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1. Introduction

An important issue in the evaluation of tax policy is its impact on investment. Most

work has concentrated on the e�ect tax rates has on the steady-state cost of capital and

the associated steady-state level of capital supply (see, e.g., Brock and Turnovsky [1981],

Feldstein, Green and Sheshinski [1978]). In this paper, we examine the impact of various tax

rates on investment outside of the steady state and over a small �business cycle�. We �nd

that tax and monetary policies may have an important impact on the dynamic behavior of

investment independent of the conventionally computed e�ective tax rate.

We examine a representative agent perfect foresight model of investment with ination,

taxation of nominal corporate pro�ts, tax credits proportional to gross investment, and

nominal depreciation deductions. The dependence of the steady-state cost of capital and

capital stock on such a tax structure is well-known (see Brock and Turnovsky [1981]). This

paper examines the impact of tax and monetary policies on the local dynamic behavior of an

economy around its steady state. In particular, we determine the �rst-order approximation

of the relation between investment and output if a business cycle is driven by shocks to the

capital stock or productivity since the negative eigenvalue of the linearized deterministic

system is the rate of convergence to the target level of capital stock when shocks are small.

We �nd that the structure of taxes is important in determining investment above and

beyond the determination of the steady-state cost of capital. For example, if one increases

both the investment tax credit and the corporate income tax so as to leave the cost of

capital unchanged, the rate of convergence to the steady state level of capital is increased if

depreciation allowances exist and utility is separable between consumption and money. The

reasons for these e�ects are intuitive. Suppose that we increase the corporate tax rate and

the investment tax credit so as to leave the steady state required rate of return and capital

stock unchanged. In the steady state the term structures of the marginal product of capital

and the interest are constant. However, if there is a shock which reduces the capital stock,

the term structure of interest rates will become downward sloping, converging to the steady-

state rate. Increasing the investment credit and the tax rate e�ectively gives the �rm more

money in the short-term and takes more in the long-run in response to a unit of investment.

2



If the present value of the tax burden is unchanged with a at term structure then it is

reduced with a declining structure converging to the original rate. This reduced tax burden

makes the investment more attractive. Therefore, the investment response to this shock will

be a�ected by the composition of the tax structure independent of the e�ective tax rate.

This essay addresses the robustness and quantitative signi�cance of this e�ect.

When the model is parameterized using existing empirical estimates of the key param-

eters we show these e�ects to be nontrivial. For example, if money has no real e�ects and

true economic depreciation is used for tax purposes, then if the investment tax credit is

increased by .05 and the reduction in the cost of capital is o�set by an increase in the tax

on corporate pro�ts, then net investment is multiplied by about 1.1 around the steady state

level of capital, that is, ten percent more net investment if capital stock is below the steady

state and ten percent more disinvestment otherwise.

Manipulation of tax rates during the business cycle has often been suggested as a sta-

bilization or stimulation instrument. The investment tax credit was initially instituted to

stimulate �xed business investment and help bring the economy out of a recession. Indi-

vidual income tax cuts have also been used to stimulate the economy, supposedly through

income e�ects on the demand for consumption goods. We do not examine this kind of

counter-cyclical tax policy. Rather, we examine how the cyclical behavior of the economy is

a�ected by level and composition of capital taxation. It is known that the dynamic behavior

of the economy around its steady state is a�ected by the level of the tax rate, essentially

because of the income e�ects induced by taxation and because capital taxation e�ectively

acts to reduce the curvature of the individual utility function (see Judd [1987]). In this

paper, we hold �xed the e�ective tax rate, thereby inducing no steady-state income e�ect.

However, there are many ways to combine the tax rate on corporate income, depreciation

rules, expensing rules, ination, and investment tax credit policy to accomplish any single

cost of capital. We �nd that changing the mix of these various tax policies will a�ect the

investment response of any �rm to a shock which sends the economy away from its steady

state. In particular, the variance of investment will increase and the variance of output will

decrease if the capital stock is subjected to serially uncorrelated shocks.
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Similar studies by Fischer [1979] and Asako [1983] have shown that monetary policy in

a perfect foresight representative agent model may not be �superneutral�, that is, monetary

policy may leave the steady-state capital stock unchanged but a�ect the rate of convergence

to the steady state because of a Tobin-Mundell portfolio e�ect causing agents to substitute

out of money and into capital as ination rises. Abel [1985] examined the same issue in a gen-

eral equilibrium cash-in-advance model of money with capital, showing that the steady-state

capital stock depended on monetary policy to the extent that the cash constraint applied

to investment expenditures. He also examined the dependence of capital accumulation on

monetary policy. None of those authors examined the quantitative signi�cance of the e�ects.

Our analysis subsumes the Tobin-Mundell issue and shows that in the absence of taxation

this e�ect is negligible when plausibly parameterized.

However, changes in monetary policy are important beyond the well-understood e�ect on

the cost of capital in the presence of nominal treatment of depreciable assets. One of the

novel features of this general equilibrium analysis is the explicit incorporation of nominal

depreciation. Comparing our analysis with that of Fischer and Asako indicates that if there

were any empirical evidence of nonsuperneutrality it would more likely be due to interactions

between monetary policy and nominal tax rules than due to any purely monetary e�ect.

