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Abstract. Parametric approximations of the value function are a critical
feature of the value function iteration method for solving dynamic programming
problems with continuous states. Simple approximation methods such as polynomial
or spline interpolation may cause value function iteration to diverge. We show that
shape-preserving splines can avoid divergence problems while producing a smooth
approximation to the value function.

Dynamic programming is a basic tool of dynamic economic analysis, allowing econo-
mists to examine a wide variety of economic problems. Theoretical properties are well-
understood (see Bertsekas (1976), and Bertsekas and Shreve (1978)), and there have been
numerous applications in economic theory; see Lucas and Stokey (1987), Sargent (1987),
and Rust(1993, 1994) for recent reviews of this literature.
There has also been extensive work in the operations research literature to develop nu-

merical solution methods for dynamic programming. The first methods were designed for
finite-state problems, and reduced to simple matrix computations. Initially, continuous-
state problems were solved with finite-state approximations; unfortunately, that approach
often results in impractically large finite-state Markov problems. Dantzig et al. (1974)
advocated a multilinear approximation approach. Beginning with Bellman et al. (1963),
polynomial approximations have been studied, and yield methods which, according to
approximation theory, are potentially far faster for smooth problems. Daniel (1976) and
Johnson et al.(1993) have demonstrated the advantages of splines for dynamic program-
ming.
Despite these facts, state discretization has continued to be used extensively in eco-

nomic applications. One justification which has been offered (see Rust, 1993, 1994) is that
convergence theorems are available for state discretization methods, whereas few corre-
sponding results exist for polynomial methods. Indeed, we will show below that there can
be no convergence theorems for the most promising approaches by providing examples
where these methods diverge wildly.
The task then is to find polynomial methods for continuous-state problems which main-

tain the many advantages of smooth approximation methods but also lead to convergent
algorithms for dynamic programming. In this paper we develop two efficient approaches.
First, we show that there are two critical properties which are each sufficient for the
convergence of approximation methods: monotonicity in the data and shape-preservation.
These convergent schemes may be quite conservative in that they take a long time to

converge. Nonconvergent schemes may still be valuable if we can compute upper bounds
on their accuracy. For example, in nonlinear equations, Newton’s method is used far more
widely than the globally convergent Scarf algorithm and related homotopy methods. This
is quite acceptable because we can check whether the final approximation is nearly a
solution. We show that approximation methods which are not always convergent can be
excellent under certain conditions; in the context of a common example, we display the
critical properties of a problem which are critical in determining whether the less reliable
schemes will work.
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We will first review basic dynamic programming methods. We then describe the
canonical continuous approximation scheme for numerical dynamic programming. We
then discuss approaches which provide convergent algorithms, and approaches which are
stable, both of which revolve around monotone approximations, and shape-preserving
approximation methods. The paper concludes with some applications to simple wealth
accumulation models, both concave and nonconcave.

1. Dynamic Programming Problems
We first define the general dynamic programming problem. In dynamic programming, we
are concerned with controlling a dynamic process which takes on several possible states,
can be influenced by the application of controls, and yields a stream of state- and control-
dependent payoffs.
The current flow of payoffs to the controller is v(u, x, t) in period t if x ∈ X is the

beginning-of-period state and X the set of states, and the control u is applied in period t.
There may be state-contingent constraints on the controls; let D(x, t) be the nonempty
set of controls which are feasible in state x at time t. The state in period t + 1 depends
on the period t state and action in a possibly stochastic fashion; let F (A;x, u, t) be the
probability that xt+1 ∈ A ⊂ X if the period t state is x and the period t control is u. We
assume that F (·;x, u, t) describes a probability measure over X for each state x, control
u, and time t.
The objective of the controller is to maximize expected total returns,

E

(
TX
t=0

v(xt, ut, t) +W (xT )

)

whereW (x) is the terminal valuation. We define the value function, V (x, t), to be greatest
possible total payoff from time t to T if the time t state is x; formally,

V (x, t) ≡ sup
U

E

(
TX
s=t

v(xs, uss) +W (xT )

)

where U is the set of all feasible strategies. The value function satisfies the Bellman
equation

V (x, t) = sup
u∈D(x,t)

v(u, x, t) + βE{ V ¡x+, t+ 1¢ |x, u)}
where x+ is the next period’s state. If it exists, the optimal policy function, U(x, t),
achieves the value V (x, t) and solves

U(x, t) ∈ arg max
u∈D(x,t)

v(u, x, t) + βE{ V ¡x+, t+ 1¢ |x, u}
The value function always exists since it is a supremum. The existence of U is not assured
in general, but, by definition of supremum, there is a policy function which uniformly
comes within � of achieving the value function for any � > 0.
The infinite horizon, autonomous problem is frequently used to analyze long-run eco-

nomic problems. In such problems, the current flow of payoffs to the controller is v(u, x)
per period if the current state is x and the current control is u. Let D(x) be the non-
empty set of controls which are feasible in state x. The state tomorrow depends on the
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current state and action in a possibly stochastic fashion; let F (A;x, u) be the probability
distribution of tomorrow’s state if the current state is x and the current control is u.
The objective of the controller is to maximize discounted expected returns

E

( ∞X
t=0

βtv(xt, ut)

)
where β is the discount rate. The value function is defined to be

V (x) ≡ sup
U

E

(
βt
∞X
t=0

v(xt, ut)

)
where U is the set of all feasible strategies. The value function satisfies the Bellman
equation

V (x) = max
u∈D(x)

v(u, x) + βE{ V ¡x+¢ |x, u)} ≡ (TV )(x)
and the policy function, U(x), solves

U(x) ∈ arg max
u∈D(x)

v(u, x) + βE{ V ¡x+¢ |x, u}
Under mild conditions, V (x) exists by the contraction mapping theorem.

