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Abstract. General equilibrium analysis is difficult when asset markets

are incomplete. We make the simplifying assumption that uncertainty is small

and use bifurcation methods to compute Taylor series approximations for asset

demand and asset market equilibrium. A computer must be used to derive these

approximations since they involve large amounts of algebraic manipulation. To

illustrate this method, we apply it to analyzing the allocative, price, and welfare

effects of introducing a new derivative security.

1. Introduction

Precise analysis of equilibrium in asset markets is difficult since few cases can be

solved exactly for equilibrium prices and volume. Many analyses assume that markets

are complete, implying that equilibrium is efficient and equivalent to some social

planner�s problem. That approach is limited since it ignores transaction costs, taxes,

and incompleteness in asset markets. This paper develops bifurcation methods to

approximate asset market equilibrium without assuming complete asset markets. We

begin from a trivial deterministic case where all assets have the same safe return and

use local approximation methods to compute asset market equilibrium when assets

have small risk. We compute Taylor series expressing equilibrium asset prices and

holdings as a function of preference parameters such as absolute risk aversion, and
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Theoretical Economics, and the University of Chicago.
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asset return statistics such as mean, variance, and skewness. The formulas completely

characterize equilibrium for small risks.

Implementing this approach is straightforward, but involves an enormous amount

of algebraic manipulation far beyond the capacity of human hands. Fortunately, desk-

top computers using symbolic software can execute the necessary algebraic manipula-

tion and compute the series expansions in reasonable time. We use Mathematica, but

the computation could be executed by other symbolic languages such as Macsyma

and Maple. The asymptotic expansions tell us about the qualitative properties of

equilibrium and can be used to compute a numerical approximation to equilibrium of

particular problems with a speciÞed nonzero risk. Therefore, the bifurcation approach

is computational in two ways: the formulas are qualitative asymptotic approximations

derived by computer algebra, and can be used to produce numerical approximations

to speciÞc problems. This paper focuses on the qualitative asymptotic results and

leaves the numerical applications for future study.

The result is essentially a mean-variance-skewness-etc. theory of asset demand

and equilibrium pricing, similar to Samuelson�s [22] analysis of asset demand. This

approach is also more intuitive than the standard contingent state approach to equi-

librium. The incomplete markets paradigm focuses on the difference between the

number of contingent states and the number of assets. For example, welfare results

in Hart [11], Cass and Citanna [3], and Elul [7] depend on how many assets are miss-

ing and the number of agents. It is difficult to interpret such indices of incompleteness

since we can count neither the number of contingent states nor the number of different

kinds of agents in a real economy. Furthermore, one expects that the impact of asset

incompleteness on economic performance is related more to the statistical character

of riskiness and the diversity of investor objectives than to the number of states and

the number of agents. For example, the number of different agents is a poor measure

of agent diversity since an economy with 100 types of investors with different risk

aversions close to the mean risk aversion is less diverse than an economy with 10

types of investors with substantially different risk aversions. Similarly, the number

of contingent states is at best a poor indicator of the magnitude and character of

riskiness. This paper�s analysis produces asymptotic formulas depending solely on

the moments of asset returns and the differences in utility indices, showing that they,
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not the number of states, govern the asymptotic properties of equilibrium. Since mo-

ments are more easily observed in real markets than the number of contingent states

the result is a more practical and intuitive approach to equilibrium analysis of asset

markets.

Our approach is intuitive and similar in spirit to standard linearization and com-

parative static methods from mathematical economics. If fact, the analysis resembles

Jones [12] classic analysis of international trade. Linearization methods based on the

Implicit Function Theorem (IFT) are important computational tools that allow us to

approximate nonlinear relationships with tractable, asymptotically valid approxima-

tions. We begin with the no-risk case where we know the equilibrium. We then use

that information to compute equilibria for nearby cases of risky economies. However,

the IFT does not apply here because the critical Jacobian is singular. In particular,

when risk disappears all assets must become perfect substitutes and the portfolios

of individuals are indeterminate when risk is zero. We cannot use the IFT if we do

not know the equilibrium portfolio in the case of zero risk. Instead, we must apply

tools from bifurcation theory to solve our problem. These tools are natural since

they are essentially generalizations of L�Hospital�s rule. Furthermore, because of the

singularity at zero risk, we will need to compute higher-order approximations, not

just the familiar Þrst-order terms from linear approximation methods.

The purpose of this paper is to present the key mathematical ideas and illustrate

them with basic economic applications. We Þrst apply bifurcation methods to de-

rive approximations of asset demand, reÞning the similar Samuelson [22] method.

We then use these approximations of asset demand to compute approximations of

asset market equilibrium. We compute asymptotically valid expressions for equilib-

rium with different asset combinations, and use them to show how changes in asset

availability affects equilibrium.

The bifurcation approach is particularly interesting since it handles the complete

and incomplete asset market cases in the same way. This contrasts sharply with the

conventional approach where the incomplete asset market case is far more complex

than the complete market case (see Magill and Quinzii [21] for a more complete

discussion). We can do this because we focus on small risks. Since our analysis

makes no assumptions about the span of assets, it is also a method for computing
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equilibrium in some economies with incomplete asset markets. This is generally a

difficult problem because the excess demand function is not continuous. Brown et al.

[2] and Schmedders [23] have formulated algorithms for computing equilibria when

asset markets are incomplete. Their methods aim to compute equilibrium for any

such model. Our method is only valid locally but is much faster since it relies on

relatively simple and direct formulas.

The applications presented in this paper are just a small sampling of the possi-

bilities. Guu and Judd [15] applies the results of this paper to compute the optimal

derivative asset. Leisen and Judd [19] uses similar methods to price options and de-

termine equilibrium trade in options when they are not priced by arbitrage. We stay

with the single good model in this paper so that we can focus on the key mathemat-

ical problems. The methods do generalize to the multicommodity models examined

in Hart and others, but space limitations force us to leave that for future studies.

Section 2 reviews local approximation theory and previous small noise analyses.

Section 3 presents the bifurcation to theorems that generalize the IFT. Section 4

applies the bifurcation theorems to asset demand. Section 5 presents a small noise

analysis of an asset market with one risky asset and Section 6 examines a market

with one fundamental risky asset plus a derivative asset. Comparisons of these cases

allows us to analyze the effects of introducing a derivative asset. Section 7 discusses

some computational considerations. Section 8 outlines the approach to more general

models. Section 9 concludes.

2. Local Approximation Methods at Nonsingular Points

Local approximation methods are based on a few basic theorems. They begin with

Taylor�s theorem and the IFT for Rn. We Þrst state the basic theorems in this section,

and then present the bifurcation theorems in the next section.

2.1. Taylor Series Approximation. The most basic local approximation is pre-

sented in Taylor�s Theorem.

Theorem 1. (Taylor�s Theorem for Rn) Let X ⊆ Rnand p be an interior point of X.
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Suppose f : X → R is Ck+1 in an open neighborhood N of p. Then, for all x ∈ N

f(x) = f(p) +
nX
i=1

∂f

∂xi
(p) (xi − pi)

+
1

2

nX
i=1

nX
j=1

∂2f

∂xi∂xj
(p) (xi − pi) (xj − pj)

...

+
1

k!

nX
i1=1

· · ·
nX

ik=1

∂kf

∂xi1 · · · ∂xik
(p) (xi1 − pi1) · · · (xik − pik)

+O (kx− pk)k+1

The Taylor series approximation of f(x) based at p uses derivative information

at p to construct a polynomial approximation. The theory only guarantees that this

approximation is good near p. While the accuracy of the approximation decays as x

moves away from p, this decay is often slow, implying that a Þnite Taylor series can

be a good approximation for x in a large neighborhood of p.

2.2. The Meaning of �Approximation�. We often use the phrase �f(x) ap-

proximates g(x) for x near p�, but the meaning of this phrase is seldom made clear.

One trivial sense of the term is that f(p) = g(p). While this is certainly a nec-

essary condition, it is generally too weak to be a useful concept. Approximation

usually means at least that f 0(p) = g0(p) as well. In this case, we say that �f is a

Þrst-order (or linear) approximation to g at x = p�. In general, �f is an n�th order

approximation of g at x = p� if and only if

lim
x→p

k f(x)− g(x) k
k x− p kn = 0

This deÞnition says that the error kf(x)− g(x)k of the approximation f(x) is asymp-
totically bounded above by c kx− pkn for any constant c > 0. Therefore, for any x
near p, the approximating function f(x) is very close to g(x). In particular, the de-

gree k Taylor series of a Ck+1 function is a k�th order approximation since its error

is O (kx− pk)k+1. This may seem trivial but this is not always the deÞnition of n�th

order approximation used in economics. We state it here for the purpose of precision.
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2.3. The Implicit Function Theorem for Analytic Functions. Our analysis

will rely on the IFT for analytic functions. It is useful to review some basic facts about

analytic functions that will help us understand our results. The following deÞnition

for analytic functions is the most helpful of the many equivalent deÞnitions.

DeÞnition 2. A function f(x) : R → R is analytic at x0 if and only if there is some

nonempty open set Ω ⊂ R such that x0 ∈ Ω and for all x ∈ Ω, f(x) =
Pθ

i=0 aix
i andPθ

i=0 ai |x|i <∞ for all x ∈ Ω.

Basically, analytic functions are C∞ and locally equal to the power series created

by Taylor series expansions. The key word here is �local�. For example, the power

series expansion of log x around x0 = 1 cannot be globally valid since log x is not

deÞned at x = 0. To make this precise, we need the concept of radius of convergence.

The next theorem states the key result that the domain of convergence for a power

series is a disk.

