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Abstract

We present an asymptotically valid analysis of a simple optimal growth model with hyper-

bolic discounting. We use the implicit function theorem for Banach spaces to show that for

small deviations from exponential discounting there is a unique solution near the exponential

discounting solution in the Banach space of consumption functions with bounded derivatives.

The proof is constructive and produces both an infinite series characterization and a perturba-

tion method for solving these problems. The solution uses only the contraction properties of

the exponential discounting case, suggesting that the techniques can be used for a wide variety

of time consistency problems. We also compare the computational procedure implied by our

asymptotic analysis to previous methods. Finally, we present a simple tax policy example that

illustrates how to apply the method more generally.

1 Introduction

Many dynamic decision problems lead to problems of time inconsistency. These include government

policy problems as well as the sale of durable goods by a monopolist and consumption decisions

under hyperbolic discounting. In general, such problems can be treated as dynamic games. This

∗I would like to thank Mordecai Kurz, conference participants at the 2003 meeting of the Society for Computational

Economics, and seminar participants at the University of Wisconsin, Duke University, Stanford University, and the

Board of Governors of the Federal Reserve for their comments, and Paul Klein, Per Krusell, and Tony Smith for

useful discussions on the KKS procedure.
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paper uses the hyperbolic discounting model in Krusell, Kuruscu, and Smith (2002) (KKS) to

address issues of existence and uniqueness of time consistent equilibria in general. The analysis

is constructive and leads directly to a perturbation method of solution. While we analyze only a

hyperbolic discounting example, the analysis uses no special properties of the example and uses

an abstract, dynamic game theoretic formulation of the problem. This indicates that the solution

technique is applicable in a variety of dynamic strategic contexts.

Multiplicity of equilibria is a common problem in dynamic games. One strategy has been to

focus on equilibria with continuous strategies. This has proven particularly powerful in at least

one problem of time consistency. Stokey (1981) showed that there exists a continuum of time

consistent solutions to the problem of the durable good monopolist, but showed that the Coase

solution is the unique solution with continuous expectations. More generally, many have explicitly

use continuity as a selection criterion. Furthermore, many others have implicitly made continuity

restrictions. In particular, numerical solutions to time consistency problems and feedback Nash

equilibria of dynamic games typically examine only continuous strategies; see, for example, Wright

and Williams (1982), Kotlikoff et al. (1988), Rui and Miranda (1996), Ha and Sibert (1997), Krusell

et al. (1997), Vedenov and Miranda (2001), Klein et al. (2002), and Doraszelski (2003). We will

use the hyperbolic discounting model as a laboratory for examining theoretical and computational

properties of this selection criterion.

The multiplicity problem arises often in dynamic games. For example, Fudenberg and Tirole

(1983) showed that there is a continuum of feedback equilibria in a simple duopoly game of in-

vestment. A key feature of many of the equilibria in Fudenberg-Tirole (1983) is that each firm’s

strategy is discontinuous with respect to the state, with each firm discontinuously increasing invest-

ment if its opponent violates a tacitly agreed limit on its capital stock. Krusell-Smith (2003) use

similar arguments to show that the hyperbolic discounting model of growth often has a continuum

of solutions with discontinuous consumption functions. In both problems, the steady state stock of

capital is often indeterminate. The focus on equilibria with continuous consumption functions will

rule out discontinuous solutions but there is no reason to believe that there are continuous equilibria

nor that there is exactly one. This paper shows that continuity will select a unique differentiable

equilibrium for small deviations from exponential discounting, and that this unique equilibrium is

as differentiable as the underlying tastes and technology. Our analysis has two implications for

computational approaches to dynamic equilibria. First, our results justify the typical numerical

focus on continuous (and differentiable) solutions for at least an open set of problems. Second, the

constructive nature of our analysis itself suggests three computational approaches.

The basic approach of this paper is familiar. We begin with a particular case, exponential

discounting, where we know there exists a unique solution. We then examine how the solution

changes as we change a parameter representing the deviation from exponential discounting. This
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approach is the same as used in comparative statics, comparative dynamics, and determinacy

theory for general equilibrium (see Debreu, 1976, and Shannon, 1999). It is also the approach

to dynamic games taken in Judd (2003). Differentiability plays a key role in those analyses, and

will be equally important here. However, we have an infinite-dimensional problem since we must

compute savings functions. The key tools in this paper come from calculus in Banach spaces.

The major mathematical challenges involve finding an appropriate topology for the analysis and

then checking the conditions for the implicit function theorem. Along the way we must solve an

unfamiliar functional equation of a differential composition character. This approach is similar to

the analysis in Judd (2003) except here the choice of Banach space is less obvious since our operators

are not as simple as the integral operators in Judd (2003). However, the tools are very general.

The key fact is that the problem with exponential discounting reduces to analysis of a contraction

map. We provide a condition which implies that a modified contraction property is inherited by

problems with nearly exponential discounting. Since the key elements of the analysis are common

features of dynamic economic problems, we suspect that the ideas are directly applicable to a wide

range of time consistency problems.

Time consistency problems present special numerical challenges, particularly in the context of

hyperbolic discounting. For example, many of the problems in Laibson and Harris (2002) appear to

have only discontinuous solutions. We will examine the standard solution methods that have been

used by agricultural economists and public finance economists to find time consistent equilibria of

policy games, as well as a recent procedure proposed in KKS. We will show that these methods,

some of which are essentially projection methods as defined in Judd (1992), have difficulties that

point either to multiplicity of true solutions or the presence of extraneous solutions to the numerical

approximations.

These numerical problems indicate that computational approaches to solving dynamic strategic

problems need to be very careful. We use our asymptotic theory to present a perturbation method

for solving the hyperbolic discounting problem that addresses both the existence and uniqueness

issues. This procedure is limited in its applicability, but is promising since it is based on solid

mathematical foundations. Furthermore, we show that it can be used to solve a wide range of

hyperbolic discounting problems, and, presumably, many other dynamic strategic problems.