2. A Simple Dynamic Programming Problem
It will be convenient to use a familiar simple problem as an example in our discussions of
various computation methods. Consider the optimal accumulation problem

max
ct

E

( ∞X
t=0

βtu(ct)

)
kt+1 = f(kt, θt)− ct

θt+1 = g(θt, �t+1)

kt ≥ 0
where ct is consumption in period t, u(c) is the utility function at each date, kt is the
wealth at the beginning of period t, and f(k, θ) is the gross income in a period which begins
with wealth k and productivity parameter θ. The disturbance � is i.i.d. We assume that
consumption occurs after income has been observed.
This problem is a common one. It includes both the Brock-Mirman stochastic growth

model and the Imrohoroglu precautionary saving model. In the first case f(k, θ) is a
stochastic, aggregate production function and in the second f(k, θ) is the stochastic,
serially correlated wage plus interest income on savings, k.
The dynamic programming formulation for the general problem is

V (k, θ) = max
k+

u(f(k, θ)− k+) + βE
©
V (k+, θ+) | θª

≡ (TV )(k, θ)
where θ+ is next period’s productivity factor. We will assume that u is concave, but

will not always assume that f is concave. We will assume that fk is small for large k so
that both c and k is confined to compact, but large, intervals; this is necessary for the
conventional contraction mapping arguments to apply.
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3. Basic Solution Methods
We next discuss the two basic ideal solution methods used to solve dynamic programming
problems. We emphasize the term “ideal” since while they are constructive methods they
are also purely abstract mathematical methods which ignore the practical problems of
implementation on the computer. In fact, they cannot be implemented on the computer
since they are infinite-dimensional. This distinction is often blurred in discussions of these
methods, but this paper shows that it is dangerous to ignore this. After discussing the
abstract methods, we then discuss methods which can be implemented.

3.1. Value Function Iteration. One simple approach for computing V is called
value function iteration and is motivated by the contraction properties of the Bellman
equation. Ideally, value function iteration computes the sequence

V n+1 = TV n .

By the Contraction Mapping Theorem, V n will converge to the infinite horizon value
function where for any initial guess V 0. The sequence of control rules, Un, will also
converge to the optimal control rule.
This is a pure mathematical construction, not a true numerical algorithm. There are

two practical problems which prevent us from achieving the ideal sequence. First, since
the limit can never be achieved, in practice one iterates until the successive V n and Un

change little. Second, the mapping T is a functional, that is, a map which takes a function
and creates a new function. Computers cannot represent arbitrary functions. Therefore,
we must approximate both V and T in some fashion in order to implement value function
iteration.
The other popular approach is the policy function iteration method, also called the

Howard improvement algorithm. Since we do not use it in our examples below, we do
not discuss it here. However, the methods we examine below can be applied with policy
function iteration.

3.2. Continuous Problems: Discretization Methods. In many economic appli-
cations, the state and control variables are both naturally continuous. One way to find an
approximate solution to such problems is to specify a finite-state problem which is “simi-
lar” to the continuous problem, and solve the finite problem using the methods above. In
this section, we shall examine the details of this approach.
In general, this is accomplished by replacing the continuous distribution F with a

discrete distribution. The discretization approach chooses a finite set of states, X, and
defines a discrete-state dynamic programming problem. The specification of state and
controls must be such that the problem always remains on the grid X. The typical
deterministic problem becomes

V (xi) = max
u∈D(xi),g(xi,u)∈X

π(u, xi) + βV (g(xi, u)) ≡ (TXV )(xi)

where our choice of u is constrained by D(x) and by the requirement that the future
state belong to the grid X. Applying value function iteration to discrete problems is
straightforward. In such problems, we are only solving for a finite number of unknown
scalars, the V (xi).
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Our simple example can be discretized in a simple way by defining the control to be
the future state. This results in the Bellman equation

Vn+1(k) = max
k+

u(f(k)− k+) + βVn
¡
k+
¢

3.3. Weaknesses of Finite-State Approximations. We will next discuss the prob-
lems with finite-state dynamic programming algorithms and possible avenues for improve-
ment.
The first obvious problem is that a good approximation is likely to require a large

number of discrete states. This problem will become particularly bad when one uses the
discretization approach to solve multidimensional problems.
The other problem with finite-state approximations is that they do not generate as

much information as is available in the original problem. A value function iteration will
generate only information about the level of the value function at the points in the grid
X.
However, when we solve our simple example problem,

Vn+1(k) = max
c

u(c) + βVn (f(k)− c)

we not only get Vn+1(k) but also, by envelope theorem and first-order condition

V 0
n+1(k) = u0(c∗)

which is easily calculated once optimum consumption, c∗, is known.
This derivative information is actually more important for policy function approxima-

tion than is level information since c and V 0
n+1(k) are related by the first-order condition

u0(c) = βV 0
n+1(f(k)− c)

Therefore, the quality of the approximation of policy function is only as good as the
approximation of V 0(k), which can be orders of magnitude worse that the approximation
of V (k) if we only use level information.
Since the marginal value V 0n+1(k) at the k’s used is produced by the maximization step,

it should be used if possible. Below we shall study methods which use this information.