Theorem 3. Let C =
n
x|Pθ

i=0 aix
i
o
<∞. Then the closure of C, C, is a disk, and

the radius of C is called the radius of convergence of
Pθ

i=0 aix
i.

The focus on analytic functions is essential since some C∞ functions are not

analytic. The best example of this is e−1/x2
. The function e−1/x2

is deÞned everywhere,

even at x = 0. Furthermore, it is C∞ everywhere, even at x = 0 where each derivative

equals zero. This implies that the Taylor series expansion based at x0 = 0 is the zero

function. However, e−1/x2
equals zero just at x = 0, not in any neighborhood of x = 0.

Therefore, e−1/x2
does not equal its Taylor series expansion in any open neighborhood

of x = 0 and is not analytic at x = 0. In general, a C∞ function is analytic at x0 if

and only if it equals its power series in some nondegenerate neighborhood of x0.

We have discussed just the univariate case. Analytic functions on Rn are simi-

larly deÞned; see, for example, Zeidler [26]. The next important tool is the Implicit

Function Theorem (IFT) for analytic functions.

Theorem 4. (Implicit Function Theorem) Let H(x, y) : R n×R m → Rm be analytic

at (x0, y0) and assume H(x0, y0) = 0. If Hy(x0, y0) is nonsingular, then there is a

unique function h : Rn → Rm such that h(x) is analytic at x0 and H(x, h(x)) = 0 for
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(x, y) in an open neighborhood of (x0, y0). Furthermore, the derivatives of h at x0

can be computed by implicit differentiation of the identity H(x, h(x)) = 0.

The IFT states that h can be uniquely deÞned for x near x0 by H(x, h(x)) = 0

if Hy(x0, y0) is not singular and allows us to implicitly compute the derivatives of h.

For example, the gradient of h at x0 is

∂h

∂x
(x0) = −Hy(x0, y0)

−1Hx(x0, y0)

and provides us with the Þrst�order terms of the power series representation for h(x)

based at x0. When we combine Taylor�s theorem and the IFT, we have a way to

compute a locally valid polynomial1 approximation of a function h(x) for x near x0

implicitly deÞned by H(x, h(x)) = 0. There is an IFT for C∞ functions, but it does

not give us a positive radius of convergence for the implied power series. Therefore,

we must proceed with an analytic function perspective.

The focus on analytic functions is not restrictive since most functions economists

use are locally analytic at points of economic relevance. For example, log c is a

common utility function and is analytic at each positive value of c. Similarly for

Cobb-Douglas production functions kα`1−α. However, these functions are only locally

analytic, implying that different power series representations are valid over different

Þnite intervals. For example, suppose we construct a power series for u(c) = log c

based at c0 = 1. Since log c is undeÞned at c = 0, the radius of convergence for that

power series is at most 1, which in turn implies that that power series is not valid for

any c > 2. However, the power series based at c0 = 2 is valid for c ∈ (0, 4). When we
use the IFT for analytic functions, we need to be aware of the radii of convergence

of the power series we implicitly use and be sure that they are consistent with our

application of the IFT.

The power series constructed in the IFT for analytic functions will have a positive

radius of convergence, but we know anything about its magnitude in general. This

is a drawback in some contexts. This issue is not important in this paper since we

1The derivative information could also be used to compute a Padé approximant, or other nonlinear

approximation schemes. Judd and Guu (1993) and Judd (1998) examine both approaches. In this

paper, we will stay with the conventional Taylor expansions.
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examine only the asymptotic properties of models. We will return later to the issue

of the range of validity for our formulas.

2.4. Previous Small Noise Analyses. The small noise approach is not new to

the economics literature, but the approach we take differs in substance and formalism

from previous efforts. One line of previous work is taken by Fleming [8], which was

elaborated on by Judd and Guu [14]. Fleming showed how to go from the solution of

a deterministic control problem to one with small noise added to the law of motion.

SpeciÞcally, consider the problem

max E

½Z T

0

e−ρtπ(x, u)dt
¾

(1)

dx = f(u, x)dt+ ²σ(u, x)dz

Fleming approximated the problem in (1) for small ² by Þnding the control law

u = U(x, t) of the ² = 0 problem and then apply the IFT to Bellman�s equation.

A key detail was that the control law needed to be unique in the ² = 0 case. Judd

and Guu implement this approach for inÞnite horizon problems, and show that the

Fleming procedure produces good approximations.

The problem discussed in Fleming, and Judd and Guu was easy since it could be

handled by the standard IFT. A less trivial problem was examined in Samuelson [22].

He examined the problem of asset demand when riskiness was small. We will return

to that problem below.

A third example of the small noise analysis is Magill�s [20] analysis of what is now

called real business cycles. Magill showed how to compute linear approximations to

(1), use these approximations to compute spectra of the resulting linear model, and

proposed that the spectra of these models be compared to empirical data on spectra.

Kydland and Prescott [18] focussed on the special case of Magill�s method where the

law of motion f(u, x) is linear in (u, x), and partially implemented Magill�s spectral

comparison ideas by comparing variances and covariances of these linear approxima-

tions of deterministic models to the business cycle data. This special case of Magill�s

approach to stochastic dynamic general equilibrium has been important in the Real

Business Cycle literature. Gaspar and Judd [10] shows how to compute higher-order

expansions around deterministic steady states. Also, the methods in Magill, and Kyd-



Asymptotic Methods for Asset Market Equilibrium Analysis 9

land and Prescott were �certainty equivalent approximations�, that is, they compute

a linear approximation to the deterministic problem, ² = 0, and apply it to problems

where ² 6= 0, whereas Gaspar and Judd [10] computes approximations which includes
the effect of ². Similarly, we will compute high-order expansions where ² is allowed

to vary.

A fourth example that particularly illustrates the importance of using bifurcation

theory is Tesar [25]. Tesar used a linear-quadratic approach to evaluate the welfare

impact on countries from opening up trade in assets. Some of her numerical examples

showed that moving to complete markets would result in a Pareto inferior allocation,

a Þnding that contradicts the Þrst welfare theorem of general equilibrium. Kim and

Kim [16] have shown that this approach will often produce incorrect results. These

examples illustrate the need for using methods from the mathematical literature

instead of relying on ad hoc approximation procedures based loosely on �economic

intuition.�

This paper illustrates the critical mathematical structure of asset market problems

with small risks, and develops the relevant mathematical tools. While the model

analyzed below is simple, the basic approach is generally applicable.

3. Bifurcation Methods

Our asset market analysis requires us to approximate an implicitly deÞned function

at a point where the conditions of the IFT do not hold. Fortunately, we will be able

to exploit additional structure and arrive at a solution using bifurcation methods.

We Þrst present the general theorems and then apply them to some asset problems.

3.1. Bifurcation in R1. Suppose that H(x, ²) is C2 and x(²) is implicitly deÞned

by H(x(²), ²) = 0. One way to view the equation H(x, ²) = 0 is that for each ² it

deÞnes a collection of x that solves H(x, ²) = 0. The number of such x may change

as we change ². We next deÞne the concept of a bifurcation point.

DeÞnition 5. (x0, ²0) is a bifurcation point of H iff the number of solutions x to

H(x, ²) = 0 changes as ² passes through ²0, and there are two distinct parametric

paths, (Xi(s), Ei(s)), i = 1, 2, such thatH(Xi(s), Ei(s)) = 0, and lims→0(Xi(s), Ei(s)) =

(x0, ²0), i = 1, 2.
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A trivial example of a bifurcation is H(x, ²) = ²(x− ²) at (x, ²) = (0, 0). If ² 6= 0,
the unique solution to H = 0 is x(²) = ², but at ² = 0 any x solves H = 0. There

is a bifurcation point at (x, ²) = (0, 0), and the two branches of solutions to H = 0

are X1(s) = E1(s) = s and X1(s) = s, E1(s) = 0. We cannot apply the IFT to

H(x(²), ²) = 0 at (0, 0) directly since the Jacobian of Hx is singular at (0, 0). Suppose

that we are interested in the branch x(²) = ², and not the trivial branch where ² = 0

and x is arbritrary. This is natural since we want to know how x changes as ² changes,

not just the situation at ² = 0. Bifurcation theorems help us accomplish this. The

case for x ∈ R is summarized in the Theorem 6.

Theorem 6. (Bifurcation Theorem for R) Suppose H : R × R → R, H is analytic

for (x, ²) in a neighborhood of (x0, 0), and H(x, 0) = 0 for all x ∈ R. Furthermore,
suppose that

Hx(x0, 0) = 0 = H²(x0, 0), Hx²(x0, 0) 6= 0.
Then (x0, 0) is a bifurcation point and there is an open neighborhood N of (x0, 0)

and a function h(²), h(²) 6= 0 for ² 6= 0, such that h is analytic and H(h(²), ²) = 0 for
(h(²), ²) ∈ N .
Proof. The strategy to prove this theorem follows the trick of �solving a

singularity through division by ²� (see Zeidler, 1998, Chapter 8). DeÞne

F (x, ²) =

(
H(x,²)
²
, ² 6= 0

∂H(x,0)
∂²

, ² = 0
. (2)

Since H is analytic and H(x, 0) = 0 for all x, H(x, ²) = ²F (x, ²) and F is analytic

in (x, ²). Since 0 = H²(x0,0), F (x0,0) = 0. Direct computation shows Fx(x, ²) +

²Fx²(x, ²) = Hx²(x, ²), which implies Fx(x0, 0) = Hx²(x0, 0) 6= 0. Since Fx(x0, 0) 6= 0,
we can apply the IFT to F at (x0, 0). Therefore, there is an open neighborhood N of

(x0, 0) and an analytic function h(²), h(²) 6= 0 for ² 6= 0, such that F (h(²), ²) = 0 for
(h(²), ²) ∈ N , which in turn implies H(h(²), ²) = 0 for (h(²), ²) ∈ N .
In general, Theorem 6 tells us we can compute derivatives through implicit dif-

ferentiation. In particular, h0(0) and h00(0) are deÞned by

h0(0) = −[Fx(x0,0)]
−1F²(x0,0) = −1

2
[Hx²(x0,0)]

−1H²²(x0,0)

3Hx²(x0, 0)h
00
(0) = −[3h0

(0)Hxx²(x0, 0)h
0
(0) + 3Hx²²(x0, 0)h

0(0) +H²²²(x0, 0)]
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which implies a unique value for h0(0) and h00(0) as long as Hx²(x0, 0) 6= 0. Notice

the sequentially linear character of the problem. One only needs linear operations

to compute h0(0), and once we have computed h0(0) the problem of computing h00(0)

is also a linear problem. The existence of h0(0), h
00
(0), and all higher derivatives of

h relies solely on the solvability condition Hx²(x0,0) 6= 0 and the existence of the

higher-order derivatives of H at the bifurcation point.

