedure results in linear-quadratic approximations which are
affected by the variance. I include their procedure in this section since their stated goal is to simplify
“the determination of the equilibrium process by reducing it to solving a linear-quadratic maximization
problem” .
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replace a nonlinear problem with a similar linear—quadratic problem because the latter is
solvable. Suppose that you wanted a higher-order approximation of the optimal decision
rule. This approach suggests that the way to compute a quadratic approximate decision
rule would be to take a third-order polynomial approximation of the objective around
the deterministic steady state and solving exactly the resulting cubic optimal control
problem. Of course, there is no exact solution in general for third-order problems, making
it appear difficult to compute a quadratic approximation to the decision rule. In contrast,
the perturbation methods described above show that the higher-order terms are in fact
easy to compute.

Christiano adopts a different approach to the “linear—quadratic” approach. He writes
down the Euler equations for the nonlinear model in the form (18), and then linearizes
these equations around the steady state to create a linear system of the form (19). Two
comments are in order. First, this essentially reduces the problem to a calculus of varia-
tions problem. Since this cannot be done for all optimal control problems, this approach
is limited. However, it is of the form justified by the stable manifold theorem. Second, he
also imposes certainty equivalence on his approximation to stochastic models. Therefore,
he also ends up with only a “half-linear” approximation.

Dotsey et al.[45], Christiano[30], and McGrattan[95] have documented the quality of
some implementations of the macroeconomic linear-quadratic approach. The results follow
what one would expect from the perturbation analysis. The Christiano and McGrattan
implementations of the linear—quadatic method do fairly well when it comes to modeling
movements of quantities, but not as well with asset prices. This is expected since per-
turbation methods show that the linear approximation of quantity movements depend on
only linear—quadratic terms whereas asset pricing movements are more likely to involve
higher—order terms. In particular, the extra terms produced in Judd and Guu[75] show
that the deviations from certainty equivalence depend on higher—order derivatives of the
utility function. The linear—quadratic approximation also does less well as the variance of
the productivity shocks increases since the linear-quadratic approach ignores the effects
of the variance on the decision rules.

The linear—quadratic scheme in (40) is used to solve for equilibria which solve a social
planning problem. Macroeconomists have devised complex iterative schemes to compute
equilibria of distorted economies. They also revolve around linear—quadratic approxi-
mations of the individual agents’ problems (see, for example, Cooley and Hansen[37]).
These procedures are offered without any rigorous justification, and offer no reason why
they should be used instead of the earlier linearization methods derived from standard
mathematical methods. As pointed out above, the standard perturbation methods used by
Laitner, Judd, Bovenburg, and described in Stokey and Lucas[119] will compute first-order
valid linear approximations in nonlinear equilibrium models, and do so in a nonrecursive,
hence much faster, fashion.

Furthermore, the problems with this macroeconomic approach are even greater when
dealing with distorted models. These approximations also ignore the impact of variance.
The point of many of these exercises is to compute the welfare effects of various policies.
This requires the computation of an equilibrium value function. We saw above that the
first-order approximation to such functions, (38) includes the deviation from certainty
equivalence when taxes are present. Therefore, their computations of utility are not
reliable. Another example of the inadequacy of the macroeconomic approach is in Chari
et al.[27]. They show that the resulting “linear approximation” does poorly relative to
a global nonlinear procedure. Since they do not take an explicit perturbation approach
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(that is, formulate it as an application of the implicit function theorem or one of its
generalizations, and compute an appropriate number of terms), this is not evidence against
the use of perturbation methods, only against the ad hoc approach they use.

Linear Model Computation. The linear system approach could also be used,
but has been overlooked, when it comes to the analysis of linear-quadratic models. The
idea is simple: if one has a model with a deterministic steady state and globally linear
equilibrium behavioral rules, then the linear rules which are locally valid near the steady
state are the globally valid rules. All of the perturbation methods outlined above are
direct, noniterative, methods in contrast to the complex, iterative procedures often used
by economists to solve linear dynamic economic models.

5. BIFURCATION METHODS
Sometimes we will want to compute an approximation to an implicitly defined function at
a point where the conditions of the Implicit Function theorem do not hold, in particular
when H,(xo,y0) is singular. In some cases, there is additional structure which can be
exploited by bifurcation methods, to which we now turn.

Suppose that H(z,¢) is C2. One way to view the equation H(z,¢€) = 0 is that for each
€ it defines a collection of x which solves the equation. We say that €g is a bifurcation point
if the number of solutions to H(z,€) = 0 changes as € passes through 9. Two situations
are summarized in the following theorem.

Theorem 5. (Bifurcation Theorem) Suppose H(x,0) = 0 for all x, where H : R* — R.
Furthermore, suppose that

H;r(x070) =0= He(x070)7 H;re(x070) /&0

for some (2¢,0). Then, if He(x,0) #~0, there is an open neighborhood N of (x¢,0) and
a function h(e), h(e) =0 for e ~0, such that

H(h(¢),e) =0 on N

and H(x,¢€) is locally diffeomorphic to e(e — x) or e(e + ). Otherwise, if He(x9,0) =0 /
=H,.(xo,0), then there is an open neighborhood N of (,0) and a function h(e), h(€) ~0
for ¢ £0, such that

H(h(¢),e) =0 on N

and H(x,¢€) is locally diffeomorphic to €2 — xe or €8 + we. In both cases, (x9,0) is a
bifurcation point.

It may seem that Theorem 5 has limited applicability given its low-dimension charac-
ter. Fortunately, there is a procedure, the Lyapunov-Schmidt method, which is used to
transform high dimension (even infinite dimension) problems into appropriate low dimen-
sion problems at which point one applies the procedures above. This greatly increases the
applicability of this approach.

Theorem 5 also seems limited in that H has domain R?. Theorem 5 generalizes to H :
R™1 — R™ Furthermore, the Bunch Theorem (see Zeidler) generalizes the bifurcation
methods in Theorem 5 to allowing both = and € to be in Banach spaces. Space limitations
prevent our discussing these generalizations here, but below we will see that economic
applications are obvious.
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There are many kinds of bifurcations; the simple ones in Theorem 5 are referred
to as the transcritical and pitchfork bifurcations. Another, more complex, bifurcation

which arises naturally in economics is the Hopf Bifurcation. We present the statement in
Benhabib and Nishimura[9].

Theorem 6. (Hopf Bifurcation) Suppose that = F(z,pu), t € G C R", u € [—¢,c] C R,
F € CF. Suppose that there exists stationary solutions, that is, for |p| < ¢, there is T(j)
such that F(Z(u), 1) = 0. Suppose that the Jacobian F,(Z(p), ) has a parametric pair
of eigenvalues which can be expressed as a(u) £ B(p)i where o(0) = 0, 5(0) # 0, and
o’ (0) # 0. Then there exists a family of parametric solutions x(¢,¢) and u(e) of  (1,€) =
F(x(t,€), pu(e)) such that x(t,0) = Z(0) but x(t,€) # T(ule)) for € # 0. Furthermore, p(e)
is C*~1 and the period of the cycle is 2/ |3(0)).

The result stated above is just a first-order result; higher order approximations are
available. There are also conditions which guarantee that the periodic solutions are stable
orbits. There are further generalizations of the Bifurcation Theorem which covers cases
where there are many nondegenerate branches passing through a bifurcation point. Such
cases may correspond naturally to multiple equilibria in economic models. For a more
complete discussion of these issues see Zeidler[128], Chow and Hale [34], and Golubitsky
and Schaeffer[53].

5.1. Applications of the Hopf Bifurcation to Dynamic Economic Theory.
The Hopf Bifurcation Theorem has been extensively used to study the possibility of deter-
ministic cycles in economic models. Benhabib and Nishimura[9] explored the possibility
of cycles in multisector growth models. They showed how to use the Hopf Bifurcation
Theorem to check for the presence of Hopf bifurcations and offered plausible numerical
examples of Hopf Bifurcations in optimal growth models. Zhang[131] presented a simpli-
fied version of this analysis and also showed how to compute expressions for the period of
such cycles and how to check their stability.

The Hopf bifurcation has also been used in Industrial Organization theory. Feichtinger[46]
used the Hopf bifurcation in a dynamic model of advertising to argue that cycles in ad-
vertising expenditure were quite plausible. The Hopf bifurcation has also been used to
analyze general equilibrium with financial imperfections. The theme of these papers is
that while the equilibrium dynamics of an economy may be stable with perfect capital
markets, capital market imperfections may lead to more complex dynamics. Again, the
Hopf bifurcation is used to demonstrate the existence of stable cycles. These papers in-
clude Franke[50], who investigated a Keynes-Wicksell model with adaptive expectations
for inflation and found that periodic orbits were possible.

There are possibly many other applications of the Hopf bifurcation. Most dynamic
analyses examine only the steady state, not its local dynamic structure. At the least, one
can check the local linear structure to see if the number of stable and unstable eigenvalues
is consistent with local asymptotic stability. Since stable cycles are often associated with
unstable steady states, the presence of too many unstable eigenvalues should lead an
analyst to check for the possibility of a nearby Hopf bifurcation. Since this checking is
purely an algebraic exercise, easily done by symbolic computation methods, such checks
should become standard.

5.2. Gauge Functions. The methods described above, commonly referred to as regu-
lar perturbations, compute expansions of the form Zfil a;€*. There are many cases where
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we will want to compute different expansions. In general, a system of gauge functions is
a sequence of functions, {6, (€)}52,, such that

lim 2n1(©)

e—0 5,”(6) =0

An asymptotic expansion of f(x) near x = 0 is denoted
F(@) ~ F(0)+ > a; §i(x)
i=1

where, for each n,

@) = (0 + T 0 8i()

=0.
z—0 5,”(,’1;)

In regular perturbations, the sequence of gauge functions is &x(¢) = €. Another example
of a gauge system is 6(e) = €"/2, In many problems, part of the problem is in determin-
ing the correct gauge system. The next sections present examples of this more general
problem.

5.3. Bifurcation Applications to Stochastic Modelling. Whereas the Hopf bifur-
cation is useful in analyzing deterministic systems, the simpler pitchfork and transcritical
bifurcations examined above in Theorem 5 can be used to study stochastic problems. In
this section, we will illustrate this with two examples. First we will discuss the details of a
simple portfolio problem. Second, we will discuss a much more sophisticated application.

Portfolio Choices with Small Risks. Suppose that an investor has W in wealth
to invest in two assets. The safe asset yields R per dollar invested and the risky asset
yields Z per dollar invested. If a proportion w of his wealth is invested in the risky asset,
final wealth is Y = W((l—w)R—l—wZ). We assume that he chooses w to maximize E{u(f/)}
for some concave utility function u(-).