3.4. Approximation Methods. A key problem in dynamic programming with con-
tinuous states is to find a way to approximate the value function. Typically, we will know
the value function at a finite collection of points and must make a guess about its value
elsewhere. In this section, we review the many methods which we can use to approximate
value functions, using different kinds of data.
A key problem in dynamic programming with continuous states is to find a way to

approximate the value function. Typically, we will know the value function at a finite
collection of points and must make a guess about its value elsewhere. In this section,
we review the many methods which we can use to approximate value functions, using
different kinds of data.

Lp Approximation. finds a “nice” function g which is “close to” a given function
f in the sense of a Lp norm. Interpolation and approximation are similar except that
the data in interpolation is a finite set of points whereas in approximation our input is a
function.
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Interpolation is any method which takes information at a finite set of points, X, and
finds a function which satisfies that information at the points X. The information consists
of level, slope, possibly shape information about a curve. Different interpolation methods
use different information and use it in different ways.

Lagrange Interpolation. Lagrange interpolation is a one-dimensional polynomial
interpolation method which takes a collection of n points in R2, (xi, yi), i = 1, · · · , n,
where the xi are distinct, and finds a degree n − 1 polynomial, p(x), such that yi =
p(xi), i = 1, · · · , n. In this problem there are n distinct points imposing n constraints on
the choice of n unknown polynomial coefficients of p(x).
The Lagrange formula demonstrates that there is such interpolating polynomial. De-

fine
ci(x) =

Y
j 6=i

x− xj
xi − xj

Note that ci(x) is unity at x = xi and zero at x = xj for i 6= j. This property implies
that the polynomial

p(x) =
nX
i=1

yici(x)

interpolates the data, that is, yi = p(xi), i = 1, · · · , n. This is also the unique such
polynomial.

Schumaker’s Shape-Preserving Splines. In this section we will construct the
shape-preserving quadratic spline described in Schumaker (1983). First, we examine a
Hermite interpolation problem. Then we discuss the Lagrange problem.
The basic Hermite problem is, given z1, z2, s1, s2 find a piecewise quadratic function

s ∈ C1[t1, t2] such that
s(t1) = zi, s

0(ti) = si, i = 1, 2 (8)

We first examine the nongeneric case where a quadratic works.

Lemma 1. If s1+s2
2 = z2−z1

t2−t1 , then the quadratic polynomial

s(t) = z1 + s1(t− t1) +
(s2 − s1)(t− t1)

2

2(t2 − t1)

satisfies (8).

The shape-preserving properties of this construction are clear. First, if s1 · s2 ≥ 0,
then s0(t) has the same sign as s1 and s2 throughout [t1, t2]. Therefore, if the data
indicate a monotone increasing (decreasing) function on [t1, t2], then s(t) is such a function.
Second, if s1 < s2, then the data indicate a convex function, which s(t) is since s00(t) =
(s2 − s1)/(t2 − t1). Similarly, if s1 > s2, then s(t) and the data are concave.
In general, we need to add a knot to the interval (t1, t2) to solve (8).

Theorem 2. There exists ξ1 and ξ2 such that t1 < ξ1 < ξ2 < t2 and for every ξ ∈ (ξ1, ξ2),
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there is a unique quadratic spline solving (8) with a knot at ξ. It is

s(t) =
A1 +B1(t− t1) +C1(t− t1)

2, t ∈ [t1, ξ],
A2 +B2(t− ξ) +C2(t− ξ)2, t ∈ [ξ, t2],

A1 = z1, B1 = s1, C1 =
(s̄−s1)
(2α) ,

A2 = A1 + αB1 + α2C1, B2 = s̄, C2 =
(s2−s̄)
2β ,

s̄ = (2(z2−z1)−(αs1+βs2))
(t2−t1) ,

α = ξ − t1, β = t2 − ξ.

The shape-preserving properties of this quadratic spline are more complex. First, if
s1 · s2 ≥ 0, then s(t) is monotone if and only if s1s̄ ≥ 0, which is equivalent to

2(z2 − z1) ≥ (ξ − t1)s1 + (t2 − ξ)s2 if s1, s2 ≥ 0,
2(z2 − z1) ≤ (ξ − t1)s1 + (t2 − ξ)s2 if s1, s2 ≤ 0.

To deal with curvature, we compute δ = (z2 − z1)/(t2 − t1). We then note that if
(s2 − δ)(s1 − δ) ≥ 0, there must be an inflection point in [t1, t2], and we can have neither
a concave nor convex interpolant.
Otherwise, if |s2 − δ| < |s1 − δ|, then if ξ satisfies

t1 < ξ ≤ ξ̄ ≡ t1 +
2(t2 − t1)(s2 − δ)

s2 − s1

s(t) is convex (concave) if s1 < s2(s1 > s2). Furthermore, if s1s2 > 0, it is also monotone.
If |s2 − δ| > |s1 − δ|, then, if

t2 +
2(t2 − t1)(s1 − δ)

s2 − s1
≡ ξ ≤ ξ < t2

then s is convex (concave) if s1 < s2(s1 > s2), and if s1s2 > 0, s is monotone.
These formulas were both for a single interval. We next consider a general interpolation

problem. If we have Hermite data, i.e., we have {(zi, si, ti) | i = 1, · · · , n}, we then apply
the theorem to each interval. If we have Lagrange data, {(zi, ti) | i = 1, · · · , n}, we first
add estimates of the slopes. Schumaker suggests the formulas

Li =
£
(ti+1 − ti)