Theorem 6 resolves the problem when H(x, ²) = ²(x − ²) = 0. In this case,

H(x, 0) = 0 for all x, Hx(0, 0) = 0 = H²(0, 0), but Hx²(x0, 0) = 1 6= 0. Implicit

differentiation shows that h0(0) = 1, and that every other derivative of h at x = 0 is

zero. The example of H = ²(x− ²) seems quite trivial, but our problems will have a
similar form and Theorem 6 gives us conditions under which the general problem is

really no more complex than this simple example.

Implicit differentiation of H(x(²), ²) = 0 will produce a power series expansion

for x(²) around ² = 0, but we know nothing about the radius of convergence of that

power series. For example, H(x, ²) = ²
¡
x− (²+ 1)1/2¢ = 0 has the obvious global

solution x(²) = (²+ 1)1/2 but the power series for (²+ 1)1/2 around ² = 0 is valid only

when −1 < ² < 1 because there is a singularity at ² = −1.2 Also, in practice, we will
only be able to use Þnite-order Taylor series approximations, which are just the initial

segments of the full power series. In general, any such Taylor series approximation

will do well for ² close to zero, but the quality of the approximation will degrade as

² moves away from zero.

We assumed Hx²(x0, 0) 6= 0 in Theorem 6. The division-by-zero trick can be

applied to problems with higher-order degeneracies. If Hx²(x0,0) = 0 then Fx(x0,0) =

0, and we cannot apply the IFT to F in the proof. But if F²(x0,0) = 0 and Fx²(x0,0) 6=
0 we can apply the bifurcation theorem to F.

3.2. Bifurcation in Rn : The Zero Jacobian Case. The foregoing focussed

on one-dimensional functions h. We can also apply these ideas for functions over

Rn. The same trick used in Theorem 6 works for Theorem 7; therefore, its proof is

2The difficulty in this case could be Þxed by a nonlinear change of variables. Appropriate and

clever nonlinear change of variables can help with this problem, but we do not pursue that strategy

in this paper.
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omitted.

Theorem 7. (Bifurcation Theorem for Rn) Suppose H : Rn × R → Rn is analytic

near (x0, 0), and H(x, 0) = 0 for all x ∈ Rn. Furthermore, suppose that

Hx(x0, 0) = 0n×n (3)

H²(x0, 0) = 0n (4)

det(Hx²(x0, 0)) 6= 0 (5)

Then there is an open neighborhood N of (x0, 0) and an analytic function h(²) : R →
Rn such that h(²) 6= 0 for ² 6= 0, and H(h(²), ²) = 0 for (h(²), ²) ∈ N .

Since Theorem 7 shows that h is analytic, it can be approximated by a multivariate

Taylor series. In particular, the Þrst-order derivatives are deÞned by

h0(0) = −1
2
H−1
x² (x0, 0) H²²(x0, 0) (6)

Theorem 7 assumes Hx(x0, 0) is a zero matrix. There are generalizations that only

assume that Hx(x0, 0) is singular. We do not present any extensions here since they

are substantially more complex to present and are not needed below. See Zeidler or

Chow and Hale for more complete treatments of bifurcation problems.

4. Portfolio Demand with Small Risks

The key assumption we exploit is that risks are small. This is motivated not by any

claim that actual risks are small, but is reasonable for three reasons. First, this as-

sumption allows us to solve the problem without making any parametric assumptions

for either tastes or returns. We derive critical formulas for allocations and welfare

in a parameter-free fashion. The results tell us which moments of asset returns are

important and which properties of the utility function are important for the case of

small risks. Second, the results for small risks may be suggestive of general results.

For example, the asymptotic results could provide counterexamples to conjectures

since the asymptotic results are asymptotically explicit solutions. Furthermore, any

general property of the model will be true for the case of small risks and will be

revealed as general properties of our asymptotic solutions. In this paper, we pursue
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the implications of the small risk assumption, leaving it for later work to see how

robust those results.

Third, the period of time in our model is not meant to be an entire life, but

rather the period of time between trades. Given modern markets and the presence of

many high-volume, low-transaction cost traders, it is reasonable to assume that only

a moderate amount of risk is borne between trading periods. A dynamic model is

necessary to examine the validity of this point, but we believe that our static analysis

will give useful insights and leave dynamic generalizations for future work.

4.1. Demand with Two Assets. We begin by applying the bifurcation approx-

imation methods to asset market demand. Suppose that an investor has W in wealth

to invest in two assets. The safe asset, called a bond, yields one dollar per dollar

invested, and the risky asset, called stocks or equity, yields Z dollars per dollar in-

vested. There is no savings-consumption decision in this model. Therefore, this is

equivalent to making bonds in the second period the numeraire. If an investors has

θ shares of stock, Þnal wealth is Y = (W − θ) + θZ. We assume that he chooses θ to
maximize E{u(Y )} for some concave utility function u(·).
Economists have studied this problem by approximating u with a quadratic func-

tion and then solving the �approximate� quadratic optimization problem. The bifur-

cation approach allows us to examine this procedure rigorously and extend it. We

Þrst create a continuum of portfolio problems by assuming

Z = 1+ ²z + ²2π (7)

where z is a Þxed random variable. We assume E {z} = 0 since we want (7) to

decompose Z into its mean, 1 + ²2π, and its risky component, ²z. We also assume

σ2
z = 1; this makes ² the standard deviation of Z and ²

2 its variance in the ² problem.

Both of these assumptions are just normalizations, implying no loss of generality. At

² = 0, Z is degenerate and equal to 1, the payoff of the bond. The scalar π represents

the risk premium. More precisely, σ2
z = 1 implies that π is the the price of risk, that

is, the risk premium per unit variance. In this demand problem we make the natural

assumption that π > 0 but that is not necessary for the analysis.

Equation (7) scales its terms in a manner consistent with economic theory. We

want (7) to represent a continuum of problems connecting a degenerate deterministic
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problem to problems with nontrivial risk. Note that (7) multiplies z by ² and π

by ²2. Since the variance of ²z is ²2 σ2
z, this models the intuition that risk premia

are proportional to the variance. The continuum of problems parameterized in (7)

all have the same price of risk π. The particular parameterization in (7) may seem

to prejudge the results. That will not be a problem since the application of the

bifurcation theorems will validate the assumptions implicitly made in (7).3

The investor chooses θ to maximize E{u(W + θ(²z + ²2π))}. The Þrst-order

condition for the investor�s problem is

²E{u0
(W + θ(²z + ²2π)) (z + ²π)} = 0. (8)

The condition (8) states that the future marginal utility of consumption must be

orthogonal to the excess return of equity. Let µ be the probability measure for z and

(a, b) the (possibly inÞnite) support. The choice of θ as a function of ² is implicitly

deÞned by

0 = H(θ(²), ²) ≡
Z b

a

u0(W + θ(²)(²z + ²2π)) (z + ²π) dµ. (9)

We want to analyze the solutions of (9) for small ². However, 0 = H(θ, 0) for all

θ, because at ² = 0 the assets are perfect substitutes. θ(0) is multivalued since any

choice of θ satisÞes the Þrst-order condition (9) when ² = 0. Furthermore, 0 = H(θ, 0)

for all θ implies 0 = Hθ(θ, 0) for all θ, violating the nonsingularity condition in the

IFT. Therefore, we cannot use the IFT to compute a Taylor series for θ(²) at ² = 0.

The situation is displayed in Figure 1. As ² changes, the equilibrium demand for

equity, θ, follows a path like ABC or like DEGF . Since the asset demand problem is

a concave optimization problem there is a unique path of solutions to the Þrst-order

conditions whenever ² 6= 0. At ² = 0, however, the entire ² = 0 horizontal axis is also a
solution to the equity demand problem. The path ABC crosses the θ axis vertically

and represents a pitchfork bifurcation, whereas the path DEGF crosses the θ axis

3Pages 518-519 in Judd (1998) show that alternative parameterizations of the form Z = 1+ ²z+

²νπ for ν 6= 2 lead to singularities which prevent the application of implicit function or bifurcation
theorems.
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Figure 1: Bifurcation possibilities for asset demand problem

obliquely and represents a transcritical bifurcation. The objective is to Þrst Þnd the

bifurcation point, B or E, where the branch of equity demand solutions crosses the

trivial branch of solutions to the Þrst-order conditions, and then compute a Taylor

series that approximates θ(²) along the nontrivial branch.