Section 2 describes the general model we use. Section 3 determines the nature of equilib-

rium. Section 4 analytically examines the main point of this study in a particularly tractable

reduced version of the general model. Section 5 discusses the case when utility is separable

in consumption and money. If our dynamic analysis had only a deterministic interpretation

then it would be of little interest since, in the long run, the economy is in the steady state.

However, this analysis has broader implications and Section 6 discusses the connection be-

tween the eigenvalues we study and real business cycles. Section 7 investigates the more

general model using a wide range of plausible parameterizations, showing that these e�ects

remain important. Sections 8 and 9 present concluding observations.

2. Model

We adapt the general equilibrium model used previously by Brock and Turnovsky by

including nominal depreciation to study corporate taxes assessed on nominal quantities, a
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better approximation of reality. This extension is particularly important for understanding

the interaction of the tax system and monetary policy. For simplicity of exposition, all

variables are expressed in real terms.

We assume an economy with one produced good, the numeraire, which serves both

consumption and investment purposes. The agents in the economy are described by a rep-

resentative consumer with an in�nite life who maximizes the present discounted value of his

utility ow:

(1)
Z
1

0
e��t U (c(t); m(t)) dt

subject to an instantaneous budget constraint

c(t) + �k(t) + �m(t) = r(t)k(t) + w(t)`� �(t)m(t)� Tax (t) + Tr (t)

where
� = pure rate of time preference

U = instantaneous utility

c = rate of consumption of the numeraire good

r = real rate of return on capital net of depreciation

k = capital stock, in consumption units

w = wage rate

` = labor supply, set at one unit per period

� = ination rate

m = real money balance

Tax = taxes, to be speci�ed below

Tr = transfers

We choose to put money in the utility function since it is just a convenient way to

generate a demand for money. It is equivalent to assuming a transactions cost function which

depends on c and m (see Feenstra [1986]). Feenstra argues, the alternative Clower constraint

approach to money demand is just an extreme transactions cost speci�cation. We suspect

that our analysis would generalize to that model of money demand. We did run simulations
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of the purely monetary model with Clower constraints, as formulated by Abel, �nding that

the monetary nonneutralities were equally insigni�cant. These considerations indicate that

the transaction cost approach implicit in our model is an appropriate formulation of money

demand for our purposes.

The production sector of the economy is described by a constant returns to scale pro-

duction function in capital and labor. For simplicity, the labor supply is assumed to be

exogenously determined, however we must emphasize that none of the results of this paper

hinge on that fact. Since labor is inelastically supplied, it is convenient to choose the units

of labor so that the capital stock equals the capital-labor ratio. Thus, output is equal to

(3) F (k) = �k + f(k) = �k + kf 0(k) + (f(k)� kf 0(k)) = (r + �)k + w

where f 0 denotes the net marginal product of capital and � the depreciation rate of capital,

corresponding to exponential decay.

The government raises revenues by printing money and by taxing the gross return on

capital. Furthermore, it spends part of that revenue on tax expenditures such as the invest-

ment tax credit, depreciation allowances and expensing. Some of the net revenue raised by

government is removed from the economy, being expended in a fashion which a�ects utility in

a separable way. Remaining government revenues are rebated to the consumer in a lump sum

fashion, constituting the transfer component, Tr, of the agent's budget constraint. Because

of the competitive assumptions, the consumer takes as given all government actions and the

return from capital and labor. The analogy of these two approaches with static models is

that rebating in a lump sum fashion is akin to constant yield incidence while discarding the

revenues is more akin to equal yield incidence.1

The government has six instruments under its control to raise revenues:

1 For the latter to be exactly true, welfare exercises should compare the tax system with a lump sum one
at the margin. Another way of handling the excess revenue is through bond repurchase. Although bonds
are not present in this model, they could be added with no di�culty (see Brock and Turnovsky (1981)).
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� = the growth rate of nominal money stock

� = the tax rate on gross corporate income (net of wages)

� = the tax credit on new investment

� = allowed rate of depreciation of nominal undepreciated capital

� = the fraction of new investment expenditures that can be immediately expensed

1� � = the level of indexing of the historical capital base.

The tax on gross income has full loss o�set, although for our conclusions this feature is

irrelevant. Although current legislation does not allow full loss o�set, as long as pro�ts are

always positive, as is the case around a steady state in a deterministic model, no losses will

arise.2 Furthermore, mergers will accomplish the same. Both the tax credit and the partial

expensing, �, are granted on all investment, replacement and new. Standard depreciation

reduces taxes at a rate �� of the real value of capital that was not expensed, has not yet

been depreciated, and was not inated away. The budget constraint of the consumer can

now be rewritten to take into account both the production function and the speci�c taxes

he must face:

(4)
c+ �k(t) + �m(t) = w`+ rk � (r + �)k� + �( �k + �k)

+ �� ( �k + �k) + ��k = �m+ Tr

�K = ��K + (1� �) ( �k + �k)� ��K

where K is �book� capital, that is, the real value of undepreciated capital carried on the