2 + (zi+1 − zi)
¤1/2

, i = 1, · · · , n− 1
δi = (zi+1 − zi)/(ti+1 − ti), i = 1, · · · , n− 1
si = (Li−1δi−1 + Liδk)/(Li−1 + Li), i = 2, · · · , n− 1
s1 = (3δ1 − s2)/2

sn = (3δn−1 − sn−1)/2

These formulas are adjusted by adding the conditions

si = 0, if δi−1 δi ≤ 0,
that is, if the neighboring secants have opposite slope, we set the derivative to be zero
at t. With the Hermite data, we can then proceed locally, computing the spline on each
interval [ti, ti+1] ≡ Ii.
The only remaining problem is choosing the ξi ∈ Ii. The theorem above actually gives

us a range of choices. On each Ii, we first determine the ξi which are consistent with
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montonicity if si ·si+1 ≥ 0. If (si+1−δi)(si−δi) < 0, the data is either convex or concave
and the choice of ξi is further restricted to preserve curvature. For specificity, choose
the midpoint of the interval of ξi’s which satisfy both restrictions. Other criterion could
be to make the choice which results in minimum total curvature, or minimum maximal
curvature.
The result of this scheme is a quadratic spline which is globally monotone if the data

are monotone. Similarly for convexity and concavity. Furthermore, the spline is “co-
monotone,” that is, s is increasing (decreasing) on Ii iff zi < zi+1 (zi > zi+1). This
property follows from the local monotonicity of the quadratic spline and our imposing
si = 0 wherever the slope changes.
Preserving local curvature is also accomplished. If δi < δi+1 < δi+2 < δi+3 the data

appears to be convex on Ii+1, and our construction is convex on Ii+1 since si+1 < si+2
by construction.

3.5. Error Bounds of Shape-Preserving Methods. We will next examine error
bounds for dynamic programming algorithms. Let X be the interpolation nodes. Let

vi = max
u

v(u, xi) + βE{V (x+)|xi, u}

and let V̂ (x; v) be the interpolation of the vi. We will let T̂V denote the mapping from
V to ˆTV . The typical numerical scheme attempts to find a V̂ such that V̂ = T̂ V̂ . The
key question is how the fixed points of T̂ are related to the fixed points of T .
The first important facts are the following error bounds for T :

k V − V∞ k≤k TV − V k /(1− β)

The contraction mapping implies

k TV1 − TV2 k≤ β k V1 − V2 k
This may not hold for the approximations, V̂ . The relevant approximation relation is:

k T̂V1 − T̂V2 k ≤k T̂V1 − TV1 + TV1 − TV2 + TV2 − T̂V2 k
≤k TV1 − TV2 k + k T̂V1 − TV1 k + k T̂V2 − TV2 k

This decomposes k TV1 − TV2 k into three pieces, the first being k TV1 − TV2 k, which is
bounded by β k V1−V2 k by the contraction theorem, and the other two being interpolation
errors of the form k T̂V − TV k
The formula

k TV − V k =k TV − T̂V + T̂V − V k
≤k TV − T̂V k + k T̂V − V k
≡ δ

decomposes k TV −V k into the approximation error and the maximum change. Further-
more, the McQueen-Porteus error formula implies

k V − V∞ k≤ δ/(1− β).
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If T̂V = V , then
k TV − V k=k TV − T̂V k≡ ê

and
k V − V∞ k≤ ê/(1− β)

Many dynamic programming problems have structure which we can exploit. For ex-
ample, if the state variable is a vector of capital stocks then the value function is an
increasing function of the state in many interesting cases. Shape-preservation is particu-
larly valuable in concave problems, where T is a shape-preserving operator, as shown in
a theorem of Lucas.

Theorem 3. Suppose v(u, x) is concave (increasing) in (u, x), the constraint set is convex
for each x, and V is concave (increasing). Then (TV )(x) is also concave (monotone), as
is the fixed point, TV ∗ = V ∗.

This result is relevant even when we examine only a finite number of states. In
particular, if V̂ is concave in x, then the (T V̂ )(xi) points, xi ∈ X, will be consistent with
concavity, and a shape-preserving scheme will cause the function approximation (T̂ V̂ )(x)
to be a concave function of x.

Linear Interpolation. Shape-preserving approximations will not generate the in-
ternodal oscillations which may arise in the approximation step. In particular, these
internodal oscillations can be avoided by the simplest of all interpolation schemes — linear
interpolation, which is shape-preserving. Therefore, if the vi points are increasing and
concave, so will be the interpolating function. Linear interpolation satisfies particularly
desirable properties for approximate dynamic programming.
Suppose that we know V is monotonically increasing. Consider the interval Ii ≡

[xi, xi+1]. Monotonicity implies, for x ∈ [xi, xi+1]

vi ≤ (TV )(x) ≤ vi+1

Therefore, the approximation error on Ii is at most vi+1−vi ≡ ∆i. Linear approximation
method implies

k T̂V − TV k≤ max
i
∆i

Concavity-Preserving, C1 Interpolation. We will next discuss error bounds for
numerical approximations to solutions of concave dynamic programming problems when
we use methods which preserve concavity and monotonicity of the value function.
Suppose that we know V is concave and monotone, but that we use linear approxima-

tion. Consider Figure 2, where we have displayed the values at xi−1, xi, xi+1, and xi+2.
Define v−i to be the left derivative of (T̂ V )(xi) at xi,

v−i ≡
vi − vi−1
xi − xi−1

and define v+i+1 to be the right derivative of (T̂V )(xi+1) at xi+1,

v+i+1 ≡
vi+2 − vi+1
xi+2 − xi+1
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Then on [xi, xi+1] (TV )(x) is bounded below by the chord BC and above by BEC. The
maximum error of the linear approximation can occur at

x∗i ≡
vi+1 − vi + v−i xi − v+i+1xi+1

v−i − v+i+1

and the maximum vertical distance is

∆i ≡ (v−i −
vi+1 − vi
xi+1 − xi

)(x∗i − xi)