One way in which economists have gained insight into this problem is to approximate
u with a quadratic function and solve the resulting quadratic optimization problem. It is
argued that this is valid for small risks. The bifurcation approach allows us to examine
this rigorously. We first create a continuum of portfolio problems by assuming

Z:R—l—eé—l—e%r

At € = 0, Z is degenerate and equal to R. If 7 > 0, we model the intuitive case of risky
assets paying a premium. Note that we multiply Z by € and 7 by €2. Since the variance
of €z is €202, this models the observation that risk premia are the same order as the
variance.

Judd and Guu[77] applied the Bifurcation Theorem to this problem, producing a pro-
cedure which involves solving only linear equations and which can be used for noncompact
distributions. We will briefly outline their analysis. The first-order condition for w is

0= F{u(R+w(ez+m) (2 +em)} = Gw,€) (41)

We want to analyze this problem for small €. We cannot apply the implicit function
theorem since 0 = G(w,0) for all w implying that w is indeterminate at ¢ = 0. Since we
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want to solve for w as a function of € near 0, we first need to compute which of these w
values is the “correct” solution to the € = 0 case; specifically, we want to compute

wo = lim w(e)

0
Implicit differentiation of (41) implies
0=G,w +C. (42)
Differentiating G we find
Ge = B{u"(Y) (w2 + 2wer) (2 + err) +u' (V)7 }
G, = B{u"(Y) (2 + en)?e}

At €=0, G, =0. w'(0) can be well-defined in (42) only if G¢(w, 0) = 0 also. Therefore,
we look for a bifurcation point, wg, defined by 0 = Ge(wp, 0). At € = 0, this reduces to
0 = u"(R) woo? + ' (R)m, which implies

W) T
w'(R) o2

Wy = —

This is the simple portfolio rule indicating that w is the product of risk tolerance and the
risk premium per unit variance. If wg is well-defined, then this must be its value. Since
the conditions of the Bifurcation Theorem are satisfied at (wg,0), there is a function w(e)
which goes satisfies (41) and goes through (wg,0).

Note that this is not an approximation to the portfolio choice at any particular vari-
ance. Instead, wg is the limiting portfolio share as the variance vanishes. Some authors
treat this as an approximation to the true solution, w(e), for small . That, however, is
not the case. If we want the linear approximation of w(e) at (wo,0), we must go one more
step since the linear approximation is w(e) = w(0) + € w'(0). To calculate w’(0) we need
to do one more round of implicit differentiation. Differentiating (42) with respect to €
yields 0 = G, w'w' +2G e w' + Guw" + Gee. At (w9 0), Gee = v (R)wE E{2%}, Gy, =0,
Gue = u"(R) E{22}. Therefore,

Lu"(R) E{°} ,

w(0) =~ 2 w(R) E{2?} “o -

This formula tells us how the share of wealth invested in the risky asset changes as
the riskiness increases, highlighting the importance of the third and second derivatives
of utility and the ratio of skewness to variance. If the distribution of the risky asset is
symmetric, then E{z3} = 0, and the constant wg is the linear approximation of w(e).
This is also true if «/(R) = 0, such as in the quadratic utility case. However, if the
utility function not quadratic and the risky return is not symmetrically distributed, then
w'(0) # 0, and the linear approximation is a nontrivial function. Note that this says
that a linear approximation to w(e) requires a cubic approximation to the utility function
and third moments of Z. This fact, also demonstrated in Samuelson[114], shows how
the simple approach of using only a quadratic approximation to the objective function
does not produce a valid linear approximation for w(e). The advantage of the bifurcation
approach demonstrated hear is that the structure of the problem indicates exactly what
information is needed.
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Samuelson [114] earlier analyzed this problem in a lesss formal fashion. Also, his
formal analysis was limited to Z with compact distributions, that is, random variables
whose support goes to a point as € goes to zero, a detail which substantially limits practical
interest. The perturbation arguments used above make no such restriction. While the
Samuelson method worked in this example, using Theorem 5 allows us to proceed in a
more general fashion, and provides the necessary formal justification for these calculations.

One example of where the true problem has a bifurcation structure and standard
linear approximation procedure is unacceptable is Huffman [63]. Huffman examined an
overlapping generations model of capital accumulation, and tried to examine the impact
of a business cycle shock on asset trading. He computed the deterministic steady state
and computed the impulse function for individual wealth and asset trading arising from
unanticipated shocks to endowments and output. Since this was all done in an otherwise
deterministic, perfect foresight model, the tacit assumption, appropriate for such models,
was that equity was the only traded asset. However, Huffman then interpreted the impulse
functions from the deterministic model as impulse response functions for a stochastic
model, where all agents know that these shocks occur frequently. In the stochastic case,
there would also be demand for trade in bonds as well as equity, and business cycle shocks
would generate disturbances to bond holdings as well as to equity holdings. This was all
ignored by Huffman, who implicitly assumed that even in the stochastic model the only
asset was equity. Such a capital market imperfection will have important impacts on
the predicted asset trading, and is not an appropriate assumption for the U.S. capital
market. This is not an appropriate approximation assumption; just because one of the
deterministic equilibria has no bond trading does not mean that the absence of bonds is
an appropriate approximation for the stochastic model, even one with shocks with small
variance. The importance of including bond trading into the analysis depends on the
question being investigated. It is likely that the welfare loss is small when the variance is
small. However, including bond trading could have substantial impact on the volume of
trade in various assets.

Bifurcation and Sunspots. A particularly sophisticated application of bifurcation
techniques appeared in Chiappori et al.[29]. They analyzed the existence of stationary
sunspot equilibria near steady states of overlapping generations model of arbitrary dimen-
sion. They show that when a steady state has indeterminate local deterministic dynamics,
i.e., there exists a continuum of perfect foresight paths converging to the steady state,
then there exists a continuum of sunspot equilibria which have support in neighborhoods
of the steady state. They also are able to determine the possible qualitative character of
the sunspot equilibria. This paper displays a very sophisticated and rich application of the
ideas behind Theorem 5. These methods will also allow researchers to assess quantitative
aspects of sunspot equilibria.

6. ASYMPTOTIC EXPANSIONS OF INTEGRALS
In economic and econometric problems, integrals frequently take the form

I\ = /D e M) f(z) da (43)

where A is a large parameter. Simply differentiating (43 ) with respect to A at A = oo will
not, work here. Laplace’s method provides a useful way to approximate (43). The basic
idea is that the major contribution of the integrand is at the minimum of g(z). Suppose
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g(x) is minimized at x = a. For large \, if x /=a then e @) < ¢ () As long as
f(z) does not offset this for |z —a| 3> 0, I()\) is determined largely by the behavior of the
integrand, e~ () f(z), for x near a.

The one-dimensional case is easy to state. Assume that g and f satisfy the asymptotic
series

9(@) ~gla) +_ailz =), f(z)~ ) b —a)teT!

Under modest assumptions (see Wong, [126], or Bleistein and Handelsman, [13]) if the

integral T(\) = ff f(x)e 29 dx converges absolutely for sufficiently large \, and if ¢ is
minimized on [a,b] at a, then

oa@Nop(ita) e
1(A) ~e ;F< L NG (44)

where IT'(\) = fooo e~z 1 dzx is the gamma function, and the ¢; depend on the a; and b;.

In particular
b b a1 b (o
o = o/ 7 01:<—1— (a+2)a1 0) o (e )/n
pag’* K H=ag

To compute these coeflicients and others one essentially expands the integrand in terms
of X and matches like powers'®. One of the byproducts of this theorem is the construction
of an integrand which is close to e *9() f () but also integrable. This approximation
to the integrand is then integrated to produce Laplace’s approximation. Note that the
gauge functions of A in (44) depend on the asymptotic expansions of f and g.

One elementary application of Laplace’s method is Stirling’s formula for n! . Recall
that n! = I'(n + 1). We would like to approximate I'(n) for large n. To use Laplace’s
method, let x = y\; then

I(\) = )\A/ e M=y =1 gy
0

The minimum of ¥y — Iny is at ¥y = 1. Break the integral into two integrals over [0, 1] and
[1,00), and add the two one-sided approximations to get the two-term approximation

1
TA) ~ V2 AN T 14—
(\) T e <+12)\>

Stirling’s formula is just the one-term expansion, n! ~ \/%(n + 1)”*‘%6*(”4'1).

While the operating assumption in Laplace’s approximation is that A is a “large”
parameter, practical use of such methods rely on what “large” means quantitatively. For-
tunately, these expansions may do very well even when A is actually small. For example,
Stirling’s approximation for 1! is .9595 and the two—term expansion yields .9995.

There is a multidimensional extension of Laplace’s method. Suppose D C R™, f,g €
C?[D]. Suppose the minimum of g(z) for z € D is achieved at z¢ in the interior of D.
Then the leading term of the expansion is

. eiAg(IO) 21 n/2
0= (X)) s

13Bender and Orszag gives an intuitive presentation of this procedure.
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where H = (gqz,e,) is the Hessian of ¢g. Higher order terms can also be computed. While
computing higher-order terms would be very tedious to construct, symbolic languages
such as Mathematica, Maple, and Macsyma, are ideally suited to do this.

6.1. Econometric Applications of Asymptotic Methods. Asymptotic methods
in econometrics are essentially perturbation methods where the properties of an estimator
are computed in terms of the size of the data set and the expansion is around the case
of an infinite sample size. In some cases, the asymptotic problem can be handled by
relatively simple procedures, such as Edgeworth expansions.

In other cases, the full power of Laplace’s method is needed to compute asymptotic
properties of statistics. In this case, the integral is the likelihood function, and it is written
in the form (43) where the parameter A is the sample size. Phillips [104] used Laplace’s
method to approximate small sample marginal densities of instrumental variables estima-
tors. Ghysels and Lieberman [52] use Laplace’s method to compute small sample biases
which arise from using filtered data in dynamic regressions. Laplace’s method has been
more popular among statisticians; see the citations in [52]. Holly and Phillips [62] use the
related saddlepoint procedure. These methods work well, but are not often used, possibly
because their implementation requires much algebra. One suspects that a more intensive
use of symbolic computational tools would make them more accessible.

6.2. Theoretical Applications of Laplace’s Method. While the theoretical ap-
plications of asymptotic methods for evaluating integrals are few currently, they are likely
to increase. Brock[19] discusses where Laplace’s method is useful in evaluating statistical
mechanical systems adapted to economic issues. As this modelling approach matures, it
is likely that Laplace’s method and related asymptotic procedures will be quite useful.

7. THE MATHEMATICS OF LP APPROXIMATIONS

We will often want to approximate functions over a broad range of values with relatively
uniform accuracy. In this case, we turn to LP approximations. LP approzimations finds
a “nice” function g which is “close to” a given function f in the sense of a LP norm. To
compute an LP approximation of f, one ideally needs the entire function, an informational
requirement which is generally infeasible. Inferpolation is any procedure which finds
a “nice” function which goes through a collection of prescribed points. When using
interpolation, the objective is to assure that if the data comes from a function ¢ then
the interpolant is close to g. Regression lies between L? approximation and interpolation
in that the amount of data used exceeds the number of free parameters, producing an
approximation which “best” fits the data. In all cases, we need to formalize the notions
of “nice” and “close to.”