�rm's tax accounts. In order to express all the variables in real terms, the historical (nominal)

value of undepreciated capital must be devalued by the ination rate with 1 � � of that

devaluation added back by indexing. If �k+ �k becomes negative, i.e., capital is reduced at a

faster rate than it depreciates, we are implicitly assuming that the investment tax credit and

the fractional expensing are fully recaptured at the corresponding fraction of the real value

2 Although this provision is not in the current tax code, there were provisions in the past, such as tax
lease-back agreements, that allowed unpro�table �rms to sell their deductions to pro�table �rms.
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of capital sales.3 When �k + �k < 0, equation (5) is not an appropriate description of reality

for the historical value of undepreciated capital, K, as (1��) ( �k+ �k) indicates a reduction

in the historical value of capital equal to the current value of capital taken out, while the

capital taken out is carried on the books at a much lower value, lowered by ination since

purchase and by the fractional depreciation at rate �. However, since �k + �k is positive

around the steady state and our focus is on local behavior around the steady state, our

assumptions are appropriate.

Even when the system of di�erential equations (4) and (5) truly represent the consumer's

budget, i.e., when �k + �k > 0, we are implicitly making assumptions to guarantee that

pro�table trades cannot be made by various consumers to reduce their tax burden on capital.

In the present context, we must be concerned about sales of capital in place which may

generate tax bene�ts but leaves the aggregate level of capital unchanged.4 To address this

issue, it is assumed that all gains and losses on capital sales are taxed uniformly at a rate � .

We assume that when a unit of capital is exchanged, the buyer gets an expensing deduction

of � and the seller is credited with � in taxable income, eliminating the possibility of gain

from capital exchange under the expensing rule if all face the same tax rate. We assume

likewise for investment tax credit, �.5 In the case of depreciation, we must be more careful.

If the undepreciated base is smaller than the value of the capital being sold, then recapture,

that is, augmenting taxable income by the excess of the sale price over the undepreciated

value, generates a loss greater than the future depreciation value of the asset at the new base,

and there is no tax gain from an exchange of assets. This is the case when � > � � �, the

depreciation rate on the nominal base is greater than rate of decline in the nominal value of

capital (increased by ination and decreased by physical deterioration). This condition was

3 This is not quite an accurate description of recent tax practices. Under 1986 Law, if an asset used
ACRS, excess depreciation is recaptured as ordinary income, but if linear depreciation is used, the capital
gains rate is used. We would argue that our assumption is an appropriate simpli�cation.

4 The obvious easy answer to this problem, although not very enforceable from a practical point of view,
is to give no tax credit or expensing (or recapture) on sales of old capital and to pass along the undepreciated
part of the capital base at the time of sale.

5 Investment tax credits were forgiven at two percentage points per year; for example, if an asset received
a ten percent credit and was held for two years, only sixty percent of the original credit is recaptured. This,
in conjunction with the depreciation rule to be discussed below, is su�cient to guarantee the absence of
net gain. The loss of recaptured depreciation more than o�sets the gain from getting a new investment tax
credit. Under the Tax Reform Act of 1986, there is no longer any investment tax credit.

8



certainly a good approximation of the recent past. Even the recent accelerated depreciation

rules probably did not produce tax gains from exchanging assets su�cient to cover associated

transactions costs. In summary, we assume rules su�ciently strict and enforceable that pure

churning of assets is not pro�table.

3. Dynamic Equilibrium

We are now ready to derive the equations describing the optimal paths by real capital, k,

book capital, K, and their respective private shadow values, �k and �K. The Hamiltonian

of the representative agent's problem is:

(6)

H = e��t U(c;m) + �k

�
w` + rk(1 � �)� (� � �� � �) �k

+ ��K � x� c+ Tr
�
(1� � � �� )

+ �mfx� �mg

+ �K

�
�(� � ��)K + (1� �) �k

+ (1� �)
�
w`+ rk(1� � )� (� � �� � �) �k

+ ��K � x� c+ Tr
�
(1 � � � �� )�1

�

where �m is the private shadow price of money balances and the identity x = �m+ �m has

been used to eliminate �m from the budget constraint (4). When we impose the equilibrium

condition r = f 0(k), the equilibrium costate equations become:

(7)
��k = �k

n
� + � � (f 0(k) + �) (1� � ) (1� � � �� )�1

o
� �K(1� �) (f 0(k) + �) (1 � �) (1� � � �� )�1

(8) ��m = �m f�+ �g � Um

(9)
��K = �K

n
� + � + �� � (1 � �)��(1 � � � �� )�1

o
� �k�� (1� � � �� )�1

The Maximum Principle implies

(10) 0 = Uc � (�k + (1 � �)�K) (1� � � �� )�1
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(11) 0 = �k(1� � � �� )�1 � �m + (1 � �)�K(1� � � �� )�1

From (10), we obtain an expression for consumption

(12) c = c(m; �k; �K; �; �; �)

for some function c(�), of m, �k; �k; �; � , and �. Using the time derivative of (11),

( ��K(1 + �)� ��K + ��k) (1� � � �� )�1 + (�k + (1� �)�K) �

( �� + �a� + � �� ) (1� � � �� )�2 = ��m

along with (7)�(9), (11), and (12), we obtain

(13) � = �(m;k; �k; �K; �; �; �; ��; �� ; ��)

for some function �(�). Thus, the ination rate depends not only directly on current money

and capital stocks and indirectly on future ones through the shadow values of real and base

capital, but also directly on current levels and changes in tax parameters.