2 A Model of Growth with Hyperbolic Discounting

We will examine an optimal growth problem where the planner discounts future utility in a hyper-

bolic fashion1. Suppose that ct is consumption in period t. The planner at time t = 0 values the

1See Krusell, Kuruscu, and Smith (2002) for a more complete description of this model, and Harris and Laibson

(2003) for a more general discussion of hyperbolic discounting problems.
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future stream of utility according to the infinite sum

U0 = u (c0) + β(δu (c1) + δ2u (c2) + δ3u (c3) + · · · )

whereas the agent at t = 1 values future utility according to the sum

U1 = u (c1) + β(δu (c2) + δ2u (c3) + · · · ).

where δ < 1 and β is usually taken to be less than one to represent a myopia on the part of the

decisionmaker. In general, the planner at time t discounts utility between t + 1 and t + s + 1 at

rate δs but discounts utility between time t and t + s at rate βδs. If β = 1 we have the standard

discounted utility function.

2.1 Smooth Feedback Nash Equilibrium

We will examine only feedback Nash equilibria2; that is, we assume that the time t planner believes

that future savings follow the process

kt+1 = h(kt) (1)

for some function h of the current capital stock3. We also define the consumption function, C (k) ≡
f (k) − h (k). By the feedback Nash assumption, we need only consider the problem of the time

t = 0 personality. At time t = 0, the time t = 0 self chooses current consumption to solve

h(k) ≡ argmax
x

u(f (k)− x) + βδV (x) (2)

where V (k) is the value to the time t = 0 self of the utility flow of consumption from period t = 1

and after if the capital stock at time t = 1 is k. Under the assumption that future selves will follow

(1), the value function V (k) is the solution to the equation

V (k) = u(f (k)− h(k)) + δV (h(k)) (3)

which, for any h (k), has a unique solution since the right-hand side of (3) is a contraction operator

on value functions V . Furthermore, the solution to (2) satisfies the first-order condition

u0(c) = βδV 0(f (k)− c).

However, in a feedback Nash equilibrium, when capital is k gross savings must equal h (k) = f (k)−c.
We use these equations to define our concept of equilibrium.

2The concept of feedback Nash equilibria from the dynamic games literature (see, for example, Basar and Olsder,

1982) is equivalent to the term “Markov perfect equilibrium” later favored by some economists.
3We also assume that the feedback rule is the same at all times t. We conjecture that this remains true even if

we allow feedback rules of the form h (k, t) since this is true of the β = 1 case. The proof of this would require us to

formulate a similar function space for nonautonomous functions, and would take us away from the essential points of

our analysis, so we leave it for future work.

4



Definition 1 A continuously differentiable feedback Nash equilibrium will be a pair of functions

V (k) (C2) and h (k) (C1) that satisfy the value function equation

V (k) = u(f (k)− h(k)) + δV (h(k)), (4)

the first-order condition

u0(f(k)− h(k)) = βδV 0(h(k)), (5)

and the global optimality condition

h(k) ≡ argmax
x

u(f (k)− x) + βδV (x) (6)

Existence and uniqueness problems arise in this model as they typically do in dynamic games,

even when we restrict ourselves to feedback Nash equilibria. Krusell and Smith (2003) prove that

there is a continuum of distinct solutions to the equilibrium pair (2, 4). Our definition of a C1

feedback Nash equilibrium precisely formulates our equilibrium selection criterion by focussing

on smooth value functions and savings functions. This is the assumption explicitly made and

defended in Stokey (1981) and implicitly made (generally without discussion) by KKS and many

other analyses of time consistent equilibria and dynamic games in general. Stokey (1981) proves

that there is a unique continuous solution in its model, but KKS provides no proof of either existence

of a continuous solution nor a uniqueness result.

Harris and Laibson (2001) examine a similar savings problem with hyperbolic discounting and

prove existence of smooth solutions for small amounts of hyperbolic discounting. However, there are

substantial differences between their analysis and the analysis presented below. First, their existence

result assumes income uncertainty. This uncertainty is critical to smoothing out their problem

and avoiding mathematical difficulties. Since deterministic problems are of substantial interest in

general in time consistency problems, we will proceed with developing the tools necessary to analyze

this deterministic problem. Also, they prove only that the set of solutions is a semicontinuous

correspondence in hyperbolic discounting whereas we construct a smooth manifold of solutions,

one for each value of hyperbolic discounting. The techniques used are also different with Harris

and Laibson using techniques from the theory of functions of bounded variation whereas we use

calculus methods in Banach spaces.

2.2 Operator Expression of Equilibrium

We will follow KKS and reduce the analysis to a single equation in h (k). This will simplify the

exposition but will not affect any substantive result since we could proceed in the same manner

with the pair of equations (4,5). Differentiating (4) with respect to k implies

V 0 (k) = u0 (f (k)− h (k))
¡
f 0 (k)− h0 (k)

¢
+ δV 0 (h (k))h0 (k) (7)
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which also, by substituting h (k) for k, implies

V 0 (h (k)) = u0 (C (h (k)))
¡
f 0 (h (k))− h0 (h (k))

¢
+ δV 0 (h (h (k)))h0 (h (k)) (8)

where C (h (k)) = f (h (k)) − h (h (k)). The first-order condition (5) when capital stock is h (k)

implies

u0(C (h (k))) = βδV 0(h (h (k))). (9)

Combining (7) and (8), using (9) to eliminate V 0 (h (h (k))), implies the single equation4

u0 (f (k)− h (k)) = βδu0 (f (h (k))− h (h (k)))

µ
f 0 (h (k)) +

µ
1

β
− 1
¶
h0 (h (k))

¶
(10)

KKS call equation (10) the Generalized Euler Equation since it eliminates the value function5. Note

that if β = 1, the case of exponential discounting, (10) does reduce to the usual Euler equation. I

shall work with the GEE. It is a simplification of the equilibrium conditions for the dynamic game

to a single equation in a single unknown function and helps keep our exposition simple. However,

one could proceed with our analysis with the value function formulation; therefore, the methods

below likely apply even when there is no GEE formulation.