Computing θ0. We proceed intuitively to derive a solution which we validate

with the Bifurcation Theorem. Since we want to solve for θ as a function of ² near 0,

we Þrst need to compute θ0 ≡ lim²→0 θ(²). Implicit differentiation of (9) with respect

to ² implies

0 = Hθ(θ(²), ²)θ
0(²) +H²(θ(²), ²). (10)

Differentiating H(θ, ²) with respect to θ and ² implies

H²(θ, ²) =

Z b

a

u00(Y ) (θz + 2θ²π) (z + ²π) + u0(Y )π dµ

Hθ(θ, ²) =

Z b

a

u00(Y ) (z + ²π)2² dµ

At ² = 0, Hθ(θ, 0) = 0 for all θ. The derivative θ
0(0) can be well-deÞned in (10) only

if H²(θ, 0) = 0. Therefore, we look for θ0 deÞned by 0 = H²(θ0, 0). At ² = 0, this

reduces to (using the fact that
R b
a
z2 dµ = σ2

z = 1) 0 = u00(W ) θ0 + u
0(W )π, which

implies

θ0 = − u0(W )
u00(W )

π (11)
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This is the simple portfolio rule indicating that θ is the product of risk tolerance and

the risk premium per unit variance. If θ0 is well-deÞned, then this must be its value.

Theorem 8 states the critical result.

Theorem 8. Let (11) deÞne θ0. If H(θ, ²) is analytic at (θ0, 0), then there is an

analytic function θ(²) that satisÞes (9) such that θ(0) = θ0 and θ(²) 6= 0 for ² 6= 0.

Proof. Direct application of the Bifurcation Theorem.

The assumption in Theorem 8 thatH(θ, ²) is analytic at θ0 is not trivially satisÞed.

H(θ, ²) is an integral and is analytic if u(c) is analytic over the set of c at which u0(c)

is evaluated in the integrand of H(θ, ²), because the integral of a power series is a

power series. If the support of µ is compact and u is analytic at W then H(θ, ²)

is analytic at (θ0, 0) since for small ², u
0(c) is evaluated only at values of c close to

W . However, if µ has inÞnite support there may be problems because u0(c) in the

integrand of (9) is evaluated over an inÞnite range whenever ², θ 6= 0. If the radius
of convergence for the power series representation of u0(c) based at W is Þnite, then

it will not be valid at some points in the support of µ, rendering the power series

approach invalid. This will be the case, for example, if u(c) = log c and µ is the

measure for a log Normal random variable. The radius of convergence of power series

approximations of u(c) at c = W is a critical element, as well as the analyticity of

the density function of µ. The next corollary presents a sufficient condition for using

the bifurcation approach on an open neighborhood N .

Corollary 9. DeÞne θ0 as in (11). If u(c) is analytic at c = W and the support of

µ is compact, then there is a function θ(²) analytic and satisÞes (9) on (−²0, ²0) for
some ²0 > 0 with θ(0) = θ0 and θ(²) 6= 0 for ² 6= 0 in (−²0, ²0).

In all formulas below, we will assume that the critical functions are locally analytic.

Computing θ0(0). Equation (11) is not an approximation to the portfolio choice

at any particular variance. Instead, θ0 is the limiting portfolio share as the variance

vanishes. We generally need to compute several terms of the Taylor series expansion

for θ(²)

θ(²) = θ0 + θ
0
(0)²+ θ

00
(0)
²2

2
+ θ

000
(0)
²3

6
+ .... (12)



Asymptotic Methods for Asset Market Equilibrium Analysis 17

In particular, the linear approximation is

θ(²)
.
= θ(0) + ² θ0(0). (13)

To calculate θ
0
(0), differentiate (10) with respect to ² to Þnd 0 = Hθθ θ

0θ0 + 2Hθ² θ0+

Hθθ
00+H²². At (θ0, 0), H²² = u

000
(W )θ2

0E{z3}, Hθθ = 0, and Hθ² = u00
(W ). Therefore,

θ0(0) = −1
2
H−1
θ² H²² = −

1

2

u000(W )
u00(W )

E{z3} θ2
0. (14)

Again, we can use Corollary 9 to establish the existence of the derivatives of H for

some random variables.

Equation (14) tells us how the share of wealth invested in equity changes as the

riskiness increases. It highlights the importance of the third derivative of utility and

the skewness of returns. If the distribution of Z is symmetric, then E{z3} = 0, and
the constant θ0 is the linear approximation of θ(²) at ² = 0. This is also true if

u000(W ) = 0, such as in the quadratic utility case. The case of θ0(0) = 0 corresponds

to a pitchfork bifurcation point like B in Figure 1. However, if the utility function is

not quadratic and the risky return is not symmetrically distributed, then θ0(0) 6= 0,
and the linear approximation is a nontrivial function of utility curvature and higher

moments of the distribution. This indicates that the bifurcation point is transcritical

like E in Figure 1.

Dividing both sides of (14) by θ0 implies

θ0(0)
θ0

=
1

2

u
0
(R)

u00(R)
u000(R)
u00(R)

π E{z3} (15)

Equation (15) expresses the relative change in equity demand as ² increases in terms of

skewness, E{z3}, the risk premium, π, and utility derivatives. Our formulas would be
unintuitive and cumbersome if we expressed them in terms of u(c) and its derivatives.

Fortunately, there are some useful utility parameters we can use. DeÞne the functions

τ (c) ≡ − u
0(c)
u00(c)

ρ(c) ≡ τ 2

2

u000(c)
u0(c)

=
1

2

u0(c)
u00(c)

u000(c)
u00(c)
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The function τ (c) is the conventional risk tolerance. The bifurcation point θ0 equals

τ (W ) π, the product of risk tolerance at the deterministic consumption, τ (W ), and

the price of risk, π.

The deÞnition of ρ(c) implies that (15) can be expressed as

θ0(0)
θ0

= ρ(W ) π E{z3} (16)

This motivates our deÞnition of skew tolerance.4

DeÞnition 10. Skew tolerance at c is

ρ(c) =
1

2

u
0
(c)

u00(c)

u
000
(c)

u00(c)

Skew tolerance has ambiguous sign since the sign of u000 is ambiguous. If there is

more upside potential than downside risk, then skewness is positive. If u000 > 0, an

increase in skewness will cause asset demand to increase as riskiness increases. We

suspect that investors prefer positively skewed returns, holding mean and variance

constant. For example, u000 > 0 for the CRRA and CARA families of utility functions.

We never assume this, but this case provides us with some intuition for the results.

There are many ways to manipulate the expression in (14). We chose our deÞnition

of skew tolerance because of the expression in (16) and the intuitive role it plays in

critical expressions below.

The linear approximation (13) may not be sufficient. To compute θ00(0), differen-

tiate (10) with respect to ² at ² = 0 to Þnd

3Hθ²θ
00(0) = −(3Hθ²²θ0(0) + 3Hθθ²(θ0(0))2 +H²²²) (17)

Equation (17) is linear in θ00(0). Since Hθ² 6= 0 at (θ0, 0), θ
00(0) exists and is uniquely

deÞned by (17). To express θ00(0), we deÞne kurtosis tolerance.

DeÞnition 11. Kurtosis tolerance at c is

κ(c) = −1
3

u
0000
(c)

u00(c)

u
0
(c)

u00(c)

u
0
(c)

u00(c)

4Skew tolerance is obviously related to prudence, as deÞned in Kimball (1990), but we do not

pursue those connections here.
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Solving (17) at ² = 0 shows that

θ00(0)
θ0

= π2
¡
(6ρ(W )− 2) + 4ρ(W )2E{z3}2 + κ(W )E{z4}¢ (18)

Equation (18) says that the impact of kurtosis on equity demand is proportional to

the square of the price of risk and the kurtosis tolerance.

We could continue this indeÞnitely if u is locally analytic, an assumption satisÞed

by standard utility functions. Of course, the terms become increasingly complex.

We end here since it illustrates the main ideas and these results are the only ones

needed for the applications below. The general procedure is clear. Computing the

higher-order terms is straightforward since any particular derivative is the solution

to linear equations similar to (17) once we have computed lower-order derivatives.

Samuelson�s Method. Samuelson [22] also examined the problem of asset de-

mand with small risks. We now illustrate the relationships between our bifurcation

approach and Samuelson�s method. Samuelson�s method replaced u(Y ) with a poly-

nomial approximation based at the deterministic consumption, as in

u(W + θ(²z + ²2π))
.
= u(W ) + ²θzu0(W )

+
²2

2

¡
2θπ2u0(W ) + θ2z2u00(W )

¢
+
²3

6

¡
6zπ2θ2u00(W ) + θ3z3u000(W )

¢
+ ...

When we use the quadratic approximation in the Þrst-order condition (8) we arrive

at the equation 0 = (πu0(W ) + θu00(W )) ²2 + O(²3), which, to O(²), implies θ(²) .=

−(u0(W )/u00(W ))π, our bifurcation point.
However, the Samuelson method differs from ours for higher-order approxima-

tions. Samuelson�s second-order approximation is computed by using the third-order

approximation of u(Y ) in the Þrst-order condition (8), implying

0
.
= (πu0(W ) + θu00(W )) ²2 + ²3

1

2
θ2E{z3}u000(W ) (19)

which is a quadratic equation with solution

θ(²)
.
=
−u00(W ) +pu00(W )2 − 2πE{z3}²u000(W )u0(W )

E{z3}u000(W )² (20)
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One could arrive at our Þrst-order derivative in equation (14) by differentiating (20)

with respect to ² at ² = 0. The two methods are consistent and of similar complexity

for the Þrst-order approximation in a two-asset problem. However, the asymptotic

approach we pursue here becomes relatively more efficient as we move to higher-order

approximations and to more assets. Samuelson�s approach generally requires solving

nonlinear equations, as was the case in equation (19). The equations become more

difficult to solve, and are impossible to solve exactly beyond the fourth order since

there is no closed-form solution for polynomials of degree Þve and higher. Our bifur-

cation method uses linear operations to compute asymptotically valid approximations

of the function θ(²). Therefore, we can easily derive each term and go to an arbitrary

order as long as the necessary moments and derivatives exist.