7.1. Orthogonal Polynomials. We will next use basic vector space ideas to con-
struct representations of functions which will lead to good approximations. Since the
space of continuous functions is spanned by the polynomials, £™, it is natural to think of
the ordinary polynomials as a basis for the space of continuous functions. However, recall
that good bases for vector spaces possess useful orthogonality properties. We will develop
those orthogonality ideas to construct orthogonal polynomials.

Definition 7. A weighting function, w(zx), on [a, b] is any function which is positive and
has a finite integral on [a, b]. Given a weighting function w(zx), we define an inner product
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on integrable functions over [a, b]:

(f.g) = / f(2) g(x) w(z) da

The family of polynomials {¢,, ()} are mutually orthogonal with respect to the weighting
function w(z) if and only if

(On> Pm) =0, n Fm

There are several examples of orthogonal families of polynomials, each defined by a
different weighting function and interval. Some common ones useful in economics are
Legendre, Chebyshev, Laguerre, and Hermite polynomials. Legendre polynomials assume
w(x) =1 on the interval [—1, 1] ; the n’th Legendre polynomial is

P,(x) = (

The Chebyshev polynomials arise from w(z) = (1— :CQ)’% on [—1, 1]; the n’th Chebyshev
polynomial is
Ty () = cos(ncos ' x)

The Chebyshev and Legendre polynomials are useful in solving problems which live on
compact sets since a linear change of variables will transform in compact interval into
[—1,1]. The Laguerre polynomials correspond to w(z) = e~ % on [0, 0o0); the n’th member

is e g
€ n —&

— — (z"e

n! dz» ( )

Laguerre polynomials are useful when one needs to approximate time pa;chs of variables
in a deterministic analysis. Hermite polynomials arise from w(z) = e=* on (—o0, co);
the n'th member is

Ly(x) =

2 d" 22
%(6 )

Hermite polynomials are used to approximate functions of normal random variables.

H,(z) = (-1)"e"

7.2. Least-Squares Orthogonal Polynomial Approximation. Given f(z) de-
fined on [a, b], one approximation concept is least-squares with respect to the weighting
function w(zx). That is, given f(x), the least-squares polynomial approximation of f with
respect to weighting function w(x) is the degree n polynomial which solves

b
min / (f(z) — p(x))* w(x) dr.
deg (p)ﬁ’n a

In this problem, the weighting function w(z) indicates how we care about approximation
errors as a function of x. For example, if one has no preference over where the approxi-
mation is good (in a squared-error sense) then we take w(z) = 1. If one cared more about
the error around x = 0 we should choose a w(x) which is larger near 0.

The connections between orthogonal polynomials and least-squares approximation are
immediately apparent in solving for the coefficients of p(x) in the least-squares approx-
imation problem. If {®,}2°, is an orthogonal sequence with respect to w(z), and we
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define (f, ¢) = ff f(z) g(x) w(z) dz the induced metric is || f ||= {f, f), the least-squares
solution minimizes || f — p ||, and can be expressed

Note the similarity between least-squares approximation and linear regression. The
formula for p(z) is essentially the same as regressing the function f on n + 1 orthogonal
regressors; the coefficient of the i*th “regressor,” ¢,(x), equals the “covariance” between f
and the ¢’th “regressor” divided by the variance of the ¢’th regressor. This is no accident
since regression is a least-squares approximation.

Chebyshev Approximation. We will next describe some of the features of Cheby-
shev approximation since they play an important role in many applications.

Theorem 8. (Chebyshev Approximation Theorem) Assume f € C* [~1, 1]. Let
)= 0+ 3 T
j=1

where

2 /1 f(2) T;(z) do
ci = — e
’ ™ J_1 Vv1—2x2
Then there Is a b such that, for alln > 2

blnn

| f=Cnlloo <
Hence C,, — f uniformly as n — oo. Furthermore, there is a constant ¢ such that
il <e/i*, 5=1

This theorem has many useful aspects. First, if we compute a n-term Chebyshev
approximation, we need to assess the likelihood of it being “nearly” as good as the full
approximation. If the last few terms of the n-term approximation do not appear to be
dropping at the j~” rate indicated in the theorem, we would take this as evidence for
adding more terms; if the coeflicients are dropping at the indicated rate we feel more
comfortable in accepting the n-term approximation. Note that, even though the con-
struction is a least-squares approach, the convergence is uniform, a far stronger form of
convergence. Since uniform approximation is a more difficult problem, we instead use
Chebyshev approximation which, according to Theorem 8, will work nearly as well in the
uniform norm.

7.3. Interpolation. Interpolation is any method which takes a finite set of pointwise
restrictions and finds a function f: R™® — R™ satisfying those restrictions.
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Lagrange Interpolation. Lagrange interpolation takes a collection of n points in
RZ, (s, ¥i), t =1, ---, n, where the z; are distinct, and finds a degree n — 1 polynomial,
p(z), such that y; = p(x;), 4 =1, ---, n. The Lagrange formula demonstrates that there
is such interpolating polynomial. Define

r—x;
t@) =1] x-_;
g J

i

Note that ¢;(x) is unity at * = x; and zero at x = x; for ¢ # j . This property implies
that the polynomial

p(r) = Z yili(x)

interpolates the data, that is, y; = p(x;), ¢ = 1, ---, n. Furthermore, this is the unique
solution.

Hermite Interpolation. We may want to find a polynomial p which fits slope as
well as level requirements. Suppose we have data

p(xi):yi7 p,(xl):y{ ’ i:17'”7n

where the x; are distinct. Since we have 2n conditions, we are looking for at least a degree
2n — 1 polynomial which satisfies the conditions above.
We will construct the unique solution, p(z). First define the functions

hi(z) = (z — ;) bi(x)?
hi(z) = (1 =20 (2:) (x — z1)) €i(2)*

The critical facts are that h; is a function which is zero at all z; nodes except at x;, where
it is unity, and its derivative is zero at all =;, and the reverse is true for h;(xz). The unique
solution to the Hermite interpolation problem is

p(z) = Z yi hi(z) + Z yi hi(x)

7.4. Approximation Through Interpolation. Interpolation is extremely powerful
since it uses a minimal amount of information to construct an approximation. It is also
dangerous since the number of free parameters equal the amount of data. Furthermore,
we want the approximation to be valid generally, not just at the interpolation nodes. This
is not generally true for interpolation schemes. Consider the function f(z) = ﬁ over
the interval [—5,5]. Let p,(x) be the n’th degree polynomial which agrees with f at the
7+ 1 uniformly spaced (including the endpoints) nodes. Not only does p,, not converge
to f, but for |z| > 3.64, limsup,,_, ., |f(x) — pn(x)| = oo . Therefore, for a seemingly
well-behaved C™° function, interpolation at the uniformly spaced nodes does not improve
as we use more points.
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Interpolation Error. The last example may discourage one from approximating a
function through interpolation. While the example does indicate that caution is necessary,
with care we can reduce the likelihood of perverse behavior by interpolants. To see what we
can do, we examine the general interpolation error. Recall that the Lagrange polynomial
interpolating f at points @; is p,(z) = Y., f(xi)€i(x). Define

U(x; 21, Ty) = H(x — ).
k=1

The following theorem provides a bound on the interpolation error of the Lagrange inter-
polant.

Theorem 9. Assumea =29 <21 <--- < x, =b. Then

e 1@ =pn@ IS S e ()7 wp W0, 0) - (45)
r€la, zela,

This bound decomposes the interpolation error into three pieces. The first two are
independent of any analysts choice. However, the third term depends on the choice of
interpolation points. By making good choices for the x; we can substantially affect the
interpolation error.

Here we see a significant difference between the problem facing a numerical analyst and
the problems of an econometrician. An econometrician must take the values of f evaluated
at whatever points some data generating process provides. In contrast, in approximation
problems we get to choose where to evaluate f. In general, interpolation would be a bad
procedure for econometricians since there is in general no assurance that our data comes
from a good choice of x’s. When we can choose the points, there is some hope that we can
choose them to keep down the interpolation error. Furthermore, econometricians have
to deal with significant error in the observations of f, whereas in numerical contexts we
evaluate f with high accuracy.

Chebyshev Interpolation. We will next determine a good collection of interpola-
tion nodes. Note that our choice of {z;}? ; aflects only the maximum value of ¥(zx) ,
which in turn does not depend on f. So if we want to choose interpolation points so as
to minimize their contribution to (45), the problem is

min  max I;_; (x —xz)
L1, Tn z

The solution to this problem on [—1,1] is

2k—1
:Jck:cos< 5 7r>,l<::1,~~~,n

n

which are the zeros of T, (). Therefore, the interpolation nodes which minimize the error
bound (45) are the zeros of a Chebyshev polynomial adapted to the interval. This shows
that the Chebyshev interpolant is the best in terms of minimizing the worst-case error.
Furthermore, it also keeps the maximum error, || f —p;, ||, acceptably small, as the next
theorem shows.
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Theorem 10. (Chebyshev Interpolation Theorem) Suppose f € CF[a, b]. If I] is the
degree n Chebyshev interpolant, then there is some dj, such that for all n

2 d
17 =1 s (2 ot 1) +2) 26 )79

This theorem says that the Chebyshev interpolant converges to f rapidly as we use
more Chebyshev zeros. Furthermore, if f has &k derivatives, then the convergence rate is
O(n *log(n +1)). If f € C°, then we have O(n *log(n + 1)) convergence for all k; of
course, the proportionality constants, dy,, are also increasing in k. Convergence may seem
to be an unremarkable property, but recall that interpolation at uniformly spaced points
does not necessarily converge. Given these properties, Chebyshev methods are valuable
whenever the approximated function is smooth.

7.5. Approximation Through Regression. Another way to approximate a func-
tion arbitrarily well is to use regression. In regression, one evaluates the function f(x) at
m points, and use the resulting evaluations to choose a parametric approximation with n
parameters, n < m, which minimizes some loss function. The methods closest in spirit
to the material above are the seminonparametric methods, reviewed in Hardle[?]. A key
asymptotic result in the seminonparametric literature is that if m and n grow at appropri-
ate rates, then the approximation converges to f(x) as n — co. While regression methods
can be used, they are based on “random” choices of the z;, whereas other approximation
methods make efficient choices of the z; and will generally dominate regression.

7.6. Piecewise Polynomial Interpolation. Lagrange interpolation computes a C'°°
function to interpolate the given data. An alternative is to construct a function which is
only piecewise smooth. Two common schemes are Hermite polynomials and splines.