We will rearrange the terms and express equilibrium in terms of a general function G : R5→ R

0 = u0 (f (k)− h (k))−
µ

δ

1 + ε

¶
u0 (f (h (k))− h (h (k))) (11)

× ¡f 0 (h (k)) + εh0 (h (k))
¢

≡ G
¡
k, h (k) , h (h (k)) , εh0 (h (k)) , ε

¢
where ε = β−1 − 1 represents the deviation from exponential discounting. When ε = 0 we have

ordinary exponential discounting at rate δ, and the unique solution is the conventional optimal

consumption function that solves

0 = u0 (C (k))− βδu0 (C (h (k))) f 0 (h (k))

C (k) = f (k)− h (k)

4A more complete derivation is

u0 (f (k)− h (k)) = δβV 0 (h (k))

= δβ
¡
u0 (C (h (k)))

¡
f 0 (h (k))− h0 (h (k))

¢
+ δV 0 (h (h (k)))h0 (h (k))

¢
= δβ

µ
u0 (C (h (k)))

¡
f 0 (h (k))− h0 (h (k))

¢
+
1

β
u0 (C (h (k)))h0 (h (k))

¶
= βδu0 (C (h (k)))

µ
f 0 (h (k)) +

µ
1

β
− 1

¶
h0 (h (k))

¶
5This simplification is a special case of a more general fact. Rincon-Zapatero et al. (1998) have shown that a

similar simplification is possible in a broad range of differential games. This indicates that the techniques in this

paper are broadly applicable.

6



which has a unique bounded stable solution. Let h̄ (k) denote this solution and let k∗ denote the
steady state of the ε = 0 solution; that is, h̄ (k∗) = k∗.

2.3 The Formal Singular Perturbation

The parameter ε appears in two distinct places and our form for G recognizes this. The parameter

ε appears as part of the discounting term βδ and in the εh0 (h (k)) term. The appearance in the βδ
term is unremarkable, but the other occurrence is quite important. Note that when ε = 0 the term

of h of highest complexity is the h (h (k)) term but when ε 6= 0 the highest order term is h0 (h (k)).
The fact that a change in ε changes the fundamental nature of the operator equation implies that

we have a (formal) singular perturbation as ε moves away from ε = 0. This should cause immediate

alarm in any analysis of this problem. We shall see below that it demands careful attention and

that ad hoc methods that ignore this singular perturbation can lead to incoherent “results.”

3 Mathematical Preliminaries

We will need to use nonlinear functional analysis to analyze equilibrium in the hyperbolic discount-

ing problem. This section will review the basic definitions and theorems we will use6.

We will work with a Banach spaces of functions h : I → R where I = (a, b), 0 < a < k∗ < b <∞,
is an open interval. We need to specify a space of such functions and a norm appropriate for our

purposes. We want to focus on continuous solutions for h but the presence of h0 (h (k)) in (10)
implies that we also require differentiability. This implies that conventional spaces and norms such

as L1, L2, or L∞ are not appropriate for this problem. One approach for dealing with the presence

of h0 in applied mathematics is to work in a Sobolev space where the notion of a generalized (or
weak) derivative is used. We will not take that approach since we do not want to burden this paper

with generalized derivatives, and we probably would not get our strong uniqueness results since the

step function solutions found in Krusell-Smith (2003) lie in the standard Sobolev spaces.

We use the standard generalization of the supremum norm. Let Cm (U,V ) denote the space of

Cm functions f with domain U ⊂ R and range in V ⊂ R. On this space, the norm k·km is defined

by

kfkm = max
0≤i≤m

sup
x∈U

°°Dif (x)
°° . (12)

Cm (U, V ) is a Banach space with the norm kfkm but is not a Hilbert space. A Hilbert space

approach would replace the supremum norm in (12) with an inner product in an Lp space, and

6We take many of the critical definitions and theorems from Abraham et al. (1983). See Abraham et al. (1983),

Joshi and Bose (1985), or any one of many monographs on nonlinear functional analysis for a more thorough discussion

of the relevant theorems from calculus on Banach spaces.
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would lead to a Sobolev space. Since this Sobolev space is neither needed nor desired here, we use

the Banach space defined by kfkm.
We need to extend calculus to mappings of Cm (U,V ) into Cm−1 (U,R). The key fact is that

all of the basic results from ordinary calculus generalizes to these mappings. The reader can skip

the rest of this section if he is not worried about the details. The first key concept is tangency.

Definition 2 Suppose f and g are functions

f, g : U → F

where U is an open subset of E, V is an open subset of F , where E and F are Banach spaces each

with a norm k·k. The functions f and g are tangent at x0 ∈ U if

lim
x→x0

kf (x)− g (x)k
kx− x0k = 0.

This notion of tangency implies an important uniqueness property.

Definition 3 Let L(E,F ) denote the space of linear maps from E to F with the norm topology.

Also, the spaces of linear maps Lm(E,F ) are defined inductively by the identities Lm(E,F ) =

L(E,Lm−1(E,F )), m = 2, 3, ....

The following fact allows us to define differentiation. See Abraham et al. for a proof.

Lemma 4 For f : U ⊂ E → F and x0 ∈ U there is at most one linear map L ∈ L(E,F ) such that

the map g (x) = f(x0) + L(x− x0) is tangent to f at x0.

We now use tangents to define differentiation, first and higher orders.

Definition 5 If there is an L ∈ L(E,F ) such that f(x0) + L(x − x0) is tangent to f at x0, then

we say f is differentiable (a.k.a., Fréchet differentiable) at x0, and define the derivative of f at x0
to be Df(x0) = L.

Definition 6 If f is differentiable at each x0 ∈ U, then the derivative of f is a map from U to the

space of linear maps

Df : U → L(E,F )

x 7−→ Df (x)

Definition 7 If Df : U → L(E,F ) is a continuous map then f is C1 (U,F ) (e.g., continuously

differentiable). As long as the derivatives exist, we define higher derivatives by the inductive formula

Dmf = D(Dm−1f) : U ⊂ E → Lm(E,F )

If Dmf exists and is norm continuous we say f is Cm (U,F ) .
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The directional derivative is a related concept.

Definition 8 Let f : U ⊂ E → F where E and F are Banach spaces, and let x ∈ U. We say that

f has a derivative in the direction e ∈ E at x if

lim
t→0

d

dt
f(x+ te)

exists, in which case it is called the directional derivative.

Sometimes a function may have a directional derivative for all directions, (that is, it is Gâteaux

differentiable) but may not be differentiable. The key fact is that the directional derivative is the

intuitive way to compute derivatives of differentiable functions.

Lemma 9 If f is differentiable at x, then the directional derivatives of f exist at x and are given

by

lim
t→0

d

dt
f (x+ te) = Df (x) · e.

In general, we will just use the Gâteaux approach to compute our derivatives but our theorems

will guarantee that the operators are Frechet differentiable.

The GEE contains a h0 (h (k)) term. Its presence rules out the usefulness of an Lp space since Lp

spaces contain nondiffentiable functions. The main advantage of Cm (U, V ) is that the derivative

map is differentiable. We shall express the differentiability result for the case of Cm(I, E), I, E ⊂ R,
but it holds for more general spaces of differentiable functions.