We can do better if we use slope information at the interpolation nodes. Concavity
and slope information at the nodes implies

V̂ (x) ≤ (TV )(x) ≤ min{vi + v0i(x− xi), vi+1 + v0i+1(x− xi+1}
≤ min{vi + v0i(xi+1 − xi), vi+1 + v0i+1(xi − xi+1}

Again, on [xi, xi+1] (TV )(x) is bounded below by the chord BC, but we now have an
upper bound of BFC. The maximum error of the linear approximation can occur at

x∗i ≡
vi+1 − vi + v0ixi − v0i+1xi+1

v0i − v0i+1

and the maximum vertical distance is

∆0i ≡ (v0i −
vi+1 − vi
xi+1 − xi

)(x∗i − xi)

Hermite shape-preserving interpolation which uses this information implies

k T̂V − TV k≤ max
i
∆0i.

We can now incorporate these approximation error bounds into an error bound for the
dynamic programming problem. The formula

k TV − V k =k TV − T̂V + T̂V − V k
≤k TV − T̂V k + k T̂V − V k
≡ δ

decomposes k TV −V k into the approximation error and the maximum change. Further-
more,

k V − V∞ k≤ δ/(1− β).

If T̂V = V , then
k TV − V k=k TV − T̂V k≡ ê

and
k V − V∞ k≤ ê/(1− β)
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If we use piecewise linear interpolation, we can set ê = maxi∆i.
If we use a Hermite interpolation approach, we can set ê = maxi∆0i.
An even better estimate for ê is given by Taylor’s theorem. If (TV )00(x) is bounded

above by M , then

k T̂V − TV k≤ 1
2
M(max

i
|xi+1 − xi|)2

If one can compute a finite M , this bound will generate an error term which is quadratic
in the mesh size. With any of this information, one can derive formulas which will tell us
when to stop value iteration.

Convergence of Linear Interpolation Method. For linear interpolation, we have
another tight connection between the theoretical properites of T and its computational
implementation. We will show that T̂ is itself a contraction mapping on the space of
piecewise linear functions.

Theorem 4. If the interpolation scheme is a piecewise linear interpolation, then the
approximation map, T̂ , is a contraction map.

Proof. The proof is again straightforward. We know that T is a contraction map.
Therefore, if V1 and V2 are piecewise linear functions with nodes at X, then

kT̂V1 − T̂V2k ≡ max (T̂V1 − T̂V2)(x)

= max
x∈X

(T̂V1 − T̂V2)(x)

= max
x∈X

(TV1 − TV2)(x)

≤ max (TV1 − TV2)(x)

= kTV1 − TV2k
≤ βkV1 − V2k

where the critical second step follows from the fact that the extremal values of the dif-
ference of two piecewise linear functions with the same nodes are achieved at the nodes.

This fact also implies that we can use any of the standard acceleration methods with
linear interpolation.

Monotone Operator Equations and Approximation. The key fact about dy-
namic programming which is exploited above is that the operator T a contraction map.
It is also true that T is a monotone map, in the sense that V1 > V2 ⇒ TV1 > TV2. These
are two distinct facts. We can use these facts to construct convergent schemes for solving
(4) if we use approximation schemes with the appropriate properties.
The key theorem is that monotonicity in the data, that is, the approximate value

function increases at all x as the interpolation data at X increases, implies that T̂ is a
monotone map.

Definition 5. An interpolation scheme V (x; v) is a monotone in the data iff v1 ≥ v2 ⇒
V (x; v1) ≥ V (x; v2) for all x.
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Theorem 6. If the interpolation scheme is monotonic in the data, then the approxima-
tion map, T̂ , is a monotone map.

Proof. We know that T is a monotone map. Therefore,

V1 ≤ V2 ⇒ (TV1)(x) ≤ (TV2)(x), x ∈ X

⇒ (T̂V1)(x) ≤ (T̂V2)(x), x ∈ X

⇒ T̂V1 ≤ T̂V2

where the last step follows from the monotonicity of the approximation scheme used to
compute T̂V from the values of T̂V on x ∈ X.
Monotonicity is a powerful computational tool. First, convergence is guaranteed as

long as there are upper and lower bounds on the solution. Second, the computed ap-
proximations inherit the monotonicity properties of the theoretical mathematical objects,
providing a tight connection between the theory and the computational method.
Again, linear interpolation is the obvious example of an approximation scheme which

is monotone in the data.

3.6. Convergence of Shape-Preserving Approximations. Consider monotone
problems, that is, where the value function is monotone and T preserves monotonic-
ity. We will next show that the shape-preserving approximaitions will converge to the
true solution as we take a finer mesh. We do this by squeezing the shape-preserving
approximations between two coarser approximations which we know will converge to the
true value function
Define the upper and lower bound interpolation approximations for monotone T :

(TUV )(x) = (TV )(xi+1), for xi < x ≤ xi+1

(TLV )(x) = (TV )(xi), for xi ≤ x < xi+1.

TUV produces an approximation to TV which is a step function and lies above TV ;
TLV is similarly a lower bound step function approximation.