Step Function Approximation. One common approximation strategy in eco-
nomics is to use step functions. Step function approximations on [a,b] are generated
by a basis of step functions, {¢,; : ¢ =1,---,n} where h = %b and

0, a<z<a+(G@E-1)h
wilz) =<1, a+(i—1h<z<a+ih
0, a+ih<z<b

If the interpolation data are (x;, ;) and ¢;(x;) = 1, then the step function >, y;¢;(x)
interpolates the data. To get better approximations, one increases n.

Piecewise Linear Approximation. Piecewise linear approximations take a se-
quence of data, (x;,y;), and creates a piecewise linear function which interpolates the
data. If the x; are uniformly distributed, then they are generated by a basis of tent
functions, that is, functions of the form, for ¢ =0,---,n,

0, a<z<a+(i—1)h
_J(x—=(a+(E-1R)/h, a+(i—-1h<zx<a+ih
P =V 1 - = (et ih)/h,  a+ih<z<a+(i+Dh
0, a+(i+Dh<z<b

These are called tent functions since @, () is zero to the right of a+(i—1)h, rises linearly to
a peak at ¢ +th, and then falls back to zero at a+ (i+ 1)k, and remains zero. While both
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step function and piecewise linear approximations fit into our general linear approach,
they differ in that the basis elements are zero over most of the domain, and at each point
in the domain most basis functions are zero. This is the defining feature of finite element
approaches to approximation. While the resulting bases are not strictly orthogonal, they
are close to being so since the inner product of most distinct pairs of basis elements is
ZEro.

Hermite Interpolation Polynomials. Next, suppose that we have both level and
slope information at xq,---,z,. Within each [z;,x;+1] interval, we construct the Her-
mite interpolation polynomial given the level and slope information at x; and x;11. The
collection of interval-specific Hermite interpolations constitute a piecewise polynomial ap-
proximation. The resulting function is a cubic polynomial almost everywhere. However,
at the interpolation nodes, it is only C'. This lack of smoothness is often undesirable and
is addressed by splines.

Splines. Another piecewise smooth scheme is to construct a spline. A spline is
any smooth function which is piecewise polynomial but also almost as smooth where the
polynomial pieces connect. Formally, a function s(z) on [a,b] is a spline of order k if s is
C*=2 on [a, b], and there is a grid of points (called nodes) @ = g < o1 < - -+ < Z, = bsuch
that s is a polynomial of degree at most n—1 on each subinterval [z;,z;11],7=0,...,n—L.
Note that order 2 splines are just the common piecewise linear functions.

The cubic spline (that is, of order 4) is popular. Suppose that we have Lagrange
interpolation data {(z;,y;) | ¢ =0, ---, n}. The z; will be the nodes of the spline, and
we want to construct a spline, s(x), such that s(z;) = y;,4 =0, ---, n. On each interval
[z, iv1], s(z) will be a cubic a; + b; x + ¢; 2% + d; x3. The definition of a cubic spline
together with the Lagrange data provides us with 4n — 2 conditions on the 4n coefficients.
Various splines are differentiated by the two additional conditions imposed. One way to
fix the spline is to pin down s'(z¢) and s'(z,). For example, the natural spline imposes
s'(xo) = 0= s'(xy,). Hermile splines give s'(x¢) and s'(z,,) values f'(xo) and f'(x,) when
these are known.

In general, degree k£ splines with data at n nodes will yield O(n’(l‘“'l)) convergence
for f € C*+1[a,b]. Splines are excellent for approximations for two general reasons. First,
evaluation is cheap since splines are locally cubic. To evaluate a spline at x you must first
find which interval [z;, ;1] contains z, then find the coeflicients for the particular cubic
polynomial used over [z;, z;11], and evaluate that cubic at x. The second reason for using
splines is that good fits are possible even for functions which are not C™ or have regions
of large higher-order derivatives, situations where orthogonal polynomials do not do as
well since global approximation schemes have difficulties in dealing with small regions of
high curvature. On the other hand, if a function is well-behaved, orthogonal polynomials
will generally do better.

7.7. Shape-Preserving Interpolation. Above we have focused on the pointwise
convergence properties of various approximation schemes. Sometimes we will want to both
interpolate data and preserve some shape in the data. For example, if the interpolation
data indicates an increasing function, we may want to compute an approximation which
is increasing everywhere, not only node-to-node but also between the interpolation nodes.
Even though a scheme which converges pointwise will asymptotically preserve shape, these
methods are not satisfactory since we will want to preserve the shape when we have a small
amount of data, not just when we have large amounts of data. It is on this dimension where
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the difference between orthogonal polynomials and piecewise polynomial approximations
are important since orthogonal polynomials will not generally preserve shape.

Schumaker[117] presents a particularly simple way to construct shape-preserving quadratic
splines. Suppose we want to find a function s € C1[t, 5] such that

S(ti) = Zi, S,(ti) = 84, 1= 1,2

and, furthermore, suppose 2; < 29, 81 > sg, implying that the data are consistent with a
concave function. The task is to find an interpolating function s which is also concave.
Schumaker accomplishes this by adding one interpolation node £, € [t;,t;11] and con-
structs quadratic functions over [t;,&,] and [,, ;1] which together make a concave C*
function s on [t;,%;41]. In general, if the data on [t;,t;11] are consistent with monotonic-
ity, concavity, convexity, or nonnegativity, then one can construct a piecewise quadratic
function which is monotone, concave, convex, or nonnegative on [t;,%;+1]. The nontrivial
fact here is such a §, exists for any interpolation data. By piecing together these functions
over subintervals, we can preserve shape globally. If one does not have slope information,
one need only to choose the slope parameters so as to be consistent with the shape of the
data. Schumaker also shows how to make judicious estimates of the slopes.

There are many papers on this topic; see Judd[74] for several references.

7.8. Multidimensional Approximation. Most economic problems involve several
dimensions — physical and human capital, capital stocks of competitors, wealth distribu-
tion, etc. When we attempt to approximate functions of several variables, many difficulties
present themselves. We will discuss multidimensional interpolation and approximation
methods, first by generalizing the one-dimensional methods via product formulations,
and then by constructing inherently multidimensional schemes.

Tensor Product Bases. Tensor product methods build multidimensional basis
functions up from simple one-dimensional basis functions. If {¢,;(z)}32, is a basis for
functions of one real variable, then the set of pairwise products, {¢; (T)p; (y)}$3=1 is the
tensor product basis for functions of two variables. To handle n dimensional problems
in general, one can take all the n-wise products, and create the n-fold tensor product
of a one-dimensional basis. The tensor approach can extend orthogonal polynomials and
spline approximation methods to several dimensions. One advantage of the tensor product
approach is that if the one-dimensional basis is orthogonal in a norm, the tensor product
is orthogonal in the product norm. The disadvantage is that the number of elements
increases exponentially in the dimension.

Complete Polynomials. There are many ways to form multidimensional bases and
avoid the “curse of dimensionality.” One way is to use complete polynomial bases, which
grow only polynomially as the dimension increases. To motivate the complete polynomials,
recall Taylor’s theorem for R™ in Theorem 1 above. Notice the terms used in the k’th
degree Taylor series expansion. For & = 1 , Taylor’s theorem uses the linear functions
Py ={1,21,22, -+ ,Zy}. For k =2, Taylor’s theorem uses

_ 2 2
Po=PrU{al, -, 25,2102, 2123, , Lp—1Tn, }-

Py contains some cross-product terms, but not all; for example, z;z2x3 is not in Py, In
general, the k’th degree expansion uses functions in

n
Pr=A{al-al | Y i <k, 0< iy, - in).
=1
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The set Py, is the complete sel of polynomials of tolal degree k.

Complete sets of polynomials are often superior to tensor products for multivariate
approximation. The n-fold tensor product of {1,z,--- ,xk} contains (k + 1)™ elements,
far more than Py. For example, Py contains 1+ n + n(n + 1)/2 elements compared to
3™ for the tensor product. Taylor’s Theorem tells us that many of the tensor product
elements add little to the approximation saying that the elements of P;, will yield a k’th
order approximation near xz°, and but that the n-fold tensor product of 11,z k}
can do no better than k’th order convergence since it does not contain all degree k: +1
terms. This suggests that a complete family of polynomials will give us nearly as good an
approximation as the tensor product of the same order, but with far fewer elements.

Finite Element Approaches. Finite element methods use bases whose elements
have small support. One simple example is bilinear interpolation. Suppose we have the
values of f(x,y) at (x,y) = (£1, £1). Then, the following 4 functions form a cardinal
interpolation basis:

(1+2)(1-y)
(1-2)(1+y)

] x [=1, 1], which is an example of

or(ry) =73 (1—2)(1—-y), @a(
p3(ry) =1 (1+z)(1+y), @4

The bilinear approximation to f on the square [—1,
an element, is

F(=1, =D (@,y) + F(L =1 a(x,y) + F(1, D)oy (2,y) + f(=1, Dy (,v).

T,y
i (16)

N N

) 1
y=1
1

The approximation is linear at each edge, but generally has a saddlepoint curvature on
the interior. To interpolate data on a two-dimensional lattice, we create the bilinear
approximation on each square.

Finite element methods consist of partitioning a domain into several elements, and
patching together the local approximations on the elements, but this is not easy. Since we
generally want the result to be a continuous function, care must be taken that resulting
approximation is continuous across element boundaries. With bilinear interpolation, this
will hold since any two approximations overlap only at the edges of rectangles, and on
those edges the approximation is the linear interpolant between the common vertices.
If we know that we are approximating a smooth function, then the kinks at the edges
of the elements may make bilinear approximation unappealing. Assuring smoothness at
element boundaries is an increasingly difficult problem as we increase the desired degree of
differentiability and the dimension. The bilinear finite element scheme is just the simplest
of a large number of finite element approximation schemes. There is a large literature on
finite element approximations of multidimensional functions (see Burnett[22]).

Neural Networks. The previous approximation procedures are based on linear
combinations of polynomial functions. Neural networks provide us with an alternative
and inherently nonlinear functional form for approximation. A single-layer neural net-
work is a function of the form

F(a:9) = h(Y_ Biga) (a7)

where x € R" is the vector of inputs and & and g are scalar functions. A common form
chooses g(z) = x, reducing (47) to the form h(87x). A single hidden-layer feedforward
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network is the form
F(x;8,7) = Z% Zﬁg% (48)

Note the simplicity of the functional forms; this simplicity makes neural network approx-
imations easy to evaluate.

The data for a neural network consists of (y,z) pairs such that y is supposed to be
the output of a neural network if x is the input. This requirement imposes conditions on
the parameters § in (47 ) and 8 and « in (48). One fits single-layer neural networks by

finding 3 to solve
mlnz F(2%; 8))?

and the objective of a single hidden—layer feedforward network is to solve

min » (y; — F(27; 8,7))%.

By =
J

which are just instances of nonlinear least squares fitting,.