The main reason for pursuing the asymptotic approach is its ability to derive

economically interesting results. Equation (20) shows that linear-quadratic approx-

imations would not be as good as higher-order approximations since equation (20)

involves the skewness of Z and the third derivative of utility. However, Samuelson

conjectured that LQ approximations are probably adequate in actual economic prob-

lems. This paper gives examples where the linear-quadratic approximation would

be unreliable, and higher-order approximations are necessary to answer critical ques-

tions.

4.2. Demand with Three Assets. We applied the R1 version of the Bifurcation

Theorem to the two-asset case. We next analyze the three-asset case to show the

generality of the method and illustrate the key multivariate details. Consider again

our investor model but with three assets. The bond yields one dollar per dollar

invested and risky asset i yields Zi dollars per dollar invested, for i = 1, 2. Let

θi denote the proportion of wealth invested in risky asset i. Final wealth is Y =

(W − θ1 − θ2)+ θ1Z1 + θ2Z2. The investor chooses θi to maximize E {u(Y )}. To
apply the Bifurcation Theorem, we assume that Zi = 1 + ²zi + ²

2πi. Without loss

of generality, we assume that E {zi} = 0. Let σ2
i = E {z2

i } be the variance of risky
asset i�s return and σ12 = E {z1z2} the covariance. We assume that the assets are
not perfectly correlated; hence, σ2

iσ
2
j 6= (σij)2 .

The Þrst-order condition for risky asset i is ²E
©
u

0
(Y )(²πi + zi)

ª
= 0. The as-
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set demand functions θi(²) are deÞned implicitly by H(θ1, θ2, ²) : R3 → R2 where

H i(θ1, θ2, ²) ≡ E
©
u

0
(Y )(²πi + zi)

ª
, i = 1, 2. To invoke Theorem 7, we Þrst note that

Hθ(θ1, θ2, 0) = 02×2 for all (θ1, θ2). We compute a candidate bifurcation point by

solving H²(θ1, θ2, 0) = 0. Direct computation shows

H²(θ1, θ2, 0) = u
0
(W )

"
π1

π2

#
+ u

00
(W )Σ

"
θ1

θ2

#

where Σ is the variance-covariance matrix of the risky returns (z1, z2). The solution

of the bifurcation equation H²(θ1, θ2, 0) = 0 is"
θ1(0)

θ2(0)

#
= − u

0
(W )

u00(W )
Σ−1

"
π1

π2

#

We need to verify the nonsingularity of Hθ² at (θ1(0), θ2(0), 0). Direct computation

shows that Hθ²(θ1(0), θ2(0), 0) = u
00
(W )Σ for all θ1, θ2. The determinant of Hθ² at

(θ1(0), θ2(0), 0) is u
00
(W )(σ2

1σ
2
2 − (σ12)

2), which is nonzero as long as assets 1 and 2

are not perfectly correlated.

These calculations show that all the conditions in Theorem 7 hold for our model.

Hence, the bifurcation theorem for R2 ensures the existence of analytic functions θ1(²)

and θ2(²) which satisfy H(θ1(²), θ2(²), ²) = 0 in some neighborhood of ² = 0. This

procedure can be applied for an arbitrary number of assets. We can also produce

higher-order expansions as long as the necessary moments and derivatives exist. We

next use these ideas to compute asset market equilibrium.

5. Asset Market Equilibrium with One Risky Asset

We now take our portfolio choice analysis and turn it into an equilibrium analysis5.

We assume a two-period model, period 0 and period 1, with no consumption in period

0. Agents trade assets in period 0 and consume the asset payoffs in period 1. One

bond yields 1 unit of consumption in period 1; the bond serves as our numeraire in

period 0. Each share of equity has price p in period 0 and has a random period 1 value

5Chiappori et al. (1992) used similar methods to prove the existence of sunspot equilibria near

deterministic steady states in overlapping generations models. We go through the details of our

application since they are substantially different than the application in Chiappori et al.
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of 1+ ²z units of consumption where z is a random variable with Þnite moments. We

assume E{z} = 0 and E{z2} = 1. For each value of ² we have an asset market with
two assets; we call that economy the ²-economy.

We assume two types of traders. Type i traders have initial endowments of Bei

units of the bond and θei shares of equity. The utility of a type i trader is ui (Yi),

a concave function, where Yi is the Þnal wealth and consumption of type i traders.

The supply of equity is Þxed at the endowment θe1 + θ
e
2. Without loss of generality,

we assume θe1 + θ
e
2 = 1; this implies that z denotes aggregate risk in the aggregate

endowment. Let θi be the shares of equity and Bi the value of bonds held by trader

i after trading in period 0. The Þnal wealth for trader i is Yi = θi(1 + ²z) + Bi.

Each trader of type i chooses θi to maximize his expected utility E{ui(Yi)}, subject
to the budget constraint Bi + θip = Bei + θ

e
ip. His Þrst-order condition for θi is

E{u0
i(Yi)(1 + ²z − p)} = 0. Market clearing implies θ1 + θ2 = θe1 + θ

e
2 = 1. DeÞne

θ = θ1; then θ2 = 1− θ. For each ²-economy, we want to Þnd the equilibrium values

of θ and p; let θ(²) and p(²) be the equilibrium values of θ and p in the ²-economy.

The equilibrium values of θ(²) and p(²) must satisfy the equilibrium pair of equations

H i(θ(²), p(²), ²) = E{u0
i(Yi)(1+ ²z − p(²))} = 0, i = 1, 2 (21)

which are implied by the agents� Þrst-order conditions.

Equation (21) implicitly deÞnes (θ (²) , p (²)). However, the IFT cannot be applied

to analyze (21) around ² = 0. Since the assets are perfect substitutes at ² = 0, they

must trade at the same price; hence, p(0) = 1. However, θ(0) is indeterminate because

H(θ, p, 0) = 0, for all θ. The indeterminacy of θ implies that Hθ(θ, 1, 0) = 0, ruling

out application of the IFT.

We want to apply the Bifurcation Theorem, but we cannot apply it to H(θ, p, 0)

becauseHθ(θ, 1, 0) 6= 0. Intuitively, the Bifurcation Theorem presented above requires
that both θ and p are indeterminate at ² = 0. Moreover, we know p0(0) if it exists.

Implicit differentiation of H(θ(²), p(²), ²) with respect to ² implies

Hi
θ(θ, p, ²)θ

0
(²) +H i

p(θ, p, ²)p
0
(²) +Hi

²(θ, p, ²) = 0.

For each i, Hi
θ(θ, p(0), 0) = 0 for all θ since p(0) = 1. Therefore, if p(²) is differentiable
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at ² = 0, then

0 = Hi
p(θ, p, 0)p

0
(0) +Hi

²(θ, p, 0) =
³
E {z}− p0

(0)
´
u

0
i(ci)

for i = 1, 2, where ci = Bei + θ
e
i is consumption in the no-risk case. Since u

0
i(ci) is

never zero, p
0
(0) = E {z} = 0 must hold if θ(²) and p(²) are differentiable at ² = 0.

Therefore, we have indeterminacy of θ(0) but there is only a single possible value

for both p(0) and p
0
(0). This prevents us from using Theorem 7 directly since the

Jacobian matrix H i
(θ,p) is not a zero matrix.

This problem is solved by reformulating the problem in terms of the price of risk,

not the price of the equity. More precisely, we assume the equity price parameteriza-

tion

p(²) = 1− ²2π(²) (22)

where π(²) is the risk premium in the ²-economy. Since σ2
z = 1, ²

2 is the variance of

risk and π(²) is the risk premium per unit variance. Since we expect the risk premium

to depress the price of equity, we use the form in (22).

We have assumed the parameterization in (22) but we have not proved anything

yet. We now need to show that this parameterization is consistent with Theorem 7.

To check the sufficient conditions in Theorem 7, we reformulate equilibrium as the

system of equations

0 = Hi(θ,π, ²) ≡ E
n
u

0
i(Yi) (z − ²π)

o
= 0. (23)

where Hi(θ, π, ²) = ²−1H i(θ, 1− ²2π, ²), i = 1, 2. It is clear that (θ,π, ²) satisfy (23)
if and only if they also satisfy (21).

The parameterization in (22) and the equilibrium characterization in (23) now

allow us to apply the Bifurcation Theorem. The functions Hi(θ, π, ²) have the de-

generacy assumed in Theorem 7 since Hi
θ(θ, π, 0) = Hi

π(θ, π, ²) = 0 for all (θ,π).

Intuitively, at ² = 0, any portfolio satisÞes the Þrst-order conditions since all assets

are perfect substititutes and any price of risk, π, is consistent with equilibrium since

the total amount of risk is zero. The Jacobian matrix

H(θ,π),² =

"
H1
θ²(θ(0), π(0), 0) H1

π²(θ(0), π(0), 0)

H2
θ²(θ(0), π(0), 0) H2

π²(θ(0), π(0), 0)

#
=

"
u

00
1 −u0

1

u
00
2 u

0
2

#
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has determinant u
00
1u

0
2+u

0
1u

00
2 < 0. Therefore, all the sufficient conditions of Theorem 7

hold, and the Bifurcation Theorem provides a local proof of existence and uniqueness

of solutions (θ(²), π(²)) to (23). Theorem 12 summarizes the result.