Lemma 7. TU , TL are contractions.

kTUV1 − TUV2k = sup
x
|(TUV1 − TUV2)(x)|

= sup
x∈X

|(TUV1 − TUV2)(x)|

= sup
x∈X

|(TV1 − TV2)(x)|

≤ sup
x
|(TV1 − TV2)(x)|

= kTV1 − TV2k
≤ βkV1 − V2k
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The proof for TL is similar.
We will next sandwich our shape-preserving approximations between TU and TL. Let

SV be a shape preserving spline algorithm applied to the points {TV (x)}x∈X . This can
be one which uses only the the values of TV or one which also uses slope information.

Theorem 8. If V is monotone increasing, T preserves monotonicity, and S is shape-
preserving, then SnV is monotone increasing.

Proof. It suffices to show that SV is monotone. Since V is monotone increasing and T
preserves monotonicity, {TV (x)}x∈X is a monotone increasing collection of points. Since
S preserves shape, SV is monotone increasing.

Theorem 9. If V is a concave function, T preserves concavity, and S is shape-preserving,
then SnV is concave.

Proof. It suffices to show that SV is concave. Since V is monotone and T preserves
concavity, {TV (x)}x∈X is a concave collection of points. Since S preserves shape, SV is
concave.

Theorem 10. If V is monotone increasing, T is monotone increasing and preserves
monotonicity, and S is shape preserving then Tn

LV ≤ SnV ≤ Tn
UV .

Proof. by induction.
n = 1: Since SV is monotone increasing, TV (xi) ≤ SV (x) ≤ TV (xi+1) for xi ≤ x ≤

xi+1. Then by the definitions of TL and TU , TLV ≤ SV ≤ TUV .
n = k: Since T is monotone increasing, T (T k−1

L V )(x) ≤ T (Sk−1V )(x) ≤ T (T k−1
U V )(x)

for x ∈ X. Since SkV is monotone increasing,

T (Sk−1V )(xi) ≤ SkV (x) ≤ T (Sk−1V )(xi+1) for x ∈ [xi, xi+1]
⇒ T k

LV (xi) ≤ SkV (x) ≤ T k
UV (xi+1) for x ∈ [xi, xi+1]

⇒ T k
LV ≤ SkV ≤ T k

UV

Theorem 11. Suppose that the value function, V , is a monotone function on X, has
bounded second derivative onX, and that T is monotone increasing and preserves monotonic-
ity. Then, for sufficiently fine mesh and sufficiently large n, SnV is arbitrarily close to
V .

Proof. Follows from the fact that the fixed points of TL and TU converge to V as the
mesh is refined, and from the inequality T k

LV ≤ SkV ≤ T k
UV proved in the last theorem.

Suppose T̂ is our computational operator, and we iterate for a while until we reach
some V = T̂nV0 so that kT̂V − V k = γ. Define

� = kTV − T̂ V k ≤ max
i
|TV (xi+1)− TV (xi)|.

Then

kTV − V k ≤ kTV − T̂V k+ kT̂V − V k
= �+ γ
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and

kV − V∞k ≤
∞X
i=0

kT (i+1)V − T (i)V k

≤ kTV − V k
∞X
i=0

βi

=
�+ γ

1− β
.

This provides a bound on how close our current iterate V is from the true value
function V∞. Note that we do not require T̂ to converge, only that successive iterates
are within γ. This is not an ideal stopping criterion, since for a given mesh, the user may
not be able to achieve a particular tolerance, even if the iterates converge.
The next thing to do is find conditions so that as we refine the mesh, we can make �

and γ as small as we wish.
If the iterates V i are continuous and have a uniformly bounded first derivative (wher-

ever it exists) then
� ≤ max

i
|TV (xi+1)− TV (xi)| ≤Mδ

where δ is the size of the mesh and M is the bound on the derivative.
Since TU and TL are contractions, we know that they converge. If VU = limTn

UV0 and
VL = limTn

Lv0, then

kVU − V∞k ≤ �

1− β

kVL − V∞k ≤ �

1− β
.

This implies that, for large enough n, there is V = SnV0 so that

kSV − V k ≤ 2�

1− β

where S is the shape preserving operator, since Tn
LV ≤ SnV ≤ Tn

UV .
This proves that the shape-preserving approach will converge in an appropriate sense

to the true value function. We now examine the relative efficiency of shape-preserving
approximation.

4. Shape-Preserving Spline Approximations of Accumulation Examples
We next report on results concerning the application of shape-preserving splines to our
simple example.
We demonstrate the power of shape-preserving approximation methods by applying

them to the simple optimal growth problem

max
∞X
t=0

βtu(ct)

kt+1 = f(kt)− ct
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where ct is consumption in period t, u(c) is the utility function at each date, kt is the
capital stock at the beginning of period t, and f(k) is the aggregate production function
in each period. We used the following specifications for preferences and technology:

u(c) =
c1+γ

1 + γ

f(k) = k +Akα

where A = (1− β)/αβ is a normalization which produces a steady state capital stock at
k = 1.
We solved this problem using three techniques: a discretization method, a piecewise

linear approximation for the value function and a shape preserving quadratic approxima-
tion for the value function. We used the following parameter values: α = .25, β = .95, .99,
γ = −10,−2,−.5 over the capital interval [.4,1.6]. We ran the discretization method us-
ing mesh sizes ∆k = .01, .001, .0001, .00001. We ran the two value function interpolation
algorithms using mesh sizes∆k = .3, .1, .03, .01. We computed L2 norm errors over the in-
terior interval [.7, 1.3] using the value function and policy function from the discretization
using the results from the cases with 120000 points as the “true” solutions.
Table 1 reports the true solutions for the consumption function. Table 3 reports