The approximating power of neural network approximation is indicated by theorems
of Horni, Stinchcombe and White (see White [122] for a wide-ranging discussion of neural
networks and their properties). Let GG be a continuous function, G : B — R, such that
ffooo G(x)dx is finite and nonzero and G is LP for 1 < p < oco. Let

Y(G)={g: R" = R| g(x) =3, 6;Gw -x+b;), b;,6, € R,
wi € R* wI A0, m=1,2,---}

be the set of all possible single-hidden layer feedforward neural networks using G as the
hidden layer activation function.

Theorem 11. Let f: R™ — R be continuous. Then for all ¢ > O probability measure i,
and compact sets K C R™, there is a g € X" (G) such that

sup |f(z) - g(x)] <

zeK

and
/R @) —g@)| du <

This also holds when G is a squashing functions, i.e., G : R — [0,1], G is nondecreasing,
lim, .0 G(z)=1, and lim, . o G(z)=0."

These are universal approximation results which justifies the use of neural network
approximation, and helps explain its success. There is some evidence that neural network
approximation methods may be particularly efficient at multidimensional approximation
in the sense of needing relatively few free parameters; see Barron[6] for a recent result.
The theoretical development of neural networks is proceeding, but is inherently difficult
because of the nonlinearity of this approach.

14 Note that a squashing function is a cumulative distribution function and vice-versa. A common choice
for G is the sigmoid function, G(z) = 1/(1+ e~ %).
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8. APPLICATIONS OF APPROXIMATION TO DYNAMIC PROGRAMMING

Approximation methods are a key part of most numerical procedures. They are partic-
ularly important in discrete-time dynamic programming problems. These problems are
among the most useful and basic of dynamic economic problems, with well-understood
theoretical properties. We will briefly discuss them and the approximation aspects of
numerical dynamic programming.

Let 7(u, x)be profit flow if the state is x and the control is u. Suppose the law of
motion is

Tir1 = g(x¢, Ur)

Then the value function, V(z), solves
V(z) = max w(u, ) + 8V (g(z, w) = (TV)(x) (49)

The standard theoretical procedure is to iterate on the basic functional equation, (49).

If we could handle arbitrary functions, we would start with a guess, Vj, and then compute
the sequence {V,,} generated by

Vo, =TVu_1 (50)

This procedure converges when viewed as a mapping in the space of value functions.

On the computer, however, one cannot store arbitrary functions. There are several
details which need to be decided to compute approximations to (50). Since we cannot deal
directly with the space of continuous functions, we focus on a finite-dimensional subspace.
We will approximate V(z) as a finite linear sum of basis functions.

Vi) = Z aip(x) = V(x, @) (51)

Numerical procedures construct a V(x) which approximately satisfies the Bellman equa-
tion, (49). More specifically, the objective is to find a vector, @ € RN, such that V solves
(49) as closely as possible.

The basic task is to replace T, an operator mapping continuous functions to continuous
functions, with a finite-dimensional approximation, 7', which maps functions of the form
in (51) to functions of the same form. We construct T in two steps. First, we choose a
finite collection, X, of points x, and evaluate (TV) () at © € X. We will refer to this as
the mazximization step since it is the maximization problem in (49) at z. The resulting
values are points on the function TV. Since we are approximating a continuous value
function, we use that information to choose a value function of form (51) which “best”
summarizes the information generated concerning TV. This is the critical approrimation
step, and we denote the result 7'V. In essence, T' takes a function of form (51), V, and
maps it to another function of the same form, and is therefore a mapping in the space
of coeficients, and the objective is to find a fixed point for T in the space of coefficients.
We can also view 1" as a mapping from continuous functions to the finite-dimensional
subspace representable as V(x, @), in which case the problem is to find a fixed point of
T in the space of functions of form (51).

The details of the approximation aspects of this procedure — choosing a basis for the
expression of V', choosing points X to evaluate TV, and fitting the data — are important.
We next discuss some basic approaches.
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8.1. Discretization Methods. The simplest approximation procedure is to discretize
the state space, that is, they replace the problem on a continuous state space with one
with a finite number of points. This has the advantage of reducing the problem to one
of finite matrices. The other advantage is that the resulting analysis exactly solves some
similar economic problem. See Rust[112] for a discussion of numerical dynamic program-
ming procedures. Even in the case of discrete—state dynamic programming, projection
solution ideas come into use. The key computation in the discrete—state approach is the
solution of a large linear system. This can be accomplished approximately by using the
GMRES method (see Saad and Schulz[113]) which essentially computes a few directions
and finds an approximate solution which is spanned by these directions and minimizes a
loss function.

While the discretization method does not obviously fit the description above, it is
generally equivalent to approximating the value function with a step function'®. However,
step functions are highly inefficient ways to approximate a smooth value function. Because
of this, the discretized state space method is unlikely to be of much value in economic
analysis outside of naturally discrete problems, one—dimensional problems, or problems
where the solutions are so nonsmooth that discretization is competitive with smooth
approximation schemes. The impracticality of discretization is indicated by the fact that
supercomputers are often used. Multidimensional problems are practically impossible,
even for supercomputers, since the “curse of dimensionality” is particularly vexing for
this method; if N points are used for a one-dimensional problem, then N? points will
be used for a d -dimensional problem. There are several ingenious methods for making
discrete state problems more efficient; see Rust[112] for a description of these algorithms.
We will focus on the alternatives presented by the application of approximation ideas.

8.2. Multilinear Approximation. While the discretization approach has been pop-
ular in macroeconomics, many other economists and the operations research literature
in general have moved instead to continuous approximations of the value function. The
simplest example of this is the DYGAM package discussed in Dantzig, et al. [41] which
used multilinear interpolation on hypercubes when computing Vn+1 from the information
generated by TV,. In economics, Zeldes[130] has used piecewise linear approximations in
life-cycle modelling,.

This procedure has several advantages. Far fewer nodes are needed compared to a dis-
cretization method since the continuity of V' is being exploited. There are some difficulties.
First, the kinks make the optimization step more difficult, and are unrepresentative of V'
if V is C2. Second, multilinear approximation generates curvature properties which may
cause multiple local optima in the optimization step. The problem is that the interpolation
may not have the same shape as the data.

8.3. Polynomial Approximations. If a little continuity is good, then more should
be better if V' is sufficiently continuous. In this spirit, Bellman et al.[7] proposed the use of
polynomials, Daniel[38] discussed the use of splines, and Johnson et al[64] report comput-
ing experience with a variety of approximation schemes. Judd[74] presents an example
of using a tensor-product basis of Chebyshev polynomials to solve a three-dimensional

15 After computing the solution to (50), many users then use linear interpolation to estimate the value
function at points not part of the discretized state space. Since this linear interpolation is done only after
the value iteration is completed, it does not affect these comments and it’s contribution to improving the
algorithm’s accuracy is limited.
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optimal growth problem. The advantages of polynomial approximations are that fewer
points are evaluated and increased smoothness makes the optimization step more rapid.

There are, however, some problems which may arise with polynomial approximation
which don’t arise with discretization or multilinear approximation. The difficulty is that
many interpolation schemes do not preserve shape. Even if we use the best possible
interpolation scheme, the resulting approximation may not be good in between the nodes
in X, and can lead to instabilities in the value iteration algorithm. To deal with this,
Judd and Solnick[78] proposes the use of shape-preserving polynomials to construct value
function approximations, and computes upper bounds on the error which are superior to
those from the discretization approach. In particular, this leads to convergence proofs
for value function iteration with shape-preserving approximation, an important fact in
itself since there can be no such proof for value iteration with polynomial approximation
schemes in general.

9. PROJECTION METHODS

Our discussion of dynamic programming indicated that approximation ideas may be useful
in solving the operator equations which arise in dynamic programming. We next discuss
how these ideas from approximation theory naturally lead to algorithms for solving many
of the operator equations which arise in economics. They are called projection methods,
also known as weighled residual methods. We will describe the general projection approach
for solving general operator problems. In fact, most of the techniques currently used by
economists are also projection methods when viewed from the general perspective.

The first important observation is that in many economic models, equilibrium can
be expressed as a collection of functions. In dynamic programming problems, that un-
known function will be either the value function and/or the optimal policy function. In
dynamic games, the unknown functions are the agents’ strategy functions. In optimal
growth models, the unknown function may be the optimal policy function. In dynamic
equilibrium models, the unknown functions would include functions which indicate con-
sumption demand, labor supply, asset trading strategies, and asset and commodity prices,
all as functions of the underlying state variables. For specificity, consider the following
simple deterministic growth problem:

o0
D B ule)
=0

where capital obeys the law of motion

kit1 = f(kt) — Ct

To calculate the optimal consumption policy (and competitive equilibrium consumption
function), h(k), it is enough to focus on the Euler equation,

0 =u'(h(k)) — Bu'(A(f (k) — h(K))) f'(f (k) — h(K))

The basic idea of projection techniques is to first express equilibrium conditions on
these functions as a zero of an operator, N : By — By, where B; and By are function
spaces. In (52) above, the Euler equation error is defined to be that operator, where
B; and By are both equal to the space of continuous functions on [0,00). In general,
the operator A can be an ordinary differential equation, as in optimal control problems,

W () (k) (52)
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a partial differential equation, as in continuous-time dynamic programming, or a more
general functional equation, as in Euler equations expressing necessary conditions for
recursive equilibria (as formulated in Prescott and Mehra[26]). Of course, space and time
limitations make it impossible for computers to store and evaluate all possible elements
of By. To make the problem tractable, projection methods focus on a finite-dimensional
subspace of candidates in By which can be easily represented on a computer and is likely
to contain elements “close” to the true solution. The selection of this finite-dimensional
space naturally exploits approximation methods. It may be difficult for the computer to
evaluate A, in which case we find a computable operator, ./\7, which is “similar” to N.
Within the finite-dimensional space of candidate solutions, we find an element which is
“almost” a zero of N.

While the basic idea is natural, there are many details. The key details are specifying
the approximation method we will use, the finite-dimensional subspace within which we
look for an approximate solution, and the computer representation of A/, defining what
“close” and “almost” mean, and finding the approximate solution. By studying these
details, we will see how to implement these ideas efficiently to solve numerically interesting
dynamic nonlinear economic problems.

9.1. General Projection Algorithm. We next describe the projection method in
a general context. One begins with an operator equation representation of the problem,
that is, one reduces the economic problem to finding an operator A and a function f such
that equilibrium is represented by the solution to

N(f)=0

where f: D C RN — RM N : B; — By, and the B; are function spaces. Typically N is
a composition of algebraic operations, differential and integral operators, and functional
compositions, and is frequently nonlinear. We shall show how to implement the canonical
projection technique in a step-by-step fashion. We first give an overview of the approach,
then highlight the critical issues for each step, and discuss how the steps interact.