The dynamics of the system is completely described by three of the above di�erential

equations, (5), (7), (9), and two additional di�erential equations (14) and (15). Since tax

revenues are lump sum rebated, the material balance equation is

(14) �k = f (k)� c� g

where g is the amount of input consumed by the government. The real money equation is6

(15) �m = m(�� �) :

Note that this system of �ve di�erential equations, (5), (7), (9), (14), and (15), uses the two

implicit functions c and �, de�ned by (12) and (13).

4. Steady State and Local Analysis

6 This does not imply that m is a continuous function of time. If �, � , or � have discontinuities, then
their time derivatives are Dirac delta functions, as � will be, causing a jump in m in accordance with (15).
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In steady state, all the time derivatives in (5), (7), (9), (14), and (15) are zero. From

(15), it follows that � = � and from (14), f(k) = c + g. Also by (5), it follows that in the

steady state

(16) K = (1� �) � (� + ��)�1k :

From (7) and (9), we have

(17)
�� = (�+ �) (1 � � )�1[(1� � � �� )� (1� �)�� (�+ � + ��)�1]� �

= (�+ �) (1� � )�1 [T �BR�1]� � ;

where �� is the steady state cost of capital and marginal product of capital, T = 1 � � �

��;B � (1��)�� , and R = �+�+��. T is the consumption cost of one unit of investment,

B is the steady-state stream of depreciation deductions per unit of gross investment, and R

is the discount rate for determining the real value of the depreciation stream.

From (9), we know that

(18) �K = �� (RT �B)�1 �k :

in the steady state. Also, (8), (10), and (11) implies that relationship

(19) Um = (�+ �)Uc

at all times, which can be used to solve m as a function c and �. Finally, from (10) and

(18), we �nd that the marginal utility of consumption is proportional to the private shadow

value of physical capital,

(20) �k = [T �BR�1]Uc

The �nal step in the analysis is to linearize the �ve di�erential equations (5), (7), (9),

(14), and (15) around a steady state. The values at the steady state value of a variable x is

denoted by x�. By inspection, we observe that K does not appear in any equation but the

one describing �K. This implies that the linearized dynamics can be analyzed separately for

the other four equations and that one of the eigenvalues is R � BT�1 � � which is always

positive if (1 � � ) > �. The linearized system around k�; ��k and m� is0
BBB@

�k
��k
��K
�m

1
CCCA = J

0
BBB@

k � k�

�k � ��k
�K � ��K
m�m�

1
CCCA
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where J is the matrix2
6664

f 0(k�) �c�k �c�k �cm
f 00(k�)(1� � )(�k + (1 � �)�K)T

�1 (� + �)B(RT )�1 (1 � �)(�+ �)[B(TR)�1 � 1] 0
��K�k ���T�1 + ��K��k R �BT�1 + ��K��K ��K�m
�m�k �m��k �m��K �m�m

3
7775

where cx and �x are the derivatives with respect to x in (12) and (13).

In the remaining sections we examine tractable special cases which demonstrate the

essential features of how the composition of tax instruments a�ect dynamic behavior and

discuss numerical examinations of the full system to validate the robustness of these prop-

erties.

5. Adjustment Speed in a Purely Real Model

In this section, we will analyze the importance of the composition of the taxes for the

speed adjustment to a new steady state in a simple case. We do this to give an intuitive

explanation of the e�ects we study. These e�ects are most clearly illustrated in the two-

dimensional reduced version examined in this section.

We linearize the model around its steady state and note that the stable eigenvalue is

the rate of convergence to the steady state. We �nd that this rate of investment depends

crucially on the tax composition, even when we hold �xed the e�ective tax rate and the

target level of capital. For this exercise, we will initially examine a reduced version of the

original model to highlight the main points.

In this section, we assume that there is no money in the model and that the taxes are

paid in real quantities. The absence of money is modelled by assuming Um = 0 everywhere.

If there are to be no e�ects of ination then there are only two possible levels of depreciation

for tax purposes, � = 0 or �. In either case, there is no di�erence between an investment

tax credit � or an immediate expensing � such that �� = �. Therefore, let � = 0 in the

remainder of this section. The cost of capital equation (17) becomes

(21) �� = (� + �) (1 � �)=(1� � )� � � ��=(1� � )

When � = 0, the taxes a�ect �� through the ratio (1��)=(1�� ), but not when � = �. Since

Um � 0, if � = � the equilibrium system reduces to (14) and the sum of (7) and (9), yielding
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a di�erential equation in k and �k+�K � �. Linearizing the dynamic system corresponding

to (14) and the sum of (7) and (8), we obtain

(22)

 
�k
��

!
=

�
f 0(k�) �1=((1 � �)Ucc)

�f 00(k�)(1 � �)Uc 0

� �
k � k�

�� ��

�

where f 0(k�) = �� de�nes k�, the steady-state capital stock. This system has the following

negative eigenvalue:

(23) � =
f 0(k�)

2

�
1 �

�
1 �

4(1 � �)

(1 � �)

�c�L
�K�

Uc
cUcc

�1=2�

where �L; �K, and �c are labor income, capital income, and consumption, respectively,

expressed as fractions of net output in the steady state.