Lemma 10 (Differentiability of the derivative map) The map

D (f) : Cm (U,V )→ Cm−1 (U,R)

f 7−→ f 0

is Cm−1.

One novel feature of the operator we will encounter is the presence of the evaluation map. The

evaluation map is the map

ev:Cm (U,V )× U → V

defined by

ev(f, t) = f(t).
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Lemma 11 (Evaluation Map Lemma). The evaluation map is Cm and the derivatives are

defined by the chain rule and equal

Dkev(f, t) · ((g1, s1), ..., (gk, sk))
= Dkf(t) · (s1, ..., sk) +

kP
i=1

Dk−1gi(t) · (s1, ..., si−1, si+1, ..., sk)

for

(gi, si) ∈ Cm(I,R)×R, i = 1, ..., k.

We will use the following lemma on compositions. It is proved by applying the converse to the

Taylor theorem (see Abraham et al.).

Lemma 12 (Composition Map Lemma) Suppose g : W → V and f : U → W are Cm maps.

Then the map

T (g, f) : Cm (U,W )×Cm (W,V )→ Cm (U,V )

(f, g) 7−→ f ◦ g

is Cm.

The chain rule will be important in our problem. It follows from the general result on composite

maps.

Lemma 13 (Cm Composite Mapping Lemma). Suppose g :W → V and f : U →W are Cm

maps between Banach spaces. Then the composite g ◦ f : U → V is also Cm and

D(g ◦ f) (x) · e = Dg(f (x)) · (Df (x)) · e)

See Abraham et al. (Box 2.4.A) for the formula for Dc(g ◦ f) for c > 1.

The final tool we need is the implicit function theorem. This states that if the linearization

of the equation f (x) = y is uniquely invertible then locally so is f ; i.e., we can uniquely solve

f (x) = y for x as a function of y. This just the generalization of the familiar implicit function

theorem in Rn.

Theorem 14 (Implicit Function Theorem) Let U ⊂ E, and V ⊂ F be open and f : U×V → G

be Cm, r > 1. For some x0 ∈ U, y0 ∈ V assume D2f(x0, y0) : F → G is an isomorphism. Then

there are neighborhoods U0 of x0 and a unique Cm map g : U0 → V such that for all x ∈ U0,

f(x, g(x)) = 0.
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Applying the chain rule to the relation f(x, g(x)) = 0, one can explicitly compute the derivatives

of g :

D1g(x) = − [D2f(x, g(x))]−1 ◦D1f(x, g(x)) (13)

These formulas look familiar from ordinary calculus. However, they may be quite different in

practice. In particular, the derivatives in (13) are linear operators in a function space, not just

Jacobian matrices, and the inversions involve solutions to linear functional equations, not just

inversion of Jacobian matrices. However, the key fact is that we only need to solve linear functional

equations instead of nonlinear equations. Therefore, the implicit function theorem in Banach spaces

does have the same simplifying properties of the normal implicit function theorem. The exact details

for our hyperbolic discounting problem will be presented below.

4 Local Analysis of the Hyperbolic Discounting Problem

We now establish the critical mathematical facts about the hyperbolic discounting problem. We

saw that any equilibrium savings function h satisfies the functional equation

0 = G
¡
k, h (k) , h (h (k)) , εh0 (h (k)) , ε

¢
where G : R5 → R was defined in (11). We restate the problem as a functional one. Let I ⊂ R be
an open, convex set containing the steady state k∗. We assume that the deterministic equilibrium
h̄ (k) is locally asymptotically stable. Therefore, h̄ (I) ⊂ I.

Define the operator

N : X ×E → Cm−1 (I,R)

N (h, ε) (k) = G
¡
k, h (k) , h (h (k)) , εh0 (h (k)) , ε

¢
where X ⊂ Cm (I,R) and E = (−ε0, ε0) for some ε0. N is the critical operator for us. We view

N as a mapping taking a continuous function h of k and a scalar ε to another function of k. The

operator N is not defined for all functions h ∈ Cm (I, I). For example, if h (k) > f(k) then the

current period’s consumption is negative, rendering the Euler equation undefined. However, if h− h̄
is sufficiently small, f(k)−h (k) will always be positive. More specifically, the subset X ⊂ Cm (I,R)
will be a ball of radius r for some r > 0:

Xr =
©
h|°°h− h̄

°°
m
< r

ª
Lemma 15 Assume G is Cm and that h̄ is Cm. If r > 0 is sufficiently small then Xr ⊂ Cm (I, I)

and N : Xr ×E → Cm−1 (I,R).
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Proof. Clearly, G
¡
k, h̄ (k) , h̄

¡
h̄ (k)

¢
, εh̄

¡
h̄ (k)

¢¢
exists since h̄ (k) > 0 for k ∈ I and is C∞.

G (k, h (k) , h (h (k)) , εh0 (h (k))) exists if h (k) and h (h (k)) are positive for all k ∈ I. The order m

derivatives of G (k, h (k) , h (h (k)) , εh0 (h (k))) with respect to ε and k exist as long as G is Cm and

h is Cm. Therefore, if
°°h− h̄

°°
m
is sufficiently small then G (k, h (k) , h (h (k)) , εh0 (h (k))) exists

and is Cm−1 in (k, ε).
When ε = 0 the problem in (10) is just the ordinary optimal growth problem with exponential

discounting, and there is a locally unique h̄ (k) such that N ¡h̄, 0¢ = 0. The task is to show that
there is a unique map Y : (−ε0, ε0)→ Cm−1 (I,R) such that for all ε ∈ (−ε0, ε0), N (Y (ε) , ε) = 0.
We also want Y (ε) to be differentiable in ε thereby allowing us to compute Y (ε) via Taylor series
expansions. To accomplish this we must apply the implicit function theorem for Banach spaces of

functions to N . We need to show that N satisfies the conditions for the IFT.

We next need to show that N (h, ε) is (Frechet) differentiable with respect to h at h = h̄ and

ε = 0. Rewrite N as

N (h, ε) (k) = G
¡
k, h (k) , h (h (k)) , εh0 (h (k)) , ε

¢
= G (k, ev (h, k) , ev (h, h (k)) , ε ev (D (h) , h (k)) , ε)

The chain rule, composition theorem, the omega lemma, and the smoothness of differentiation in

the k·km norm prove the following result.