The first step is to decide how to represent approximate solutions. One general way
is to assume that our approximation, f , is built up as a linear combination of simple
functions. We will also need a concept of when two functions are close. Therefore, the
first step is to choose a basis and an appropriate concept of distance:

Step 1) Choose bases, ®; = {¢,;}32,, and inner products, < -, - >;, over Bj, j =1,2.

The basis over By should be flexible, capable of yielding a good approximation for the
solution, and the inner products should induce useful norms on the spaces.
Next, we decide how many basis elements to use and how to implement N

Step 2) Choose a degree of approximation n for f, a computable approximation N of
N, and a collection of n functions from By, p; : D — RM i=1,--- n.

The approximate solution will be f = 22, a; @;(x). The convention is that the ¢, increase
in “complexity” and “nonlinearity” as i increases, and that the first n elements are used.
The best choice of n cannot be determined a priori. Generally, the only “correct” choice
is n = co. Larger n should yield better approximations, but one is most interested in the
smallest n which yields an acceptable approximation. One initially begins with small n
and increases n until some diagnostic indicates that little is gained by continuing. Similar
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issues arise in choosing N. Sometimes we can take N = A , but more generally some
approximation is necessary. The p; are the projection directions we will use to determine
a.

Step 1 lays down the topological structure of our approximation and Step 2 fixes the
flexibility of the approximation. Once we have made these basic decisions, we begin our
search for an approximate solution to the problem. Since the true solution f satisfies
N(f) = 0, we will choose as our approximation some f which makes A (f) “nearly”
equal to the zero function. Since f is parameterized by @, the problem reduces to finding
a coefficient vector @ which makes N ( f ) nearly zero. This search for @ is the focus of

Steps 3-5.

Step 3) For a guess @, compute the approximation, f = X7, a; ¢;(2), and the residual
function,

R(z; @) = V() (@).

The first guess of @ should reflect some initial knowledge about the solution. After the
initial guess, further guesses are generated in Steps 4 and 5, where we see how we use the
inner product, < -, - >g, defined in the space Bs, to define what “near” means.

Step 4) For each guess of @, compute the n projections,
Pi(@) = (R(-; @), pi(-))2,i=1,---,n.

Step 5) By making a series of guesses over @ and iterating over steps 3 and 4, find @
which sets the n projections equal to zero.

This general algorithm breaks the numerical problem into several distinct steps. It
points out the many distinct techniques of numerical analysis which are important. First,
in Steps 1 and 2 we choose the finite-dimensional space wherein we look for approximate
solutions, hoping that within this set there is something “close” to the real solution.
These steps require us to think seriously about approximation theory methods. Second,
Step 4 will involve numerical integration if we cannot explicitly compute the integrals
which define the projections. Third, Step 5 is a distinct numerical problem, involving the
solution of a nonlinear set of simultaneous equations or the solution of a minimization
problem. We shall now consider each of these numerical problems in isolation.

Choice of Basis and Inner Product. There are many criteria which the basis
and inner product should satisfy. The full basis ®; for the space of candidate solutions
should be “rich”; in particular, it should be complete in By. We will generally use inner
products of the form

(@), 9@ = /D f(@)g(x)w() dv

for some weighting function w(x) > 0.

Computational considerations also play a role in choosing a basis. The ¢, should be
simple to compute. They should be similar in size to avoid scaling problems. While
asymptotic results such as the Chebyshev Interpolation Theorem may lull one into ac-
cepting polynomial approximations, practical success requires a basis where only a few
elements will do the job. This requires that the basis elements should “look something
like” the solution. In particular, our discussion of approximation methods above shows
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that we should use smooth functions to approximate smooth functions, but use splines
to approximate functions which may have kinks or other extreme local behavior. We will
also see that the use of orthogonal bases will enhance efliciency and accuracy. Because of
its special properties, a generally useful choice is the Chebyshev polynomial family. If, on
the other hand, one has a basis which is known to efficiently approximate the solution,
one should use that instead or combine it with the Chebyshev polynomials. A good,
problem—specific, choice of basis can substantially improve algorithmic performance over
the generic approximation methods discussed above. However, the generic approaches are
usually quite acceptable if one has no apparent problem—specific alternative.

Choice and Evaluation of Projection Conditions. Projection techniques in-
clude a variety of special methods. Generally we use < -, - > to measure the “size” of
the residual function, R(x; &@). The general strategy is to find an @ which makes R(z; @)
small. There are several ways to proceed.

First, we have the least-squares approach which chooses @ so as to minimize the

“weighted sum of squared residuals”:
min (R(z; @), R(x; @) ).

This replaces an infinite-dimensional operator equation with a nonlinear minimization
problem in R™. The standard difficulties may arise; for example, there may be local
minima which are not global minima. The objective may be poorly conditioned. However,
there is no reason for these problems to arise more often here than in any other context,
such as maximum likelihood estimation, where extremal problems are solved numerically.

While the least-squares method is a direct approach to making R(zx; @) small, most
projection techniques find approximations by fixing n projections and choosing @ to make
the projection of the residual function in each of those n directions zero. Formally, these
methods find @ such that (R(x; @), p;(x))2 = 0 for some specified collection of functions,
p;. Different choices of the p; defines different implementations of the projection method.

One such technique is the Galerkin method. In the Galerkin method we use the first
n elements of the basis for the projection directions. Therefore, @ is chosen to solve the
equations:

Pi(@) = (R(z; @), pi(z)) =0, i=1---.n

Notice that here we have reduced the problem of solving a functional equation to solving a
finite set of finite-dimensional nonlinear equations. In some cases in physics, the Galerkin
projection equations are the first-order conditions to some least-squares minimization
problem, in which case the Galerkin method is also called the Rayleigh-Ritz method. This
is not as likely to happen in economics problems because of the inherent nonlinearities.
There are obviously many ways to implement the projection idea. A collocation
method takes n points from the domain D, {z;}"_;, and chooses @ to solve
R(z;; @) =0, i=1,---

? ?

n

This is a special case of the projection approach since R(z; ;&) equals the projection of
R(x;d@) against the Dirac delta function at z;, &6(xr — x;). This projection is written
(R(z; @), 6(x — x;))2. Orthogonal collocation chooses the collocation points in a special
way. The chosen x; are the zeros of the n’th basis element, where the basis elements
are orthogonal with respect to the inner product. The Chebyshev Interpolation Theorem
suggests its power. Suppose we have found an @ such that R(2]";d) =0,i =1, ---, n,
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where the 2" are the n zeros of T,,. As long as R(x;d) is smooth in x, the Chebyshev
Interpolation Theorem says that these zero conditions force R(z;d) to be close to zero
for all z, and that these are the best possible points to use if we are to force R(z;d) to
be close to zero. Even after absorbing these considerations, it is not certain that even
orthogonal collocation is a reliable method; fortunately, its performance turns out to be
surprisingly good.

Choosing the projection conditions is a critical decision since the major computational
task is the computation of those projections. The collocation method is fastest in this
regard since it only uses the value of R at m points. More generally, the projections
will involve integration. In some cases one may be able to explicitly perform the inte-
gration. This is generally possible for linear problems, and possible for special nonlinear
problems. However, our experience is that this will generally be impossible for nonlinear
economic problems. We instead need to use numerical quadrature techniques to compute
the integrals associated with evaluating {-,-). A typical quadrature formula approximates
ff f(z) g(z) dx with a finite sum Y, w; f(x;) where the x; are the quadrature nodes and
the w; are the weights. Since these formulas also evaluate R(z;@ ) at just a finite number
of points, z;, quadrature-based projection techniques are essentially weighted collocation
methods. The advantage of quadrature formulas over collocation is that information at
more points is used to compute the approximation, hopefully yielding a more accurate
approximation of the projections.

Finding the Solution. Step 5, which determines @ by solving the projection con-
ditions computed in Step 4, uses either a minimization algorithm (in the least-squares
approach) or a nonlinear equation solver to solve the system P(@) = 0. Many alternatives
exist, including successive approximation, Newton’s method, and homotopy methods, all
of which have been used in the economics applications of the projection method.

10.  APPLICATIONS OF PROJECTION METHODS TO RATIONAL EXPECTATIONS
MODELS
Most methods used in numerical analysis of economic models fall within the general
description above. We will see this below when we compare how various methods attack
growth problems. The key fact is that the methods differ in their choices of basis, fitting
criterion, and quadrature techniques. With the general method laid out, we will now
report on a particularly important application to show its usefulness.

10.1. Discrete-Time Deterministic Optimal Growth. Weexamine optimal growth
problems in discrete time and show how projection techniques can be adapted to calculate
solutions. The stochastic case is one which has been studied by many others with various
numerical techniques. In fact, one point we make below is that most of these procedures
are really projection methods. By recognizing the common projection approach underly-
ing these procedures, we can better understand their differences, particularly in accuracy
and speed. We conjecture that the comparative performances of these various imple-
mentations of projection ideas in the discrete-time stochastic optimal growth problem is
indicative of their relative value in other future problems.

We first examine the deterministic growth problem described above which is character-
ized in (52). We shall now describe the details of a projection approach to that problem.
The domain D of our approximation will be [k, kxs]. &y, and kjps are chosen so that the
solution will have k confined to [k, ky]. In particular, [k, k] must contain the steady
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state, a point which we can determine before calculations begin. Our approximation to h
is parametrically given by

h(kﬂ 55) = Zaﬂﬁi(k)

where 7 is the number of terms used. Common choices include the Chebyshev polynomials
(k) = 7},1(2]!;4—:]“]?; — 1), the tent functions, or the ordinary polynomials.

In this problem, A is a simple operator using only arithmetic operations and com-
position. Therefore, we can take N =N . Since h is continuous, we define AV to have
domain and range in C°[k,,, ky]. Hence, By = By = C°lky,, kas], the continuity of A in
the L> norm following from the u, f, and h being C; in all their arguments. Given the
Euler equation, (52), the residual function becomes

R(k;@) = ' (h(k: @) — B/ ((F(R) — h(k: @);@)) (£ (k) — Alk; @) = N (R)

To compute @, we can do one of several things. First, we consider orthogonal collo-
cation. We choose n values of k, denoted by k;, ¢ = 1,...,n. We then choose @ so that
R(k;;@) = 0 for each ¢ . Orthogonal collocation chooses the k; to be the n zeros of .
The Chebyshev Interpolation Theorem strongly argues for using Chebyshev polynomials
in this case. If R(k;;d) = O for each k;, then we would like to conclude that R(k; ;@) is
the zero function on the domain D. The Chebyshev Interpolation Theorem says that this
is most justified if the k; were the Chebyshev zeros, and that if we use Chebyshev zeros,
we are very likely to R(k;;@) to be nearly zero.

We could also implement the Galerkin method. If we use Chebyshev polynomials as
a basis, then we use projections with the inner product

(). (k) = | " FR)g(yw(k)dk
where bk
w(k) = (1- (2ﬁ —1)?)73.