For a given steady-state cost of capital, the speed of adjustment to the steady-state for

small deviations from the steady state depends on taxes solely through (1�� )=(1��). When

� = 0, for a given cost of capital, ��, the composition of taxes does not a�ect � except

through �� since both �� and � depend only on (1� � )=(1� �). However, in the alternative

case of true economic depreciation, � = �, � depends not only on �� but also on the mixture

of � and � which given ��. 7 Theorem 1 summarizes.

Theorem 1: If UM � 0 and � = �, then if � and � are increased so as to leave �� unchanged,

then � is increased in magnitude. If Um � 0 and � = 0, � is una�ected by changes in � and

� which leave �� unchanged.

Proof: Straightforward di�erentiation

The intuitive explanation for Theorem 1 rests on term structure considerations. The

di�ering results for the � = 0 and � = � cases are due to the di�erent dependence on the term

structure of interest rates. In the case of no depreciation deductions, a unit of investment is

undertaken if and only if the cost does not exceed the present value of returns, i.e.,

1 � PV � � +
Z
1

0
e�
R t
0
(s)ds e��t F (1� � )dt

where p � Uc and  � �� �p=p, the required net rate of return. A unit of investment at t = 0

results in an extra e��t units of capital at t, earning F 0(1� � ) per unit after taxes. Suppose

7 It is interesting to note that a joint increase in � and � leaving �� unchanged leads to higher tax revenue.
This result can be interpreted as a lump sum tax on capital in place due to rise in � , with the rise in �

compensating for the distortion and providing the necessary incentive to maintain the capital stock.
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� is increased by d� and � by d� so as to leave the steady-state cost of capital unchanged.

Then d� = (�+ �)=(�� + �) d� and

dPV = 1�
Z
1

0
e�
R
t

0
(s)ds e��t (�F 0)

� �+ �

�� + �

�
dt

In equilibrium, however, F 0 = (1� �) ( + �)=(1� � ). Substituting this into the expression

for dPV and using �� = (�+ �) (1� �)=(1� � )� � shows that dPV = 0, independent of the

path of . Therefore, even outside of the steady state, this change in taxes will not a�ect

investment.

However, if � = �,

PV = � +
Z
1

0
e�
R t
0
(s)ds e��t [(1 � �)F 0 + ��) dt

Also, �� = (�(1� � )� ��)=(1� �) and d� = (�+ �)=�� d� for ��-preserving changes. In this

case

dPV = 1 +
Z
1

0
e
R t
0
(s)ds (� � F 0) (�+ �)=�� dt :

Along an equilibrium path, F 0 � � = ((1� �)� ��)=(1� � ), hence

dPV = 1 �
� + �

�� + �

1 � �

1 � �
+

�(�+ �)

��(1� � )

Z
1

0
e�
R t
0
(+s)ds dt

which is zero if  � �, as in the steady state. Hence dPV > 0 if  is falling to � and dPV < 0

if  is rising to �, implying that investment is greater when capital is below the steady-state

level, and less otherwise.

Another way of seeing the di�erence between the two cases is to examine the implicit

partnership between the government and the �rm implicit in the tax structure. The intuition

is best illustrated when we assume that � = 0. We saw above that if � = 0, then �� depends

on taxes only through (1 � � )=(1 � �). In this case the government receives a fraction �

of all receipts and pays the same fraction of all investment expenses; it is essentially a full

partner owning � of the �rm and since �� = � there is no distortion to the capital stock. Any

equal change in � and � will preserve this arrangement, alter the government's share, but

will have no impact on the �rm's incentive to invest. In particular, there will be no e�ect

on convergence to the steady state.
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On the contrary, if there are depreciation deductions, then the relationship is not so

clean since the �rm receives depreciation deductions for the entire capital stock, not just

its �share.� Since an increase in � increases the present value of those future depreciation

allowances, a cost-of-capital preserving increase in � and � cannot raise � as much as in the

absence of depreciation deductions. Therefore, in the presence of depreciations deductions,

if we raise � but not ��, less of the o�set to the � increase can take the form of a � increase,

an immediate subsidy to investment, and more will take the form of an increase in future

depreciation deductions, a delayed subsidy to investment. Hence, while term structure con-

siderations cannot matter in the absence of depreciation allowances since the government is

essentially a partner, term structure considerations will matter for cost-of-capital preserving

tax changes in the presence of depreciations deductions. While this analysis assumed that

� = �, the basic principles hold in general.

This section has shown how the structure of taxes and investment subsidies a�ect the

dynamic behavior of the economy if money does not matter. We will next discuss why we

care about the eigenvalues of the deterministic system and then discuss monetary examples.