Theorem 12. If ui(c) is locally analytic for c near B
e
i + θ

e
i , i = 1, 2, and H(θ,π, ²)

is locally analytic near a solution (θ0, π0) to H²(θ, π, 0) = 0, then there is some

²0 > 0 such that for all ² ∈ (−²0, ²0) there is a unique analytic equilibrium selection

(θ(²), π(²)) such that H(θ(²), π(²), ²) = 0.
The basic approach to using the Bifurcation Theorem is to guess some parameteri-

zation for the unknown functions and then use the Bifurcation Theorem to check that

it is correct and can produce a locally analytic approximation. Some of the choices

we made, particularly the construction of (22) and (23), may appear arbitrary, but

their use is validated by the Bifurcation Theorem. Our formulation is economically

intuitive. For example, (22) just says that risk premia are proportional to variance.

Therefore, application of these ideas to more complex problems is not difficult as

long as we remember the intuition behind our construction. There are more complex

versions of the Bifurcation theorem which would lead more directly to (22) and (23);

see Zeidler [26]. We prefer the approach used here since it is straightforward once

one uses economic intuition to arrive at (22) and (23).

Figure 2 displays the geometry of the bifurcation in (23). When ² = 0, the entire

θ − π plane constitutes an equilibrium. However, for nonzero ² we have a locally
unique equilibrium. In Figure 2 the curve ABC represents the equilibrium manifold.

We can now proceed to compute asymptotic expressions for (θ(²), π(²)). Di-

rect computation shows that the bifurcation point (θ0, π0) for (23) is deÞned by

Hi
²(θ0,π0, ²) = 0, i = 1, 2, and satisÞes the linear equations:

−u0
1(c1)π0 + u

00
1(c1)θ0 = 0 (24)

u
0
2(c2)π0 + u

00
2(c2)θ0 = u

00
2(c2)

where ci = B
e
i + θ

e
i . The linear equations in (24) imply the unique candidate bifur-

cation point

θ0 =
τ 1

τ1 + τ2
, π0 =

1

τ1 + τ2
(25)
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Figure 2: Bifurcation of Equilibrium Correspondance

where τ i is evaluated at ci = B
e
i + θ

e
i , consumption in the deterministic limit. These

formulas for θ0 and π0 are intuitive; the τ i terms are the individual risk tolerances

at ² = 0, and the denominator is their sum, which is the social risk tolerance. The

results are both very intuitive. The equilibrium risk premium is the inverse of total

risk tolerance. Also, the fraction of equity held by investor 1 equals his contribution

to social risk tolerance. These solutions resemble the intuitive results from mean-

variance models.

The solution in (25) just tells us what the limit portfolio is as variance goes to

zero. We want to know what the equilibrium portfolio is for nonzero variance. This

requires computing the derivatives θ
0
(0) and π

0
(0). Further implicit differentiations

of Hi yield (θ
0
(0), π

0
(0)) and any other higher-order derivative.

Theorem 13. The Þrst-order derivatives of the equilibrium correspondence (θ(²), π(²))

at ² = 0 are

θ0(0) =
τ1

τ 1 + τ 2

τ2

τ 1 + τ 2

ρ1 − ρ2

τ 1 + τ 2

E
©
z3
ª

(26)

π0(0) = −
µ

τ 1

τ1 + τ2

ρ1 +
τ2

τ 1 + τ 2

ρ2

¶
E {z3}
(τ1 + τ 2)

2 (27)

Therefore, type 1 investors increase their holdings of equity as ² increases if (ρ1 −
ρ2)E {z3} > 0, and the risk premium per unit variance decreases as ² increases if

E {z3} > 0.
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Proof. Apply (6).

Theorem 13 gives us our Þrst-order approximation to θ(²) = θ0+ ²θ
0(0). We need

to be clear what this tells us. For example, if θ0(0) > 0 then we know that for all ² > 0

sufficiently close to θ0, θ(²) exceeds θ0, and that θ(²) grows at rate θ
0(0). We know

this because θ(²) is locally analytic, implying that our Taylor series approximations

are valid for ² sufficiently close to ² = 0. This could be reversed for large ² with θ(²)

less than θ0. But, for sufficiently small ², equations (26) and (27) tell us precisely

how θ(²) and π (²) behave.

Theorem 13 is economically intuitive. Equation (26) shows that the equity hold-

ings of a type 1 investor are greater than θ0 if ² is small and positive, if skewness,

E {z3}, is positive, and if his skew tolerance exceeds the skew tolerance of type 2

investors, where we evaluate skew tolerance at the ² = 0 allocations. Equation (27)

shows that the risk premium will decrease as ² increases (and the price of equity

relative to bonds will increase) if skewness is positive. The magnitude of the change

depends on a weighted sum of the skew tolerances, where the weights are the limit

portfolio holdings. Notice that we get these results for any utility function, not just

for CRRA utility functions or other families that have u000 > 0. The results in The-

orem 13 resemble the style of analysis in Jones [12]. Jones examines the impact of

changes in endowments on equilibrium, whereas we are examining the change in asset

market equilibrium as we move away from the deterministic case. The problems are

economically different but the mathematical idea is the same: use implicit function

theorems or their generalizations to analyze the impact of small changes in parameters

on equilibrium.

The derivatives θ
0
(0) or π

0
(0) could be zero. This does not mean that θ(²) or π(²)

is constant for small ². It just means that the local behavior is governed by higher-

order terms in the expansion. For example, if E {z3} = 0, then θ
0
(0) = π

0
(0) = 0

and the local behavior of θ(0) and π(0) is governed by θ00(0) and π00(0), which depend

on the kurtosis E {z4} and fourth-order properties of u(c). We do not pursue these
higher-order issues in this paper since Theorem 13 is adequate for the analysis below.
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6. Asset Market Equilibrium with a Derivative Asset

The previous section examined a market with only a bond and a stock. In this

section, we compare markets with different asset spans. In particular, we introduce a

new derivative asset into the market and compute asymptotically valid expressions for

equilibrium. The results allow us to single out important factors for these expressions.

We assume that the derivative pays ²y and has price q(²) in the ²-economy. We

also assume that y = f(z), which makes y a derivative security, such as an option. We

force the payoff of the derivative to be zero when ² = 0; hence, q(0) = 0. This implies

no loss of generality since any portion of the asset�s return which is deterministic

given ² will be equivalent to the bond, adding nothing to the asset span. We assume

that the net supply of the derivative is zero since we want to model the introduction

of a derivative security. For instance, y = max[0, (z−S)] represents a call option, and
²y is the call option max[0, ²z− ²S] with strike price ²S. This may initially seem odd,
but it is a standard option if ² = 1. Also, if F (z) is the cdf of z then the probability

of exercise, F (S), is unaffected by ².

We decompose y into components that are spanned by the stock and bond, and

a component orthogonal to the stock and bond. We assume

y = y + αz + ν (28)

where y is the mean of y, α is the covariance with z, the risky component of equity, and

a nonzero random variable ν, the innovation in y. Therefore, 0 = E {ν} = E {zν}.
This formulation implicitly assumes that markets are initially incomplete since we

assume that ν is not spanned by 1 and z. For example, if z is a random variable with

only two possible values, then the stock and bond span the market and there is no

y = f(z) such that ν in (28) is not identically equal to zero6.

We compute the equilibrium holdings and prices of both assets. Let θi and Bi

be the equity and bond holdings, and let φi be the units of y held by trader i after

trading. The Þnal wealth for trader i is Yi = θi(1 + ²z) + Bi + φi²y, and his budget

constraint is θip + Bi + φiq = Bei + θ
e
ip. When we use the budget constraint to

6We could add securities which generate random shocks, such as pure gambling. Since investors

are risk averse, there is no demand for such assets. Therefore, we ignore assets with pure noise

payoffs.
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eliminate Bi, the Þrst-order conditions for θi and φi are

E{u0
i(Yi)(1+ ²z − p(²))} = 0, i = 1, 2 (29)

E{u0
i(Yi)(²y − q(²))} = 0, i = 1, 2

Equilibrium is deÞned by combining the Þrst-order conditions of type 1 and type 2

agents with the market clearing conditions; we shall compute the equilibrium values

for θi, φi, p, and q as functions of ² in some neighborhood of ² = 0. Let θ and φ

denote θ1 and φ1; hence θ2 = 1− θ and φ2 = −φ. Similar to the analysis of previous
section, θ(0) and φ(0) are indeterminate but p(0) = 1 and q(0) = 0.

We need to determine an appropriate parameterization for this problem, just as

we did in the case of equilibrium with one asset. We implicitly differentiate the four

Þrst-order conditions in (29) with respect to ², and Þnd that differentiability of q and

p at ² = 0 requires [E {y}−q0(0)]u0
i((B

e
i +θ

e
i )) = 0 and [E {z}−p0(0)]u0

i((B
e
i +θ

e
i )) = 0.