Lemma 16 N is Cm in the k·km norm.

We now compute the derivative ofN with respect to h. This is where the specific structure of our

problem becomes important. The following result follows directly from computing the directional

derivatives.

Lemma 17 Nh

¡
h̄, 0
¢
is the linear operator Nh

¡
h̄, 0

¢
: Cm (I, I)× {0}→ Cm−1 (I,R) defined by¡Nh

¡
h̄, 0
¢ · ψ¢ (k) = A (k)ψ (k) +B (k)ψ

¡
h̄ (k)

¢
(14)

A (k) ≡ G2
¡
k, h̄ (k) , h̄

¡
h̄ (k)

¢
, 0, 0

¢
+G3

¡
k, h̄ (k) , h̄

¡
h̄ (k)

¢
, 0, 0

¢
h̄0
¡
h̄ (k)

¢
B (k) ≡ G3

¡
k, h̄ (k) , h̄

¡
h̄ (k)

¢
, 0, 0

¢
and Nε

¡
h̄, 0
¢
is the linear operator Nε

¡
h̄, 0
¢
:
©
h̄
ª×E → Cm−1 (I,R) defined by¡Nε

¡
h̄, 0
¢ · ε¢ (k) = εG4

¡
k, h̄ (k) , h̄

¡
h̄ (k)

¢
, 0, 0

¢
h̄0
¡
h̄ (k)

¢
+ εG5

¡
k, h̄ (k) , h̄

¡
h̄ (k)

¢
, 0, 0

¢
≡ εC (k)

The last step is to show that the derivative of N (h, ε) with respect to h is invertible at neigh-

borhood of
¡
h̄, 0

¢
. That is, we want to solve the linear operator equation

0 = Nh

¡
h̄, 0
¢ · hε +Nε

¡
h̄, 0

¢
12



for the unknown function hε. The formal expression for the solution is

hε = −Nh

¡
h̄, 0
¢−1Nε

¡
h̄, 0

¢
but we need to check that Nh

¡
h̄, 0
¢−1 exists and is unique. That is, we need to show that for every

Cm−1 function C (k) there is a function ψ (k) such that

0 = Nh

¡
h̄, 0
¢ · ψ +C (k)

We will approach this in an intuitive manner. Our operator has the form

N (h, ε) = G(k, h, h (h) , εh0 (h) , ε)

We want to find a path of solutions of the form

h(k, ε) = h̄ (k) + ε
∂h

∂ε
(k, 0) +

ε2

2

∂2h

∂ε2
(k, 0) + · · · (15)

such that

N (h(k, ε), ε) = 0, ∀ε (16)

Note that we require the Taylor series to converge uniformly for all k in on the interval I. We want

to compute the functions hε (k, 0), hεε (k, 0), etc., and form the Taylor series in (15). To reduce

notational complexity, define

ψ (k) =
∂h

∂ε
(k, 0)

We solve for h in (16) for small ε by implicit differentiation. When we substitute (15) into

G(k, h, h (h) , εh0 (h) , ε) and differentiate (16) with respect to ε at ε = 0, we find that ψ (k) must
satisfy, for all k, the functional equation

0 = A (k)ψ (k) +B (k)ψ
¡
h̄ (k)

¢
+C (k) (17)

where A (k), B (k), and C (k) are known functions defined above. Equation (17) looks unusual at

first. However, it is really quite familiar. We first note that it is linear in the function ψ. To see

this define the operator

S (ψ) (k) = A (k)ψ (k) +B (k)ψ
¡
h̄ (k)

¢
and note that S (α1ψ1 + α2ψ2) = α1S (ψ1) + α2S (ψ2) for arbitrary scalars α1 and α2. This is

reassuring since linear problems are always easier than nonlinear problems.

Second, assume that A (k) is nonzero for all k and define J (k) = A (k)−1B (k). Then (17) has
the form7

ψ (k) = J (k)ψ
¡
h̄ (k)

¢
+C (k) (18)

7Since C (k) is an arbitrary function, we let C (k) absorb the A (k)−1 function.

13



This form reveals the iterative nature to the problem and suggests a natural infinite series solution.

Consider the recursion

ψ (k) = J (k)ψ
¡
h̄ (k)

¢
+C (k)

ψ (k) = J (k)
£
J
¡
h̄ (k)

¢
ψ
¡
h̄
¡
h̄ (k)

¢¢
+C

¡
h̄ (k)

¢¤
+C (k)

...

= C (k) +
TX
i=1

i−1Y
j=0

J
¡
h̄j (k)

¢C
¡
h̄i (k)

¢
(19)

+

 TY
j=0

J
¡
h̄j (k)

¢ψ
¡
h̄T (k)

¢
where h̄i (k) is defined inductively by

h̄0 (k) = k

h̄1 (k) = h̄ (k)

h̄i+1 (k) = h̄
¡
h̄i (k)

¢
This shows that our problem has a natural recursive structure and suggests an infinite series solu-

tion. The critical issue is whether J and h̄ interact in a manner which produces a convergent series

in (19). We now state the critical theorem.

Theorem 18 Consider the functions A, B, and C in (14). If (i) A (k) is positive for all k, and

(ii) the magnitude of A (k)−1B (k) is uniformly less than θ < 1 for all k, then Nh

¡
h̄, 0
¢
: X →

Cm−1 (I,R) in an invertible Cm−1 operator.

Proof. Transform the equation

A (k)ψ (k) +B (k)ψ
¡
h̄ (k)

¢
+C (k) = 0.

into the equivalent equation

ψ (k) = J (k)ψ
¡
h̄ (k)

¢
+C (k) . (20)

where J (k) = A (k)−1B (k) and, without loss of generality, we have replacedC (k)with−A (k)−1C (k).
We first show that there is a unique solution in C0 (I,R) . Define

(Tψ) (k) = J (k)ψ
¡
h̄ (k)

¢
+C (k)

By (i) and (ii) A (k)−1B (k) exists and has magnitude less than 1.Since h̄ (I) ⊂ I, we conclude

that

max
k∈I

¯̄
ψ1
¡
h̄ (k)

¢− ψ2
¡
h̄ (k)

¢¯̄
6 max

k∈I
|ψ1 (k)− ψ2 (k)| .