With this choice of inner product, the basis is orthogonal. The Galerkin method computes
the n projections

Pi(a’)z/k U Rk a) v, (k) wk) dk,  i=1,....n

and chooses @ so that P(@) = 0. Here the difficulty is that each P;(@) is an integral which
needs to be computed numerically. The form of w(k) implies the use of Gauss-Chebyshev
quadrature. That is, we approximate F;(@) = 0 conditions with

m
0= R(kj;;@) ¢;(k;)
j=1
for some m > n, with the k; being the m zeros of 4, ;.
When we have calculated our estimate of @, we would like to check if this procedure
yields reliable approximations. Several diagnostics can be used to see if the proposed
solution is acceptable. First, the a; coeflicients decline rapidly in k, as predicted by the



APPROXIMATION, PERTURBATION, AND PROJECTION METHODS IN ECONOMIC ANALYSIS 48

Chebyshev approximation theorem. Second, the low-order coeflicients should be insensi-
tive to the choice of n. While these facts do not prove that the approximation is good, we
would be uncomfortable if the high-order coeflicients were not small, or if the coeflicient
estimates were not stable as we increase n. We also want to examine test cases to see if the
results from the projection method agree with the answer from another method known to
be accurate. Judd[72] performs these tests on a variety of empirically interesting cases,
finding that the projection method applied to this model is very accurate and very fast.

Table 2 (which is taken from Judd[72]) indicates the kind of accuracy which can be
achieved. We assume that f(k) was Cobb-Douglas with capital share of .25, and that the
steady state capital stock is & = 1. We first solved the problem with an 800,000 point
discretization over the range [.5,1.3]. We then used the projection method to solve the
problem. The entry under PROD indicates the output at &k, and CONS indicates the
optimal consumption as computed by a 800,000 point discretization method. The entries
under n = 9,6,4,2 columns indicate the error of the degree n polynomial approxima-
tion. The notation a(—m) means a x 10~™. The results indicate that even a low-order
approximation does quite well.

Table 2: Errors in Consumption Policy Function

k PROD CONS n=9 n =206 n=4

I
B

050 0.1253211 0.1147611  3(=7)  3(=7) 001 —1(—4
0.70 0.1401954 0.1335954 —3(—7) —3(=7) —1(—6) —4
0.80 0.1465765 0.1421165 —2(—7) —1(=7) —5(—6 —4
0.90 0.1524457 0.1501957  4(—7) 0.04 —5(—6

[
T

110 0.1629916 0.1652816 —2(—7) 2
130 0.1723252 0.1792852  2(—7) 2(-7) 4

— O NN

/r/\/\/r/\/\/\
W~ W~
e Nl N N N N N

(
=
1.00  0.1578947  0.1578947 0 —001 —3(-6)
(—6)
(=6)

The tent function approach was used in Bizer and Judd[11] in a similar model. There
the interpolation nodes were chosen to be uniformly distributed in D. The advantage of
the piecewise linear approximation is that the resulting interpolation is shape-preserving.
This may be useful since we know that A is monotone increasing. However, the shape—
preservation considerations turn out not to be important relative to the differentiability
considerations which argue for Chebyshev polynomials. The policy functions computed in
Judd[72] using Chebyshev polynomials were monotone increasing, and using tent functions
substantially reduced the algorithm’s efficiency.

10.2. Stochastic Optimal Growth. We next turn to a stochastic optimal growth
model. This example will show us how to handle multidimensional problems and the
conditional expectations which arise in stochastic dynamic problems. We will also be
able to describe the parameterized expectations method of solving rational expectations
models.

More specifically, we examine the problem

max E{X2, 8" u(e)}
ki1 = 0:f(ke) — ¢ (53)
In 0t+1 =p In 015 + €141
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where 0, is a stationary AR(1) multiplicative productivity parameter. We will assume
that the productivity shocks € ~ N(0, 02) are independent. In this problem, both the
beginning-of-period capital stock and the current value of 8 are needed for a sufficient
description of the state. Hence, consumption is a function of both k and 0, h(k,0), and
the Euler equation is

u' (h(k,0)) = B E {u'(h(0f (k) — h(k,0),0)) 0f'(0f (k) — h(k,0)) | 0} (54)

At this point, we will rewrite the Euler equation to make it more linear. We know
that projection algorithms work well for linear problems. Perhaps our algorithm will do
better if we make it more like a linear problem. To that end, rewrite (54) as

0= h(k,0) — ()" (B E {u' (WO (k) — h(k,0),0) 0f (0f (k) — h(k,0)) | 6})  (55)

Note that (55) has two terms, one linear in h(k,#), and the other is similar to a CRTS
function of next period’s potential consumption values. This is the problem investigated
in Judd[72] and in the Taylor—Uhlig symposium. We shall now describe and compare the
various methods.

The procedure for finding h is similar to the deterministic case. First of all, we need
to approximate the policy function. Judd[72] and Coleman|[36] use approximations of the

form
ne me

h(k,0:8) =" ait;(k,0)
i=1 j=1

where the ¢;; functions are products of Chebyshev functions of £ and @ in Judd, and tent
functions of Ink and Inf in Coleman[36]. Judd[72] also considered complete polynomi-
als. Comparisons followed the considerations outlined above. Since the policy function is
smooth, the smooth approximation procedures did better with the complete polynomial
approach doing best, that is, the greatest accuracy per unit of computer time. Coleman’s
choice of a finite element approach reduced efficiency since it used far more basis elements;
furthermore, it cannot switch to a complete polynomial approach. These differences be-
tween the spectral approach advocated in Judd and the finite element approach used in
Coleman become even larger as we move to higher dimensions.

In their approach to the stochastic growth model, den Haan and Marcet [57] parame-
terized the policy function to be

Wk, 0) = (k0% )/ = (exp{8; + 62 Ink + 63In0})> (56)

that is, they assume that log consumption is a linear function of In %k and In 8. However,
this basis is not orthogonal. When they tried to improve the approximation to a quadratic
form in Ink and In#, the lack of orthogonality lead to difficulties which prevented them
from improving on the linear approximation. They argue that the collinearity of their
basis elements is “a fortunate situation” and justifies their focus on low-order polyno-
mial approximations. In contrast, the use of orthogonal bases in Judd and the use of a
finite element approach in Coleman leads to no difficulties in finding substantially better
approximations beyond low-order polynomials.

The comparisons of the Coleman, den Haan and Marcet, and Judd approaches to
solving 54 illustrates the importance of approximation ideas. den Haan and Marcet, and
Judd use polynomials to approximate what is presumed to be a smooth function. Cole-
man’s contrasting use of finite elements introduces kinks in the approximation which forces
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him to use many elements. The finite element approach and the orthogonal polynomial
approach avoids the multicollinearity problems which limited den Haan and Marcet to
low—order approximations. As these papers discuss, these differences lead to considerable
differences in computational speed and accuracy in the final result.

10.3. Problems with Inequality Constraints. The optimal growth problem de-
scribed above was simple in that the equilibrium was described in terms of an Euler equa-
tion which always had an interior solution. In some problems, constraints mean that the
first-order conditions must be complemented with complementary slackness conditions.
This was the nature of the problems which were the first to lead to numerical solutions
of nonlinear rational expectations equilibria. Gustafson [56] investigated the problem of
equilibrium storage of a storable commodity. He assume that output in period £ is an
exogenous random variable, Z;, which is divided between a change in storage, Sy 1 — St
(S; is the beginning-of—period-t stock), and consumption, ¢;. In equilibrium, price is a
function of total stock, p(St + x:), and obeys the conditions

p(Se + ) — E{p(Sit1 +x411)} = 0
(57)
(p(S: +z¢) — E{p(Ses1 +2t41)})Se1 = O

where S¢i1 = S + ¢ — D(p(St + z+)) and D(p) is the demand function.

In some states of the world, the equilibrium storage level will be zero and the price
function will not be a smooth. Gustafson[56] used a piecewise linear approximation of
the equilibrium price function in his solution method. Piecewise linear approximations
are relatively inefficient because many pieces are necessary to get a good approximation.
In their analysis of the problem (which also generalized Gustafson to handle endogenous
output) Williams and Wright solved for F{p;+1 | Si+1} as a function of S;41,expressing
this year’s expectation of next year’s price conditional on the amount stored for next year.
This function determines the current price, future supply, and current stockpiling through
an Euler equation similar to (57), but is smooth because it is a conditional expectation.
Hence, they found that a low—order polynomial approximation was sufficient to solve
the problem. Miranda and Helmburger [98] also used this insight in their analysis of
stockpiling. Christiano and Fisher[32] applied the Wright—Williams technique for handling
the inequality constraint to a constrained version of (53) and found similar advantages to
using a smooth approximation.

This discussion points out two facts when dealing with inequality constraints. First,
we can still use the same approximation ideas but we may have to adapt to handle the
kinks which may arise. Second, skillful construction of the problem may result in finding
a smooth function which characterizes equilibrium and allows us to use the more efficient
smooth approximation schemes. Again, approximation ideas can be exploited to produce
superior methods.

10.4. Dynamic Games. Methods which are useful for dynamic programming are also
naturally useful for computing closed—loop (also known as Markov) equilibria of dynamic
games. This holds since each player solves a dynamic programming problem, and equi-
librium can be expressed as a coupled collection of Bellman equations for each player’s
dynamic programming problem. Kotlikoff, Shoven, and Spivak[80] used ordinary poly-
nomials in their study of strategic saving and bequests. Miranda and Rui[99] computed
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closed—loop equilibria for dynamic stockpiling games among commodity producing coun-
tries. They used Chebyshev polynomial approximations to players’ value functions and
projection methods to determine equilibrium value functions. In both cases, equilibrium
was computed with relative ease.

10.5. Continuous Time Problems. The examples above have been of discrete-time
systems. Projection methods have also been used to solve continuous—time models. One
simple example is the canonical continuous-time optimal growth problem described above
in (21), which reduced to solving the differential equation:

0= ') (7(k) =€) — eI = ) = & (4 )

Judd[71] used a basis of Chebyshev polynomials to approximate C(k) with C’(k:,a) =
Z::Ol a; T;(k), on a large interval of capital stocks. Again, the performance of the al-
gorithm was very good, independent of the details of the implementation. In fact, it
easily outperformed the more commonly used shooting approach to the problem. Judd
also extended this model to allow for taxation and uncertainty in continuous time. In
all cases, accurate results were obtained quickly. Since projection methods were initially
developed to deal with continuous—time systems represented by ordinary and partial dif-
ferential equations, this is not surprising. One suspects that continuous—time systems in
general will be readily computed with projection methods.