6. Eigenvalues and the Productivity Shocks

Before continuing with analysis of more general models, we will not discuss why we

examine the eigenvalues of our deterministic models. The focus on earlier models, such as

Fischer, Asako, and Able, was on its relation to the economy's convergence to its steady

state. However, it is also related to the impact of productivity shocks in stationary stochastic

models. In this section we will outline the standard connection between the eigenvalue �

and stochastic uctuations. For more detailed presentations of this approach see Kydland

and Prescott (1984) or Judd (1985).*

The relation between the eigenvalue � and some business cycle uctuations is direct.

Suppose the capital stock is subject to additive shocks, as in the stochastic di�erential

* Kydland and Prescott (1984) take a deterministic model, compute its steady state, compute a linear
approximation for the dynamics around the steady state, and then add shocks to the linear approximation.
This si logically equivalent to the discussion above. Judd (1985) discusses a more direct approach to analyzing
a more general family of shocks.
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equation

dK = Idt+ �K�dz

where I is net investment, dz is white noise, K� is the steady-state capital stock when � = 0,

and �2 is the variance of the relative shock. Since I = �(K �K�) for K near K�, the linear

approximation for the K process when � is small is

dK = �(K �K�)dt+ �K� dz

This is the standard stock adjustment formula for capital and investment. If � is large in

magnitude, then the economy is being strongly pushed towards K�, and therefore acts to

stabilize capital stock and output. This follows directly from the solution for K,

K(t)�K� = ��K�

Z t

�1

e�(t�s)dz(t)

It is important to note that the e�ect described in Theorem 1 is nontrivial when we

parameterize the model using empirical estimates of the important structural parameters.

De�ne ��x to be the elasticity of � with respect to �� as x = �; � is changed. More precisely,

��x �
@�=@x

�
=
@��=@x

��
; x = �; �

When � is varied between :4 and 1:0 (a range suggested by Berndt [1976], Berndt and

Christensen [1973], and Lucas [1969]), cUcc=Uc is varied between �:5 and �:10 (a range

suggested by Weber [1970, 1975], Hansen and Singleton [1983], and Hall [1981]), � is varied

between :2 and :8, and � between 0:0 and 0:1 (ranges suggested by Feldstein, et al. [1983],

and King and Fullerton [1984]), ��� and ��� vary over a moderate range. Most important

for our point is the fact that ��� � ��� was at least :4 and at most :6. This means that if �

is increased enough to reduce the cost of capital by ten percent (e.g., from :10 to :09) and

� is raised enough to return to the initial cost of capital, then net investment is increased

by four to six percent. Changes of this size are not unusual. For example, � = :05 and is

eliminated (as done recently) with � = 0:5; � = � = �, then �� moves from 1:8� to 2�, an

eleven percent change, implying for these parameters a �ve to seven percent change in net

investment at each point in a business cycle driven by shocks to the capital stock.
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If the real business cycle were driven by shocks to a productivity our analysis is still

applicable. For example, if �f (k) = ��f(k), where �� is a Markov process taking two values,

�1; �2 > 0, then there are two target levels of capital stock, one for each state of productivity.

� still will be the local rate of convergence to the current target if �1 and �2 are close. An

increase in the magnitude of � would imply that the economy more rapidly accumulates in

response to a favorable productivity shock and more rapidly decumulates in response to an

adverse shock.

In this section, we have examined a tractable special case, allowing us to precisely deter-

mine the interaction between the tax mix, investment incentives, and the term structure of

returns. The true tax structure is substantially more complex than this case. Unfortunately,

the kind of precise computations performed above are no longer tractable. Therefore we next

examine numerically two successively more general models, �nding that the e�ects examined

above are of equal or greater quantitative signi�cance in more general models.

7. The Case of Separable Utility

In order to examine the importance of ination and nominal depreciation in the most,

direct fashion, we next assume U (c;m) = u(c)+v(m), i.e., utility is separable in consumption

and money. This assumption leads to dichotomy	real and nominal quantities are deter-

mined independently. This dichotomy follows from the observation that (10) implies that

consumption is solely a function of �k; �K, and tax parameters, not m. Therefore, (5), (7),

(9), and (14) alone determine k; c; �k and �K. We examine this case since it is the case

where we have globally valid quantity theory of money with no real e�ects except through a

nominal tax structure.

In Table 1 we examine dynamic e�ects of the full range of policy parameters	�; �; �; �,

and � in a noninationary state. Again we allow cucc=uc to vary between �:5 and �5 and

� to vary between :4 and 1:0 as 1:0. In this table, � = :46, � = :05, � = :01, � = :03 = �,

and � = 0. We again �nd the same basic results if economic depreciation is used for

tax depreciation. Cost-of-capital-preserving tax changes which increase either investment

subsidy	� or � increases	and also increase future tax liabilities	� and � increases, or �

decreases	cause � to increase. The impact on � is of the same magnitude as we found in
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the previous section. For example, a simultaneous � increase and � decrease, each of which

would in isolation change a cost of capital of :1 by :01, will change the magnitude of net

investment by four to six percent at every point around the steady state. Most interesting

is that ination will have a substantial e�ect on �. In fact, � is most sensitive to small

changes in � when utility is more concave. When utility is less concave, changes in � have the

greatest impact on � per unit e�ect on ��. In general, in Table 1, the largest dynamic e�ects

come from changes in �, �, and � with the sensitivity of � to � and � being substantially

less. The key feature to note is that the wide dispersion of these sensitivities imply that

the composition of the tax system has important dynamic e�ects beyond the level of the

steady-state capital stock.