14



Furthermore, T is a contraction mapping because

|Tψ1 − Tψ2| = max
k

¯̄
J (k)ψ1

¡
h̄ (k)

¢− J (k)ψ2
¡
h̄ (k)

¢¯̄
6

µ
max
k∈I

J (k)

¶
max
k

¯̄
ψ1
¡
h̄ (k)

¢− ψ2
¡
h̄ (k)

¢¯̄
6 θmax

k
|ψ1 (k)− ψ2 (k)|

and the iterates ψ0 = 0 and ψi+1 = Tψi converge uniformly to the solution ψ∞.
If ψ0 (k) exists, (20) implies

ψ0 (k) = J 0 (k)ψ
¡
h̄ (k)

¢
+ J (k)ψ0

¡
h̄ (k)

¢
h̄0 (k) +C0 (k)

= J (k) h̄0 (k)ψ0
¡
h̄ (k)

¢
+
¡
J (k)ψ

¡
h̄ (k)

¢
+C 0 (k) + J 0 (k)ψ

¡
h̄ (k)

¢¢
= J (k) h̄0 (k)ψ0

¡
h̄ (k)

¢
+ C̃ (k)

where C̃ (k) is C0 (I,R). We need to prove that ψ0 (k) exists. Define the operator on Cm−1

¡
T 1φ

¢
(k) = J (k) h̄0 (k)φ

¡
h̄ (k)

¢
+ C̃ (k) . (21)

Note that φ
¡
h̄ (k)

¢
has the coefficient J (k) h̄0 (k) which has magnitude less than θ < 1 since

|h0 (k)| < 1 and |J (k)| < θ for k ∈ I. Furthermore, J (k) h̄0 (k) is C0 (I,R) by assumption.
Therefore, the sequence φ0 = 0, and φi+1 = T 1φi converges to the unique fixed point φ∞ (k) of
T 1. Furthermore, since φi = d

dkψ
i and the convergence of the φi is uniform, we can conclude that

φ∞ = d
dkψ

∞ = d
dkψ (k), proving that ψ

0 (k) exists and satisfies (21). This step can be repeated as
long as h̄, J , and C have the necessary derivatives. Therefore, the solution ψ∞ is Cm−1.

The global contraction properties assumed in Theorem 18 are strong. We next prove a local

version of the same result.

Corollary 19 If (i) A (k∗) is nonsingular, and (ii) the magnitude of A (k∗)−1B (k∗) is less than
one, then Nh

¡
h̄, 0
¢
: X → Cm−1 (I,R) is an invertible Cm−1 operator for some neighborhood of h̄

in Cm (I, I).

Proof. Since A, B, and J are m-times differentiable, there is a neighborhood of k∗ such that
the assumptions of Theorem 18 hold. The conclusions then follow from Theorem 18

The last result is the infinite series representation of the asymptotic terms.

Corollary 20 Under the assumptions of Theorem 18 or Corollary 19 , the solution to (18) has the

infinite series representation

ψ (k) ==
∞X
i=1

i−1Y
j=0

J
¡
h̄j (k)

¢C
¡
h̄i (k)

¢
+C (k) (22)
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Proof. This follows directly from the contraction map arguments in the proof of Theorem 18.

This series also holds for small neighborhoods around k∗ under the assumptions of Corollary 19.
The infinite series representation holds globally since h̄ is a strictly increasing function with fixed

point at k∗
We will also state the multidimensional version of the theorem since that will be important in

future generalizations. The proof is the same as above.

Corollary 21 Consider the equation

A (k)ψ (k) +B (k)ψ
¡
h̄ (k)

¢
+C (k) = 0 (23)

for Cm functions A,B,C : In→ Rn. If (i) k∗ ∈ In and h̄ (k∗) = k∗, (ii) h̄ (In) ⊂ In, (iii) A (k∗) is
nonsingular, and (iv) the spectral radius of A (k∗)−1B (k∗) is less than one, then 23 has a unique
Cm solution ψ : In→Rn.

4.1 Global Multiplicity and Selection

We have discussed how there may be multiplicity problems for these models. Theorem 18 presents a

local uniqueness result. Since it is a local result, it does not say anything about uniqueness for any

particular parameters. For example, consider the relation xe−x2 = 0 that defines x ∈ R implicitly
as a function of ε ∈ R. At ε = 0, the unique solution is x = 0. However, for any other value of ε
there are three solutions for x but only one branch contains the (x, ε) = (0, 0) solution.

Figure 1 displays a possible multiplicity problem consistent with Theorem 18. The vertical

axis represents possible values of the scalar ε = 1/β − 1, and the horizontal axis represents the
infinite-dimensional space of permissible savings functions. We know that when ε = 0 the unique

solution, h0, is the solution to the optimal growth problem. Theorem 18 shows that for ε close

to zero, there is a unique solution close to h̄ (k). However, at some positive ε1 there may appear

multiple solutions. That multiplicity may continue to hold until ε = ε2, at which point we have

a catastrophe8. The perturbation method implicitly makes a selection for ε ∈ (ε1, ε2), assuming
that the Taylor series is convergent for such ε. The selection is the smooth manifold of solutions

connecting h0 to the leftmost solution at ε = ε2. This selection rule is consistent with many

common selection arguments in game theory.

8We could perhaps compute the manifold beyond the catastrophe by expressing both h and ε as functions of the

arc length parameter s often used in homotopy methods. We leave this possibility for future investigations.
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Figure 1: Possible equilibrium manifold

5 Existence and Value Function Iteration

These results may initially appear to be rather technical but they do reflect is simple intuition.