Therefore, if q and π are well behaved, q0(0) = y and p0(0) = E {z} = 0. We want to
solve for θ, φ, p,and q as functions of ², at least in some neighborhood of ² = 0, and

we need p(0) = 1, p0(0) = E {z} = 0 and q(0) = 0, q0(0) = y.We choose the following
parameterization:

p(²) = 1− ²2π(²), q(²) = ²y − ²2ψ(²) (30)

We next check if the parameterization in (30) is consistent with Theorem 7. The

bifurcation point (φ0, θ0, π0,ψ0) is computed by solving the system of linear equations
u

00
1σ

2
y u

00
1σyz 0 −u0

1

u
00
1σyz u

00
1σ

2
z −u0

1 0

u
00
2σyz u

00
1σ

2
z u

0
2 0

u
00
2σ

2
y u

00
2σyz 0 u

0
2



φ0

θ0

π0

ψ0

 =

0

0

u
00
2σ

2
z

u
00
2σyz


which has the unique solution

θ0 =
τ 1

τ1 + τ2
, φ0 = 0, π0 =

1

τ1 + τ 2
, ψ0 =

σyz
τ1 + τ2

. (31)

The existence of solutions for φ(²), θ(²), π(²), and ψ(²) near the bifurcation point is

established by applying Theorem 7 at the candidate bifurcation point (31). Further-

more, the Þrst-order derivatives (θ0(0), φ0(0), π0(0), ψ0(0)), the second-order deriva-

tives (θ
00
(0), φ00((0), π

00
(0), ψ

00
(0)), and other derivatives can be obtained by solving
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linear systems of equations as long as the utility function u is analytic at the deter-

ministic consumption. Since the solutions are cumbersome, we omit them except for

the Þrst-order derivatives.

The results follow standard intuition. The equilibrium price of the derivative

security is asymptotically equal to

q(²) = ²E {y}− ²2 σyz
τ 1 + τ 2

+O(²3), (32)

which tells us that the derivative y carries a positive risk premium (modelled here as a

discount in the price) only if σyz > 0, that is, y is positively correlated with aggregate

risk z. The limit price and holdings of equity are unaffected by the presence of the

derivative, and trading volume for the derivative is zero in the limit.

We see again that a key step is Þnding an appropriate parameterization of asset

prices. There is no precise, generally applicable formula describing how we arrived

at the parameterization in (30) which allowed us to apply the Bifurcation Theorem,

but the steps we have followed in the one- and two-asset problems are clear. We Þrst

compute derivatives of the equilibrium equations and examine them to see if some

terms in the Taylor series of the unknown functions are Þxed. For example, we found

that q0(0) = y and p0(0) = 0 must be true if there is to be a coherent Taylor expansion.

If conventional IFT methods indicate the value of low-order terms in an expansion,

we then focus on the next higher-order term. Since q0(0) = y and p0(0) = 0, we then

examined the parameterization in (30) where π(²) and ψ(²) became the unknown

terms which could not be determined by applying the logic of the conventional IFT.

We continued this for each unknown function until we reach a point where the terms

in its expansion could not be Þxed by the IFT. At that point we can apply the

Bifurcation Theorem.

6.1. Trading Patterns for the Derivative Asset. We next determine the trad-

ing patterns of y. Since φ(0) = 0, the value of φ0(0) determines the trading patterns

for nonzero ². Direct computation produces Theorem 14.

Theorem 14. Type 1 investors buy the derivative y if and only if (ρ1 − ρ2)Cov(ν, z
2) >
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0. In general,

φ0(0) =
τ1τ2 (ρ1 − ρ2)

(τ1 + τ2)
3

Cov(ν, z2)

E {ν2} (33)

Recall that φ0(0) > 0 means that trader 1 buys and trader 2 sells the derivative

asset y. If type 1 investors have more skew tolerance and y provides the market with

a new risk that is positively correlated with the tails of equity returns, then type 1

investors buy y and type 2 investors sell it. If Cov(ν, z2) > 0, the new asset y adds a

type of riskiness that appeals to individuals with relatively high skew tolerance, and

type 1(2) agents will buy y if ρ1 > ρ2 (ρ1 < ρ2).

If Cov(ν, z2) = 0 then we would need to examine φ00(0) to determine who buys

the derivative. We do not pursue that here since no Þnancial institution has an

interest in introducing a derivative with no Þrst-order volume. We continue to focus

on derivatives where Cov(ν, z2) 6= 0.

6.2. Change in Equity Holdings. The derivative asset y may change investors�

holdings of equity. Let θb(²) and θa(²) denote the equilibrium holding of equity by

type 1 investors without and with the derivative security.7 At ² = 0, θb(²) and θa(²)

will be the same since all assets will be equivalent. To compare the equilibria across

these market structures, we compute the series expansion of both θb(²) and θa(²), and

then use the difference in their series expansions to express the difference between the

two market equilibria. We can do this for any index of market equilibrium. Direct

computation shows Theorem 15.

Theorem 15. Let θb(²) (θa(²)) denote the equilibrium equity demand of type 1 in-

vestors without (with) the derivative y. Then

θa(²)− θb(²) = −τ 1τ 2 (ρ1 − ρ2)

(τ 1 + τ 2)
3 α

Cov(ν, z2)

E {ν2} ²+O(²2) (34)

If ν and z are uncorrelated, (34) reduces to zero, implying that the introduction

of y has only O(²3) effects on the demand for the equity. If α = Cov(ν, z) > 0 then

the change in type 1 investors� holding of equity is negatively related to their demand

for y since (33) and (34) imply that θaz(²)− θbz(²) = − α φ0(0) +O(²2).
7Loosely speaking, θb is equilibrium equity holding �before� introduction of y and θa is holding

�after� introduction.
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6.3. Price Effects of the Derivative Asset. Our computations show that the

equilibrium price for equity remains unchanged up to O(²3) in its Taylor expansion.

The fourth-order term reveals the dominant effect of the derivative y on the price of

equity.

Theorem 16. Let P a(²) (P b(²)) denote the equilibrium price of equity with (with-

out) the derivative y. The price difference is

P a(²)− P b(²) = 2τ1τ2 (ρ1 − ρ2)
2

(τ1 + τ2)
5

E {νz2}2

E {ν2} ²
4 +O(²5) > 0

In particular, the equity rises in value and rises more as the derivative is more cor-

related to the tails of equity returns, and as investors differ more in their skewness

tolerance.

Theorem 16 shows the elements that affect the impact of the derivative on stock

price. The price change is always positive, but depends on third-order properties of

the utility function. The derivative asset y complements equity and allows investors

to allocate tail risk independent of other risks. This makes equity more attractive.

Also, the magnitude is proportional to the covariance of the derivative�s innovation

ν with the extremes of equity returns. If ν is uncorrelated with those extremes then

there is no price change to the order ²4. There may be a price effect but it would be

an order of magnitude smaller asymptotically.

6.4. Welfare Effects of the Derivative Asset. We next derive the effect of

a derivative on the welfare of each trader. Theory tells us that in one-good models

such as ours, individual investors may gain or lose utility from adding an asset, but

someone must gain. Our solutions will add some precision to those statements.

With the derivatives computed by the bifurcation method, we can study the wel-

fare effect of the derivative y. Precisely, we shall expand the utility functions in

terms of ² and examine the dominated term. Let U bi (²) and U
a
i (²) denote trader

i�s optimal utility levels without and with y. The utility effect can be expressed by

[Uai (²)− U bi (²)]/u0
i(B

e
i + θ

e
i ), a measure of the welfare change in terms of a consump-

tion equivalent. The following theorem summarizes the result of our perturbation

analysis.
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Theorem 17. Let Ua1 (²) and U
b
1(²) denote the equilibrium expected utility of type

1 investors with and without the derivative y. Then

Ua1 (²)− U b1(²)
u

0
1

=
τ2

1τ
2
2 (ρ1 − ρ2)

2

2 (τ 1 + τ 2)
6

µ
4

µ
θe1
τ 1

− θe2
τ2

¶
+
1

τ 1

¶
E {νz2}2

E {ν2} ²
4 +O(²5)

The second trader�s welfare change is symmetrically expressed.

Again, the result corresponds to basic theory. The key term is 4 (θe1/τ 1 − θe2/τ 2)+

τ−1
1 , which may be positive or negative. The term θe1/τ1 − θe2/τ2 is proportional to

the amount of equity type one investors sell to type two investors in the limit as ²

goes to zero. If there is no equity trade asymptotically then the dominant impact on

utility is the improved opportunity for risk-sharing provided by the introduction of

y. The risk-sharing gain is proportional to τ−1, which is absolute risk aversion, for

type i investors. If θe1/τ1 − θe2/τ2 6= 0, the investor type that sells shares also gains
from the equity price increase caused by the introduction of the derivative asset. So,

one type gains from the price increase and the other loses, but both gain from new

risk-sharing opportunities. One of the investors may lose, but not both.

The results in Theorems 14, 15, 16, and 17 demonstrate the importance of higher-

order expansions. Linear-quadratic expansions would completely miss all of the effects

studied in these theorems since ρ = 0 for linear-quadratic utility functions. Approx-

imation methods that only use the Þrst two derivatives of utility functions would

incorrectly predict that adding y would have no effect on equilibrium. The advan-

tage of the approach used here is that one need not make a choice about how many

derivatives to use since that decision is automatically made by the power series gen-

erated by the bifurcation (and the IFT) approach. The mechanical computation of

the power series expansions of equilibrium prices and quantities tells us which power

of ² contains the asymptotically dominant effects, and which derivatives of utility and

which moments of returns should be used.

7. Computational Considerations

The analysis above focused on applying the bifurcation method to a simple asset

market model. The results were obtained only after much computational effort. The-

orem 17 is a good example of why the computer is necessary. Since the effect of the
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derivative asset y on utility was zero at orders ²2 and ²3, we had to compute the

fourth-order Taylor series expansion of utility. Also, equilibrium utility is a function

of all four variables determined in equilibrium, the two premia and the two portfolio

variables. These four equilibrium variables are locally analytic functions of ². There-

fore, Theorem 17 required a fourth-order expansion of a four-dimensional function

where each argument is a fourth-order Taylor series in ². This resulted in thousands

of intermediate terms. The Þnal result in Theorem 17 is compact since almost all of

the intermediate terms disappear when they are evaluated at ² = 0. However, the

intermediate terms must be kept until that last step. The computations in this paper

took only a few minutes using Mathematica on a 400 MHz machine, but would be

impossible for us to do without a computer.