10.6. Models with Asymmetric Information. Many of the examples discussed
above reduced to applying the projection method to standard mathematical problems —
ordinary and partial differential equations and integral equations. To demonstrate the
flexibility of the projection method, we next examine a very different kind of problem
— equilibrium where individual agents have different information. These problems do
not reduce to any of the standard operator problems discussed in applied mathematical
literature. However, one can attack them successfully with the projection method. We
will first describe an application to asset markets with asymmetric information. We will
then discuss other economic problems where these methods have potential.

Information and Asset Markets. Asset market equilibrium with imperfect infor-
mation have been rigorously studied in recent years. Grossman[54] and Grossman and
Stiglitz[55] began a long literature on the partial equilibrium analysis of security markets
with asymmetric information. However, much of this literature makes very special and
simple assumptions about the distribution of returns, the information asymmetries, in-
vestor tastes, and asset structure. The restrictions substantially limit the generality of
the results and the range of questions which can be addressed.

Recently, Judd and Bernardo[76] applied projection methods to analyze these models
without special functional form assumptions. A simple one-period investment problem
illustrates the method. Suppose each investor invests in two assets. The safe asset pays
out R dollars per dollar invested, and the basic risky asset (we will call it stock) pays out
Z dollars per share. If an investor begins the first period with W dollars in cash and 6
shares of stock, and ends the first period with 6 shares of stock which trade at a price of
p dollars per share, his second, and final, period consumption will be

= (W —(0—0)p) R+ 0Z. (58)
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The first-order condition for the choice of 8 will be
0=E{d(&) (Z—pR)| I} (59)
where [ is the investor’s information set.

Computing Conditional Expectations. The conditional expectation in (59) im-
plies that our equilibrium concept involves a conditional expectation. Numerical imple-
mentation of the conditional expectation conditions is the most challenging aspect of
this problem. To solve this problem, Judd and Bernardo used the following definition of
conditional expectation:

Z(X) = E{Y | X}

if and only if
E{(Z(X) - Y)f(X)} =0

for all bounded measurable functions, f(X), of X. Intuitively, this says that the prediction
error of the conditional expectation, F{Y | X}, is uncorrelated with any measurable
function of the conditioning information, X. This definition replaces the conditional
expectation with an infinite number of unconditional expectation conditions.

Computing an Asymmetric Information Rational Expectations Equilib-
rium. We now show how to compute an equilibrium. Assume three types of investors,
with type i investors observing y;. The state of the market includes all private signals,
y = (y1,Y2,¥y3), but each investor sees only the market-clearing price and his own infor-
mation. Therefore, a rational expectations equilibrium includes a price function p(y) and
type-specific demand policy functions, 6;(p,y;) for i = 1,2,3, such that given p(y), 6;
solves (59) for i =1,2,3 , and 2?21 0.,(y;, p(y)) =1 for all states y.

In their solution, Judd and Bernardo [76] approximate the price law, p(y1,y2,y3), and
the demand rules, 6;(p(y),y;), with multivariate polynomials. To determine the unknown
coeflicients in those polynomials, they impose projection conditions on the investors’ first-
order conditions. The first-order-condition for a type ¢ investor is given by

By 7{W(&)(Z —pR) | yi,p} =0, i=1,2,3. (60)

Using the definition of conditional expectation given above they impose projection condi-
tions of the form

By z{u'(&)(Z — py) R)p(y) yf} =0, . (61)

for various choices of j, & > 0. The condition in (61) states that the product of the excess
return and the marginal utility of consumption for a type ¢ agent is uncorrelated with
polynomials in p(y) and y;.

After imposing a sufficient number of such conditions, the result is a system of projec-
tion conditions constituting a finite nonlinear system of algebraic equations. This reduces
an infinite dimensional functional problem to a finite-dimensional algebraic problem. The
projection conditions given in equations (61) are only part of the conditional expectation
condition given in equation (60). The hope is that a small number of projections can yield
a useful approximation. Judd and Bernardo document the accuracy for this approxima-
tion method for a variety of distributions. Overall, their experience is that this method
is reliable and reasonably fast.
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10.7. Convergence Properties and Accuracy of Projection Methods. When
using numerical procedures, it is desirable to know something concerning its errors. An
important focus of theoretical numerical analysis is the derivation of bounds on errors.
Two kinds of error results are desirable. First, it is desirable to derive an upper bound on
the error for a given level of approximation. Second, if such upper bounds are not possible,
it may still be valuable to know that the error goes to zero asymptotically, that is, as one
lets the degree of approximation become arbitrarily large. The first kind of error infor-
mation is rarely available. More typical in numerical algorithms for differential equations
are asymptotic results. There has been little work on proving that the algorithms used by
economists are asymptotically valid. Fortunately, there are general theorems concerning
the consistency of the Galerkin method. Zeidler [128] and Krasnosel’skii and Zabreiko[81]
demonstrate consistency under a variety of conditions. Even though it remains to be seen
whether these theorems do cover our problems, they do indicate that projection methods
are potentially valid for our economic problems.

Even if one had a convergence theorem for a method, it is clear that one cannot just
blindly accept any answer one gets from a computation. Asymptotic theorems have a
nasty feature of telling you only that the error goes to zero as your computational effort
approaches infinity, but generally not telling you at what finite level of effort you may
stop. Therefore, a more pragmatic approach is to ignore convergence theorems and instead
use diagnostics to ask whether a solution is acceptable. We actually did that above in
our construction of (26). There the issue was how well a perturbation expansion solved
a continuous-time Fuler equation. We constructed the approximation, substituted it in
the Euler equation, and used the result, (26) to measure the amount of irrationality an
economic agent is guilty of in equilibrium if each agent followed our approximate rule. If
that number is small, say a dollar per million spent, then we argue that the approximate
rule is as reasonable a prediction for behavior as the “true” equilibrium since people
generally do not optimize beyond one part in a million.

In economic problems we can generally compute such diagnostics and measure the level
of implied “irrationality.” This diagnostic approach to evaluating a candidate solution
can be applied independent of the computational method which produced the candidate
solution. It does not rely on convergence; in fact, even if one uses a convergent method,
one should still use such diagnostics to make sure that one did not stop the method too
early. Furthermore, if one uses a method for which there is no convergence theorem, but
it produces a solution which passes such diagnostics, the lack of a convergence theorem is
irrelevant.

11. HYBRID PERTURBATION-GALERKIN METHOD
We have discussed both perturbation and projection methods for solving economic models.
While they are different approaches to approximation problems, we will next describe
a method, the hybrid perturbation-Galerkin method which synergistically exploits their
differences and similarities.
Suppose that there are a continuum of problems to be solved indexed by a parameter
€ with the form

N (f(z,€);¢) =0

Suppose that we can solve the € = 0 instance. The result of applying perturbation methods
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near the ¢ = 0 solution is the calculation of a series of the form

n

f(@,€) ~ > 8i€) () (62)

1=0

where the @, (z) functions are computed by the perturbation calculations and the §; (¢) are
the generally prespecified gauge functions. Similarly, the result of a projection approach
is an approximation of the form

[0 = ai©)pi() (63)

n
1=0

where the @, (z) functions are the prespecified basis elements of the approximation sys-
tem and the a;(€) coefficients are computed by the projection method. The strength of
perturbation methods is that the approximations are quite good (in fact, asymptotically
optimal) for small ¢, but the weakness is that the quality may not hold up as ¢ increases.
The projection approach tries to be good for any €, but the difficulty is finding good bases
which will allow the series in (63) to be short. Therefore, the strengths and weaknesses
of these methods are complementary.

This observation turns out to be substantive. The idea of the hybrid perturbation-
Galerkin method is to use the ¢;(x) functions from perturbation calculations as the basis
functions to be used in a projection method. We know that these functions constitute an
optimal basis for small €, and that the optimal weight on ,(z) is &;(¢) for small e. The
conjecture is that the ¢; functions still form a good basis for approximating f(z,e€) but
that the weight on g, should not be the prespecified 6,(¢) but rather should be computed
by (63).

Our continuous-time growth model gives a simple example of this approach. Recall
the continuum of problems represented (27) and the related expansion (28). The objec-
tive there was to use a perturbation method to solving (21). We will use the results of
the perturbation approach to develop a projection approach to solving (21). The first
perturbation was the function

Ce(k) = kplat =) + (v — p)k (64)

Note that this function has a singularity at & = 0, a feature which is possibly also true of
the solution to C(k, 1). This feature is absent in the orthogonal bases we discussed above.
We see here already that this procedure has produced a basis element which has some
advantages. To see if this is a good basis element, one can compare the basis {1, k, Cc(k)}
with the basis {1, k, k2}. Computations show that the custom-made basis lead to solutions
which had much smaller errors.

Note what (64) really suggests. Since the function % is already in the basis, C. (k)
essentially adds the production function, &%, to the basis. This reflects the general idea
that the basis should be augmented by functions which are natural to the problem. Above
we used differentiability properties to motivate basis elements. The hybrid approach
attacks more precisely the problem of developing problem—appropriate bases.

Continuing the perturbation approach will generate a series of functions which can be
used as a basis for a projection approach. For example, Cc.(k) is a complicated function
which essentially adds 2%~ ! to the basis {1,%,Cc(k)}. This additional element is not
as intuitive as C(k), showing that the perturbation method will bring in elements other
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than obvious ones. Again, computations show that the basis {1,k, Ce(k), Cec(k)} does
much better than the basis {1, k, k%, ¥} in solving

These additional basis elements will possibly be collinear with previous elements. How-
ever, for any specified inner product, we can use a standard Gram—Schmidt procedure to
construct a basis which spans the same space and is orthogonal. In this way, we can com-
bine the conditioning advantages of orthogonal bases with the desirable shape properties
of the perturbation functions.

Judd[73] discusses further the usefulness of this approach to producing bases. The
example above just hints at the method’s potential. In this example, reducing the number
of basis elements is not important since the basis size is not a limiting factor in one-
dimensional problems with smooth well-behaved solutions. However, basis size is a very
important consideration in multidimensional problems. In those problems, a few well-
chosen basis elements may allow for drastic reduction in basis size. One suspects that
the hybrid perturbation-Galerkin method has substantial potential in multidimensional
problems where economizing on the basis size is important.

The hybrid perturbation-Galerkin method also points out the value of combining meth-
ods. Since economics problems do not fit into standard mathematical classifications, it is
likely that skillful combinations of various techniques will prove to be a powerful technique.

12.  CONCLUSIONS

In this chapter we have reviewed a collection of approximation ideas which have proved
themselves useful in computational analyses of economic models. We have also shown
that a general class of techniques from the numerical partial differential equations litera-
ture can be usefully applied and adapted to solve nonlinear economic problems. Despite
the specificity of the applications discussed here, the general description makes clear the
general usefulness of perturbation and projection methods for economic problems, both
theoretical modelling and empirical analysis. The application of perturbation and projec-
tion methods and the underlying approximation ideas have already substantially improved
the efficiency of economic computations. Further exploitation of these ideas will surely
lead to further progress.
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