Consider the hyperbolic discounting problem (10) with ε = 0. In that case there is a surely

convergent algorithm to compute h implied by the contraction properties of standard dynamic

programming. To see this, first note that when ε = 0 the policy function h (k) is the optimal policy

function to the dynamic programming problem

V (k) ≡ max
x

u(f (k)− x) + δV (x) (24)

h(k) ≡ argmax
x

u(f (k)− x) + δV (x)

Value function iteration in (24) is equivalent to the time iteration scheme implied by the Euler

equation. That is, h is the limit of

hi+1 = T
¡
hi
¢

(25)

where we define the time iteration T operator, g = T (h), implicitly by

0 = u0 (f (k)− g (k))− βδu0 (C (g (k))) f 0 (g (k))

C (k) = f (k)− h (k)

17



Consider the directional derivative of T . Suppose that we change h in the direction δ and want to

know how T (h) changes as we change h. To do so, we parameterize this movement by looking at

h+ εδ and compute the directional derivative

dg

dε
=

d

dε
(T (h+ εδ))

by implicit differentiation

0 =
¡
G2 +G3h

0 (g)
¢
gε(k) +G3δ(g(k))

Given g = Th we can directly compute

gε(k) = −(G2 +G3h
0 (g))−1G3δ(g(k))

For
°°h− h̄

°° < ε, G2 + G3h
0 is close to G2 + G3h̄

0 at k = k∗. But, G2 + G3h̄
0 is Nh

¡
h̄, 0
¢
. This

insight proves the following corollary

Corollary 22 Nh

¡
h̄, 0
¢
: X → Cm−1 (I,R) in an invertible Cm−1 operator if and only if time

iteration in (25) is locally convergent in the Cm−1 (I,R) topology.

This result establishes the intuition that if value function iteration in a dynamic programming

problem converges to a unique solution, then there exists a unique Nash equilibrium for “nearby”

games and time iteration is a convergent algorithm. However, we need to note that the topological

approach we took to the problem was necessary. Value function iteration just mimics the con-

vergence of a contraction mapping in the Banach space defined by the sup norm. Games do not

generally have contraction mapping representations. Furthermore, we need to deal directly with

strategy functions when we analyze games. The contraction mapping representation of dynamic

programming is a fixed point problem in a Banach space, whereas our equilibrium formulation of a

dynamic game is an example of the more general class of problems of finding a zero of a mapping

from one Banach space to another Banach space.

6 Previous Computational Approaches

Computing equilibrium savings functions in the hyperbolic discounting model presents some dif-

ficulties. One can use value function iteration, but that will often take a long time to converge.

Convergence of value function iteration is not assured since the problem does not have a contrac-

tion property. One would like to linearize around the steady state, a common approach in dynamic

economics. Unfortunately, we do not know what the steady state is except for the special case of

ε = 0. In this section, we review some previous methods and their strengths and weaknesses.

18



For specificity, we will examine one particular case of the hyperbolic savings model. We will use

the same example used in KKS. They assumed u (c) = log c and δ = .95. They also assumed that

the production function had a capital share of 0.36 and that the capital stock depreciated at a rate

of 0.10 per unit of time; this implies that f(k) = 144
342k

α+ .9k where we have chosen units so that the

steady state capital stock is k∗ = 1 if β = 1, that is, exponential discounting. We will examine five
cases of β: β ∈ {1, .95, .9, .85, .8}. We focus on changes in β since that is the hyperbolic discounting
parameter. The results are similar for other choices of utility and production functions.

6.1 Polynomial Approximation Methods

There have been many papers in the public finance and resource economics literature which have

solved for time consistent equilibria and for Nash equilibrium policy games. For example, Wright

andWilliams (1984) computed the impact of the strategic oil reserve when a government is known to

impose price controls when oil prices get high. Kotlikoff et al. (1988) compute equilibrium bequest

policies. Ha and Sibert (1997) compute Nash equilibrium tax policies between competing countries.

Rui and Miranda (1996) compute Nash equilibrium commodity stockpiling policies. Judd (1998)

examines a simple problem of time consistent tax policy. These papers all used flexible polynomial

methods for computing equilibrium policies. Since they use polynomial approximations, they were

searching only for continuous equilibria. Our approach shares that objective.

The problem with these methods is that they are subject to a curse of dimensionality. Our

perturbation method does not suffer from as bad a curse of dimensionality. On the other hand, our

approach will be local in contrast to the more global approach in many previous studies.

The polynomial approach can be easily and reliably applied to the hyperbolic savings problem9.

More specifically, we first hypothesize that the solution is approximated by

ĥ (k) =
nX
i=0

aiψi (k)

where ψi (k) is a degree i polynomial (the ψi should be an orthogonal system, such as Chebyshev

polynomials) and the ai are unknown coefficients. We then fix the n+1 coefficients by solving the

system of equations Z
G
³
k, ĥ (k) , ĥ

³
ĥ (k)

´
, εĥ0

³
ĥ (k)

´´
φj (k) , j = 0, .., n (26)

where the φj (k) are linearly independent functions. Essentially, we fix a by projecting the Gen-

eralized Euler Equation in n+ 1 directions, and the φj (k) represent those directions. Specifically,

9KKS assert that standard polynomial approximation methods will not solve their hyperbolic discounting problem,

and offer their solution as an alternative. However, they offer no evidence to document their negative claims regarding

the methods used since Wright and Williams (1982).
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we let both the basis functions ψi (k) and the test functions φj (k) be Chebyshev polynomials, and

use Chebyshev quadrature for the integral in (26), producing a Chebyshev collocation method (see

Judd, 1992, for details). For each problem, we easily found10 a degree 31 polynomial for which the

maximum Euler equation error was 10−13 for capital stocks between .25 and 1.75. For the case of
exponential discounting, the steady state capital stock is k∗ = 1. The deviations from k∗ = 1 in

the other cases give us some idea about the economic significance of the hyperbolic discounting.

The steady state for each problem is listed in Table 1. We see that a value of β = .8 produces very

different long-run dynamics.

Table 1: Steady State Capital Stock from Projection Method

β : 1.00 .950 .900 .850 .800

steady state k : 1.00 .904 .809 .716 .625

6.2 The KKS Procedure and the Projection Method

The steady state capital stock under hyperbolic discounting, defined by

h (k∗) = k∗

is easily computed if β = 1, in which case k∗ is fixed by the equation 1 = δf 0 (k∗), but is not easily
computed otherwise. In general, we cannot find the steady state without knowing the solution h (k)

more generally. KKS propose a procedure to find the unknown steady state, and then build a more

global approximation to h (k) around it. The KKS procedure begins with the Generalized Euler

equation

0 = G
¡
k, h (k) , h (h (k)) , εh0 (h (k)) , ε

¢
(27)

They want to solve for the steady state k∗, which must solve

0 = G
¡
k∗, k∗, k∗, εh0 (k∗) , ε

¢
(28)

Unfortunately, (28) has two unknowns: k∗ and h0 (k∗). They need another equation to pin down
the unknowns. Let

Gn
³
k∗, εh0 (k∗) , h00 (k∗) , ..., h(n+1) (k∗) , ε

´
≡ Dn

kG
¡
k, h (k) , h (h (k)) , εh0 (h (k)) , ε

¢ |k=k∗=h(k∗)
be the n’th total derivative of the GEE. They differentiate (27) with respect to k and impose the

steady state conditions to arrive at

0 = G(1)
¡
k∗, k∗, k∗, εh0 (k∗) , εh00 (k∗) , ε

¢
(29)

10A Mathematica program on a 1 GHz Pentium machine found a solution for each problem in less than five seconds.
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The new equation (29) does add a condition but it also produces a new unknown, h00 (k∗). They
continue this differentiation until they arrive at a list of n+ 1 equations

0 = G0 = G
¡
k∗, k∗, k∗, εh0 (k∗) , ε

¢
(30)

0 = G1
¡
k∗, h0 (k∗) , h00 (k∗) , ε

¢
...