This paper used the computer to derive algebraic formulas and theoretical asymp-

totic results. The computational burden was particularly heavy since we were inter-

ested in general formulas expressing the results in terms of elasticities, shares, and

prices. The computational costs will rise rapidly as we move to larger problems with

more types of investors and/or more assets. However, as we gained experience with

the simple model we discovered patterns which we can incorporate into the code to

substantially improve performance and make possible examination of more complex

models. For example, the deÞnitions of risk tolerance and skew tolerance, and the

decomposition in (28) substantially reduced the complexity and length of the formu-

las. With Mathematica and these simpliÞcations, we can now handle larger problems,

such as problems with four investor types and four assets.

The Taylor series expansions for equilibrium price correspondences p(²) and port-

folio allocations θ(²) could also be used to arrive at numerical approximations for

speciÞc utility functions and asset return distributions. The bifurcation method then

reduces to computing the numerical values of all derivatives of the equations deÞning

equilibrium up to the fourth order at ² = 0, and then executing numerical linear

operations instead of symbolic operations. Since numerical operations are faster and

more compact than symbolic operations, computing expansions for speciÞc examples

would be far faster. The computer could handle much larger problems if we specify

all utility functions and returns.

We would like to know how well these formulas do for nontrivial ². In general, a
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power series constructed by the IFT for analytic functions will have a positive radius

of convergence, but we know nothing about its magnitude in general. However,

there is a simple diagnostic which can help. Suppose that h(x) is implicitly deÞned

by H(x, h(x)) = 0 and that we construct the degree k Taylor series approximation

h∗(x) based at x = x0. If h
∗(x) is a good approximation to h(x) then H(x, h∗(x))

should be nearly zero. Once we have computed h∗(x), we can evaluate its quality

by computing H(x, h∗(x)) for various values of x. The behavior of H(x, h∗(x)) as

x moves away from x0 will indicate where the approximation can be trusted. Judd

and Guu [14] applied this approach to similar approximations of stochastic growth

models. We have constructed examples of the asset models studied in this paper

for which our Taylor series approximations for p(²) and θ(²) imply very small Euler

equation errors. Roughly, we found that the method does well if the disturbance z

has compact support, but does poorly if z is log Normal, a Þnding consistent with

the fact that making z a log Normal random variable makes it unlikely that H(θ, ²)

is analytic.

More generally, we could compare the results of our approach for large ² with

the numerical approach in Schmedders [23]. If our formulas work, then they would

produce results faster than Schmedders [23], but our formulas will not work for the

large ² cases where Schmedders� algorith would work. There could be a partnership

between the two approaches with our Taylor-style expansions used to produce an

initial guess for Schmedders� algorithm. Further discussion and serious examination

of these numerical issues must be left for another paper.

We used Mathematica to compute our results. Space limitations prevent us from

presenting and explaining the code here. The reader can obtain the code by sending e-

mail to judd@hoover.stanford.edu, or by going to the webpage http://bucky.stanford.edu/

or the Economic Theory webpage for this paper.

8. Generalizations

This paper has examined a few simple problems, but we believe that the same tools

can be used to examine a large class of models. We brießy discuss those claims here.

This paper assumed a single good, two types of agents, and only one source of

risk. Space limitations prevent us from presenting an analysis for more general cases,



Asymptotic Methods for Asset Market Equilibrium Analysis 35

but we can outline the general approach. Adding more types of agents and more

assets but staying with one good is a direct generalization of the methods above. The

equilibrium in our examples were expressed as Þrst-order conditions for each agent

with respect to each asset. Adding agents and assets just implies a longer list of Þrst-

order conditions but the key elements are unchanged: the deterministic consumption

levels are Þxed at the endowment, the price of risk, π, and portfolio allocations, θ,

are indeterminate in the deterministic model, and we can parameterize θ so that the

Bifurcation theorem applies to a system of equations H(π, θ, ²) = 0 which include

individual Þrst-order conditions and market-clearing conditions.

The generalization to several goods is more complex. Let p be the price vector

for goods, π the vector of prices of risk for the assets, and θ the allocation of assets

across agents. In GEI models with several goods, equilibrium can be expressed as the

solution to a system of equations H(p, π, θ, ²) = 0 where the components of H are

the agents� Þrst-order conditions over asset and consumption choices plus feasibility

conditions. The excess demand for assets may not exist at some prices because of

arbitrage; therefore, H may not be continuous. However, theory tells us that equi-

librium will generically exist. If we let ² parameterize uncertainty then a system

H(p, π, θ, ²) = 0 would represent equilibrium in the ²-economy and implicitly deÞne

equilibrium maps p(²), π(²), and θ(²). At ² = 0, the economy reduces to a deter-

ministic Arrow-Debreu general equilibrium. There will be trade in the goods in the

deterministic limit economy, and goods� prices p(0) will be determined by equilibrium

conditions. Asset prices in the deterministic limit, q(0), will also be determined by

p(0). The goods prices and asset prices would generically be locally determinate by

the standard general equilibrium theory. However, the portfolio decisions θ(0) will

be indeterminate in the ² = 0 economy since all assets would be perfect substitutes.

If asset prices in general can be represented as q = q0 − ²2π(²), just as in equation
(22) for the two-asset case, then the limit prices for risk, π(0), measured in terms of

excess return per unit variance, will be indeterminate since the level of risk is zero.

The geometrical structure of the GEI problem is illustrated in Figure 3. Let the

axis labeled∆ denote the price simplex for goods, and the axis labeled (π, θ) represent

the prices of risk and portfolio allocations of the risky assets. As in Figures 1 and

2, the ² axis in Figure 3 represents the level of risk. Suppose that the arc ABC
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Figure 3: Bifurcation diagrams for general equilibrium problems

describes equilibrium values for p, π, and θ as ² changes. When ² = 0, the problem

reduces to an Arrow-Debreu model and equilibrium Þxes goods� prices p at some point,

say δ, in ∆, but the price of risk π and portfolio holdings would be indeterminate.

Therefore, any point along the line
←→
δB would be an equilibrium. In order to analyze

the arc ABC we need to Þnd B. We analyze the Jacobian H(p,π,θ) to Þnd some

suitable parameterization for p(²), π(²), and θ(²) such that the Bifurcation Theorem

applies and produces B. The parameterization q(²) = q0 − ²2π(²) corresponds to
the robust result that risk premia are related to the variance of risk, indicating that

the Bifurcation Theorem should continue to apply. There may be cases where the

bifurcation method used above does not apply, but we conjecture that this approach

will often succeed since, generically, equilibrium does exist for endowment economies

with incomplete asset markets.

The multicommodity case would produce more complex results. For example,

there could be a second equilibrium arc, such as A0B0C 0 which corresponds to a sec-

ond set of equilibrium prices at δ0 for goods in the deterministic economy. That does

not present any essential difficulty as long as the local properties of the system of equi-

librium equations H(p, π, θ, ²) = 0 satisÞes the bifurcation theorem. Other complex

possibilities may arise, such as multiple equilibrium arcs passing through a bifurca-

tion point B. The bifurcation methods presented in this paper cannot handle such a
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case, but, fortunately, there are more powerful tools from bifurcation and singularity

theory which could handle some of these problems. Presumably, the variety of wel-

fare results in Hart, Elul, and Cass and Citanna, would also arise asymptotically in

multigood economies. The key point is that the situation in Figure 3 is conceptually

similar to the structure in Figures 1 and 2, and basic tools from bifurcation theory

should be able to handle many multicommodity models.

9. Conclusion

We have used bifurcation approximation methods to examine simple asset market

problems with small noise. The analysis produces a mean-variance-skewness-etc.

theory of asset demand and asset market equilibrium, and found several interesting

results. We found that the addition of derivative asset will increase the price of the

underlying equity stock. Also, the demand for a derivative asset depends on skewness

properties of asset returns and the relative skew tolerance of investors. These results

indicate that skewness and skew tolerance will be important determinants of asset

innovation in more general contexts and indicate that results from linear-quadratic

or mean-variance models are of limited relevance. The approach also shows that, in

small noise economies, equilibrium depends on the utility properties of traders and

the moments of returns, not on the number of contingent states. The asymptotic

approach provides more intuitive results than the usual state-contingent approach.

The mathematical tools are quite general and can be applied to far more complex

problems. Zeidler shows that the critical bifurcation theorems hold in Banach spaces.

For example, partial differential equations that characterize asset prices in continuous

time can also be approximated by examining bifurcations of deterministic cases. The

steps in such an application of the bifurcation theorem require the solution of linear

partial differential equations.

This paper focussed on qualitative analyses, but the expansions derived here could

have value as a numerical method for solving speciÞc cases; we leave that possibility

for another study. This paper focussed on applications of bifurcation methods but

many of the same points could be made for applications of the IFT. Economists are

familiar with comparative statics analysis, such as that in Jones [12], but that is

generally limited to Þrst-order expansions. Higher-order approximations could often
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be used to improve qualitative and quantitative analysis of economic models.

The necessary mathematics for deriving expansions have been known for a long

time, but the cumbersome algebra made them impractical until now. Fortunately,

the speed of modern computers and the availability of symbolic language software

now makes bifurcation methods, and similar perturbation methods, a practical way

to address important economic problems.
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