the true value function solutions. Tables 2 and 4 report the absolute errors for various
cases. Table 5 reports the relative errors in the consumption function. For the policy
function, linear interpolation is roughly 3 times more accurate than the discrete method,
and shape preserving interpolation is 70 times more accurate than the discrete method
when all techniques use the same mesh size of .01. In fact, the accuracy of the policy
function using shape preserving interpolation and a 120 point mesh is greater than using
the discretization method and a mesh of 12000 points.
For the value function, linear interpolation is at least 3 times more accurate than the

discrete method, and shape preserving interpolation is 1300 times more accurate than
the discrete method when all techniques use the same mesh size of .01. Moreover, using
shape preserving interpolation and a mesh of only 12 points provides better accuracy than
discrete methods using 120 points.
Table 6 reports relative running times. The shape-preserving method is quite competi-

tive with all other methods in terms of time. Table 7 reports convergence properties when
we move the minimimum capital stock to k = .01. This case strains most methods because
of the high curvature in the production function when k is small. Linear interpolation
always converges, but accuracy is low. The cubic spline and polynomial methods had
difficulty converging. The shape-preserving methods always converged and were efficient
since they did not need to use an excessive number of nodes.
These error results indicate an important advantage to using shape preserving meth-

ods. Greater accuracy can be achieved while using fewer grid points.

5. Conclusions
In dynamic programming problems, shape properties can be exploited to compute efficient
solutions.
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Table 1: Consumption Function Solutions
k (β, γ) : (.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)
0.4 0.16072542 0.14400542 0.11411542 0.03076215 0.02731215 0.02100215
0.5 0.17131082 0.15722082 0.13160082 0.03281561 0.02992561 0.02451561
0.6 0.18062668 0.16928668 0.14833668 0.03462007 0.03230007 0.02789007
0.7 0.18902657 0.18049657 0.16449657 0.03624722 0.03450722 0.03113722
0.8 0.19672350 0.19102350 0.18019350 0.03773178 0.03657178 0.03429178
0.9 0.20385342 0.20100342 0.19552342 0.03911369 0.03853369 0.03738369
1.0 0.21052632 0.21052632 0.21052632 0.04040404 0.04040404 0.04040404
1.1 0.21681288 0.21967288 0.22526288 0.04161833 0.04219833 0.04336833
1.2 0.22277424 0.22848424 0.23976424 0.04277829 0.04392829 0.04629829
1.3 0.22844789 0.23700789 0.25405789 0.04387303 0.04560303 0.04917303
1.4 0.23388154 0.24527154 0.26816154 0.04491979 0.04721979 0.05201979
1.5 0.23909567 0.25331567 0.28210567 0.04593442 0.04880442 0.05483442
1.6 0.24411529 0.26115529 0.29589529 0.04690172 0.05034172 0.05761172

Table 2: Errors
Discrete model: L2 errors over the interval k ∈ [.7, 1.3]

N (.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)
120 1.0e-02 1.5e-02 1.5e-02 1.0e-02 3.6e-02 1.3e-01
1200 1.4e-03 1.4e-03 1.4e-03 8.6e-03 8.0e-03 8.2e-03
12000 1.4e-04 1.4e-04 1.4e-04 7.2e-04 7.4e-04 7.5e-04

Linear Interpolation: L2 errors over k ∈ [.7, 1.3]
4 5.5e-02 9.3e-02 1.7e-01 5.7e-02 1.0e-01 1.9e-01
12 2.3e-02 3.8e-02 6.2e-02 2.5e-02 4.2e-02 7.6e-02
40 7.4e-03 1.0e-02 1.6e-02 8.1e-03 1.3e-02 2.2e-02
120 2.3e-03 2.9e-03 4.7e-03 2.7e-03 3.9e-03 6.1e-03
Shape Preserving Quadratic Interpolation: L2 errors over k ∈ [.7, 1.3]:
4 8.5e-03 7.5e-03 1.0e-02 9.3e-03 8.5e-03 1.3e-02
12 1.5e-03 9.8e-04 9.1e-04 1.6e-03 1.3e-03 1.8e-03
40 1.4e-04 7.2e-05 8.1e-05 2.5e-04 2.3e-04 2.6e-04
120 3.2e-05 3.1e-05 3.4e-05 1.5e-04 1.5e-04 1.6e-04
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Table 3: Value function solutions
(β, γ) :

k (.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)
0.4 0.16962423 0.17279166 0.17523392 0.03257365 0.03319877 0.03367471
0.5 0.17839679 0.18032422 0.18184295 0.03424907 0.03462909 0.03492537
0.6 0.18608025 0.18718254 0.18806682 0.03571859 0.03593576 0.03610839
0.7 0.19297622 0.19353818 0.19399595 0.03703891 0.03714956 0.03723898
0.8 0.19927200 0.19950083 0.19968973 0.03824534 0.03829037 0.03832728
0.9 0.20509268 0.20514553 0.20518969 0.03936149 0.03937189 0.03938052
1.0 0.21052632 0.21052632 0.21052632 0.04040404 0.04040404 0.04040404
1.1 0.21563752 0.21568354 0.21572277 0.04138521 0.04139425 0.04140193
1.2 0.22047521 0.22064829 0.22079716 0.04231427 0.04234829 0.04237741
1.3 0.22507743 0.22544512 0.22576397 0.04319845 0.04327070 0.04333308
1.4 0.22947441 0.23009381 0.23063503 0.04404348 0.04416517 0.04427107
1.5 0.23369059 0.23461055 0.23542011 0.04485401 0.04503471 0.04519314
1.6 0.23774607 0.23900881 0.24012743 0.04563387 0.04588185 0.04610079