In an inationary environment, the direction of dependence of � on the policy parameters

may change. If � = :10 instead of 0:0 in Table 1, an increase in ination will reduce the

magnitude of � as it raises �� if  = �:1 or �:3. The range of ��x, x = �, �; �; �; �, is

even greater in this case, being at least :4 and possibly 1:0. The essential point remains	�

responds substantially to cost-of-capital-preserving changes in tax and monetary policy.

8. Speed of Adjustment in the General Model

We next examine the importance of tax composition on the speed of adjustment of the

general system given by (5), (7), (9), (14), and (15).

First, we specialize the model to (7), (14) and (15) with ination and no taxation as

in Fischer [1979]. It should be noted that for this model the equilibrium level of capital is

independent of the level of ination. As had been remarked by Fischer and Asako [1983], the

speed of adjustment increases (decreases) with ination if U12(c;m) is positive (negative).

The point that we wish to raise here is that even though this e�ect exists, it is quantitatively

negligible for parameter values representative of the U.S. For the set of over 1000 combi-

nations8 that we tried, an increase in ination from zero to 100 percent per unit of time

resulted in at most a 2% change in the negative eigenvalue. In particular, we examined a

variety of parameterizations of the Fischer model. For almost all cases, such an increase in

ination a�ected � by 0�:2%. Therefore, the Tobin-Mundell e�ects in Fischer and Asako are

8 See the Appendix for a discussion of the combination of parameters examined.
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trivial and certainly unobservable with standard econometric methods when these models

are appropriately parameterized. We also examined the cash-in-advance monetary analysis

of Abel coming to the same conclusions. The impact on eigenvalues was sometimes greater,

not surprising since ination a�ects the steady-state level of capital. However, the maxi-

mum impact was with log utility where a four per cent change in � resulted from increasing

ination from zero to 100%, still a trivial e�ect.

In the presence of taxes, the situation is very di�erent. Any change in any single tax

parameter, �, �, �, � , or �, changes the steady state level of capital if � and � are not zero.

For instance, an increase in ination will simultaneously decrease the optimal level of capital

accumulation and a�ect the speed of adjustment for each of the parameter combinations

examined. While some of the impact � may be a pure monetary e�ect, some will be due

to the fact that � will be di�erent at a di�erent steady-state capital stock, a tax e�ect.

While the direction of dependence of � on the tax parameters is ambiguous over the range of

money demand parameters examined, the sensitivity of � to the composition of taxes remain

generally unchanged.

To give an example roughly similar to the 1970's U.S. inationary experience we present

Table 2. Table 2 assumes a steady state where depreciation is on an historical cost basis

and ination is 10% per period where a period is that amount of time during which utility is

discounted 4%. We let the intertemporal elasticity of consumption uc=ucc, to vary between

�1:0 and �:2, and we set the nominal interest elasticity of money demand, , to be �:1 or

�:3, as suggested by Goldfeld's estimates. m=c is set at :4 and � at :7 only since the results are

insensitive to these parameters. We �nd that ��x varies by :2 to :45 among the instruments

x = �; �; �; �, and �. Other choices of depreciation and ination parameters will yield

more extreme results, indicating the robustness of � being sensitive to the composition of

the tax structure.

These results are likely to be sensitive to the nature of money demand. If money entered

the production function or a cost of adjustment function, the nature of �'s dependence on

monetary and tax policy is likely to be di�erent. However, there is no reason to believe

that the dependence of � on the composition of taxes is any less. We chose to represent
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money demand by u(c;m) since that is the most popular way to model money demand and

it allowed direct comparison with the similar work of Asako and Fischer.

9. The Large Model Versus Smaller Models

The basic model proposed in this paper is characterized by �ve dynamic equations to

represent taxation on nominal quantities in the presence of money demand and savings, is

larger than most models used to theoretically analyze monetary and/or taxation phenomena.

There are three reduced models commonly used. (i) Nominal taxes with no money (5),

(7), and (14): essentially money demand is removed from the model and ination is set

exogenously at the rate of growth of money supply; ination matters because the tax shield

generated by depreciation is expressed in nominal terms. (ii) Real taxes with money demand

(7), (14) and (15): taxes are based on real quantities with � being 0 or �. (iii) Real taxes

with no money (7) and (14): the system discussed in section 5.

In the last two models, there is no unique way to approximate the large model by one

of its smaller counterparts. Reducing the full model to one with the same steady state can

be achieved either by increasing � in the reduced model from � to �+ �� + ��
�+�+� , holding

� constant and setting � = 0, thereby imputing all investment credits and depreciation

allowances to the investment tax credit. One also could increase � to � + �� and decrease

� so as to leave �� = f 0(k) unchanged, imputing the depreciation allowance to the tax rate.

These are just two possible combinations of � and � changes which leave �� unchanged.

While the steady state capital stock is the same in all these models, the dynamic behavior

around the steady state may di�er. In models (i) and (iii), the speed of adjustment is

independent of the tax mix when � = 0, whereas the speed of adjustment in the larger

model depends on the tax mix, holding �� constant. Therefore, these models cannot exactly

represent the dynamic behavior of the large models. When � = �, the speed of adjustment

depends on the tax mix, so it may be possible to choose the mix of � and � such that the

speed of adjustment is identical. But that can be accomplished only by �rst computing the

speed of adjustment for the large model, not ex ante.

10. Conclusion

This paper has explored the dependence of the dynamic behavior of an economy on
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the composition of taxation. We have found that in a representative agent model with no

money, raising direct investment incentives and raising income tax rates will increase the

economy's speed of adjustment in the presence of depreciation allowances. If depreciation

is based on historical cost, increasing the rate of ination away from zero will increase the

speed of adjustment even if another parameter is adjusted to keep the long-run cost of capital

unchanged. However, in an already inationary environment, this may be reversed. In

models with money demand, results are ambiguous, but of quantitative signi�cance.

This analysis shows that in examining various alternative tax policies, we should examine

the composition of the tax structure in terms of various instruments as well as the cost

of capital since the composition itself may substantially a�ect the dynamic performance of

the economy. Further analysis should examine the normative implications of this positive

analysis.
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Appendix

In the numerical examples of the general model referred to in the text, we relied on a

wide range of parameterizations suggested by the empirical literature. We allowed �, the

elasticity of substitution in the net production function, to be :4, :7, and 1.0 and 1.3, an

range encompassing most estimates (see Berndt [1976]). Note that a Cobb-Douglas gross

production function would have a net production function with � about :8. This should be

kept in mind when comparing our � values with estimates of the gross production function.

We permit cUcc=Uc to be �:5, �1:0, �2:0, �5:0 and �10:0, a range suggested by Hansen-

Singleton, and Weber and Hall.

In addition to the elasticity of factor substitution and the intertemporal elasticity of

substitution in consumption, the introduction of money demand requires speci�cation of

money demand parameters. Section 6 examined the case of zero income elasticity of money

demand. In Section 7 the computations sometimes assume a unitary income elasticity of

money demand by assuming that the constant elasticity of substitution between c and m

is constant. We allow the elasticity of money demand with respect to nominal interest

rates to be �:1, �:3, �:5, and �:8, a collection consistent with existing estimates (see

Goldfeld [1973] and Hadjimichalakis [1982] for discussions of money demand estimates). We

allowed the ratio between annual consumption and money holdings, m=c, to be :2, :4, and

:6, a range encompassing U.S. postwar experience with M1. Using a variable elasticity of

substitution functional form, we also determined that the results for an income elasticity of

:5 was intermediate between our results for zero and unitary income elasticity. Therefore,

this collection covers a wide range of values for the crucial parameters.

For our discussion of the Fischer and Abel models of pure monetary policy we let in-

ation vary between 0 and 100% in steps of 1%, and we let the intertemporal elasticity of

consumption demand vary between :1 and 2.0 in steps of :1. The capital share was assumed

to be :25 or :33.
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Table 1

� cUcc=Uc � � � � �

.4 �:5 .90 .39 .67 .74 .41

�1:0 .87 .35 .64 .98 .37

�2:0 .82 .29 .61 1.14 .32

�5:0 .75 .21 .57 1.30 .24

.7 �:5 .89 .37 .65 .75 .39

�1:0 .85 .32 .63 1.00 .35

�2:0 .80 .26 .60 1.17 .29

�5:0 .73 .18 .55 1.34 .21

1.0 �:5 .87 .35 .64 .76 .38

�1:0 .83 .30 .62 1.02 .33

�2:0 .78 .24 .58 1.19 .27

�5:0 .71 .15 .53 1.36 .18

Entries under column x; x = �; �; �; �; �, are ��x

when U (c;m) = u(c) + v(m) and � = � = :03,

� = :46, � = 0:05, � = 0:01, and � = 0.

Table 2

 cUcc=Uc � � � � �

�:1 �1:0 .29 .58 .54 .17 .60

�2:0 .59 .49 .52 .67 .50

�5:0 .62 .40 .45 .84 .41

�:3 �1:0 .50 .54 .54 .49 .55

�2:0 .60 .47 .51 .69 .48

�5:0 .61 .39 .44 .82 .39

�:8 �1:0 .53 .53 .54 .54 .54

�2:0 .59 .47 .50 .67 .47
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�5:0 .59 .39 .42 .88 .38

Table 2 assumes � = :46, � = :05, � = :01, � = � :03,

� = :7, m=c = :4, � = :1, and a unit income elasticity of

money demand.  is the long-run elasticity of money

demand with respect to the long-run nominal interest rate.
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