Table 4: Value function errors
Errors in value function

N (.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)
Discrete model:
120 2.1e-03 4.1e-04 6.6e-05 2.2e-03 5.2e-03 2.1e-03
1200 2.6e-05 3.7e-06 7.7e-07 7.6e-04 1.0e-04 1.6e-05
12000 2.4e-07 3.2e-08 8.7e-09 6.6e-06 9.5e-07 1.8e-07
Linear Interpolation:

4 1.3e-02 6.3e-03 3.7e-03 1.3e-02 6.4e-03 3.9e-03
12 3.2e-03 2.0e-03 1.1e-03 3.2e-03 2.1e-03 1.2e-03
40 9.0e-04 4.6e-04 1.5e-04 9.7e-04 6.1e-04 3.4e-04
120 2.3e-04 5.5e-05 1.8e-05 3.1e-04 1.8e-04 8.0e-05

Shape Preserving Quadratic Interpolation:
4 1.0e-03 3.2e-04 1.2e-04 1.1e-03 3.5e-04 1.5e-04
12 1.2e-04 2.8e-05 7.7e-06 1.3e-04 3.6e-05 1.5e-05
40 8.8e-06 9.7e-07 1.5e-07 1.1e-05 2.9e-06 9.8e-07
120 3.8e-07 2.7e-08 5.1e-09 1.6e-06 2.1e-07 3.7e-08
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Table 5: L2 norm of relative errors in consumption over [0.7,1.3]
N (β, γ) :

(.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)
Discrete model
12 7.6e-02 2.8e-03 5.3e-03 7.9e-01 1.8e-01 1.1e-02
120 1.2e-03 2.2e-04 5.3e-04 4.5e-02 6.6e-02 1.3e-03
1200 1.0e-04 2.1e-05 5.4e-05 2.9e-03 5.4e-03 1.3e-04
Linear Interpolation
4 7.9e-03 4.1e-03 2.4e-03 8.0e-03 4.1e-03 2.4e-03
12 1.5e-03 9.8e-04 5.6e-04 1.5e-03 1.0e-03 6.3e-04
40 3.9e-04 2.3e-04 9.8e-05 4.2e-04 2.8e-04 1.6e-04
120 1.1e-04 3.7e-05 1.3e-05 1.4e-04 8.4e-05 4.2e-05
Cubic Spline
4 6.6e-03 5.0e-04 1.3e-04 7.1e-03 5.7e-04 1.8e-04
12 8.7e-05 1.5e-06 1.8e-07 1.3e-04 4.9e-06 1.1e-06
40 7.2e-08 1.8e-08 5.5e-09 7.6e-07 8.8e-09 4.9e-09
120 5.3e-09 5.6e-10 1.3e-10 4.2e-07 4.1e-09 1.5e-09
Polynomial without slopes
4 DNC 5.4e-04 1.6e-04 1.4e-02 5.6e-04 1.7e-04
12 3.0e-07 2.0e-09 4.3e-10 5.8e-07 4.5e-09 1.5e-09

Shape Preserving Quadratic Hermite Interpolation
4 4.7e-04 1.5e-04 6.0e-05 5.0e-04 1.7e-04 7.3e-05
12 3.8e-05 1.1e-05 3.7e-06 5.9e-05 1.7e-05 6.3e-06
40 3.2e-06 5.7e-07 9.3e-08 1.4e-05 2.6e-06 5.1e-07
120 2.2e-07 1.7e-08 3.1e-09 4.0e-06 4.6e-07 5.9e-08
Shape Preserving Quadratic Interpolation (ignoring slopes)
4 1.1e-02 3.8e-03 1.2e-03 2.2e-02 7.3e-03 2.2e-03
12 6.7e-04 1.1e-04 3.1e-05 1.2e-03 2.1e-04 5.7e-05
40 3.5e-05 5.8e-06 8.3e-07 4.5e-05 9.3e-06 3.0e-06
120 2.5e-06 1.5e-07 2.2e-08 4.3e-06 8.5e-07 1.9e-07
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Table 6: Relative times of the algorithms
No. states: (.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)

Shape Preserving Quadratic Interpolation
4 1.7 1.1 1.1 1.7 1.1 1.3
12 4.9 2.7 3.8 4.9 2.9 3.5
40 14.5 8.5 11.4 16.1 10.2 11.0
120 46.4 26.4 30.9 58.9 63.4 33.6

Linear Interpolation
4 2.2 1.1 1.2 2.3 1.0 1.6
12 5.8 2.5 2.9 6.0 2.9 3.5
40 17.3 8.3 10.3 16.7 9.7 10.6
120 44.8 27.5 30.9 49.5 31.0 41.2

Polynomial without slopes
4 DNC 2.2 2.2 3.3 2.8 2.6
12 17.9 15.6 13.4 20.1 18.3 16.0

Cubic Spline
4 1.7 1.1 1.2 2.0 1.2 1.6
12 5.3 3.3 3.8 5.8 4.3 4.8
40 19.4 13.0 13.3 24.0 19.8 21.2
120 83.6 58.3 57.0 105.3 88.7 76.2
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Table 7: Stability Comparison Convergence of Algorithm
when Left-most point is 0.01
Method: Success rate:
Linear Interpolation 24/24
Cubic Spline 8/24
Polynomial 8/12
Shape Preserving Quadratic Interpolation 24/24
Shape Preserving Quadratic Interpolation, ignoring slopes 24/24
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