0 = Gn
³
k∗, h0 (k∗) , h00 (k∗) , ..., h(n+1) (k∗) , ε

´
with n+ 2 unknowns, whereupon they append the condition

0 = h(n+1) (k∗) (31)

This now produces a system of n+2 equations with n+2 unknowns. They are, however, nonlinear.

To solve this system they form the least squares criterion

KKS = h(n+1) (k∗)2 +
nP
i=0

¡
Gi
¢2

and then choose k∗ and the various derivatives of h (k) at k∗ to minimize KKS. Krusell et a.

(2002) report “We have implemented this algorithm using polynomial decision rules up to order 3.

We define ĥψ using ordinary polynomials ĥψ
³
k̃
´
=
Pn−1

i=0 aik̃
i. We find that the numerical results

change only to a small degree when increasing the order of the polynomial from 2 to 3.” They also

say “Moreover, our computational experiments that generalize the utility function and consider less

than full depreciation show no indication of multiplicity.”

Unfortunately, there are problems with the KKS procedure. Despite their claims, there are

multiple solutions and the solution set changes significantly as we increase degree. Table 2 displays

solutions for k∗ for the example studied in KKS and various orders of approximation. For example,
if the order is 1, then we set h00 (k∗) = 0 to fix the steady state. The multiplicity of solutions in
Table 2 is not due to numerical error. This is because we reduce (30,31) to one equation in the

unknown k∗, which was then computed with 256 digits of decimal precision. Each of the results
in Table 2 can be proven to lie within within 10−4 of a root by application of the intermediate
value theorem. Since each solution in Table 1 is at least 10−4 away from the others, each reported

solution in Table 2 represents a distinct solution to the KKS equations.

Table 2 displays numerous problems with the KKS procedure. First, there is an increasing

number of solutions to the KKS procedure as we go to higher orders of approximation and that

they are spread over a wide range of values. Second, many of them appear to persist. The one

that KKS identifies does persist and is close to the solution found using Chebyshev collocation and

displayed in Table 1. However, many other solutions appear also to persist. The solutions in Table

2 are displayed in a manner that highlights how some solutions appear, disappear, then reappear

as we go to higher orders. There is no compelling reason to take the solution that KKS found.
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Table 2: KKS Solutions

Approx.

Order Steady state k for stable solutions

1 0.81

2 0.81 0.87

3 0.81 0.84 0.94

4 0.81 0.83 0.89

5 0.81 0.83 0.86 0.93

6 0.81 0.822 0.85 0.89

7 0.81 0.820 0.84 0.87 0.92

8 0.81 0.818 0.83 0.86 0.89

9 0.81 0.817 0.83 0.85 0.88 0.93

10 0.81 0.817 0.83 0.84 0.86 0.90 0.93

11 0.81 0.816 0.825 0.84 0.86 0.88 0.91

12 0.81 0.816 0.824 0.83 0.85 0.87 0.89 0.93

13 0.81 0.816 0.823 0.83 0.84 0.86 0.88 0.91 0.94

14 0.81 0.816 0.823 0.83 0.84 0.85 0.87 0.89 0.92

15 (10 solutions)

16 (10 solutions)

17 (11 solutions)

18 (12 solutions)

19 (12 solutions)

7 PerturbationMethods for Problems with Small (and Large) Hy-

perbolic Deviations

We next use our asymptotic results to construct a perturbation method for solving the hyperbolic

discounting problem. More precisely, we define the function h (k, ε) to satisfy the Generalized Euler

equation

u0 (f (k)− h (k, ε)) = βδu0 (f (h (k, ε))− h (h (k, ε) , ε))
¡
f 0 (h (k, ε)) + εh0 (h (k, ε) , ε)

¢
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We first use standard perturbation methods to compute the Taylor series approximation of the

exponential discounting problem

h (k, 0)
.
= h (k∗, 0) + hk (k∗, 0) (k − k∗)

+hkk (k∗, 0) (k − k∗)2 /2

+hkkk (k∗, 0) (k − k∗)3 /6

+...

up to degree 12. This uses the procedure described in Judd and Guu (1992).

We next check the conditions of Theorem 18. For our model, the J (k) term in Theorem 18

reduces to

δ

1 + δ2 u
0(c∗)

u00(c∗)f
00 (k∗) + δ

¡
1− h̄0 (k∗)

¢ < δ

which is less than one in magnitude for any concave f and concave u. Therefore, concavity in

preferences and technology gives us the critical contraction condition and proves that there exists

a unique smooth solution to hyperbolic discounting problem for small ε.

We now can solve nontrivial cases of the hyperbolic discounting terms. There are two ways

we could proceed. The first approach would directly implement the power series solutions in (22)

to compute , hε (k, 0), hεε (k, 0), etc. over a significant range of k. Notice that the contraction

operator associated with computing hε is more strongly contractive than the contraction factor δ

for the original optimal growth problem. This fact would help computation of the perturbed terms.

We do not do that here.

7.1 Local Taylor Series Approach

The second approach is to use the fact that Theorem 18 implies that h (k, ε) is a smooth function

of (k, ε) near (k∗, 0). We compute the Taylor series

h (k, ε)
.
= h (k∗, 0) + hk (k∗, 0) (k − k∗) +

1

2
hkk (k∗, 0) (k − k∗)2 + ...

+hε (k∗, 0) ε+ hkε (k∗, 0) (k − k∗) ε+
1

2
hkkε (k∗, 0) ε (k − k∗)2

+
1

2
hεε (k∗, 0) ε2 +

1

2
hkεε (k∗, 0) (k − k∗) ε2 +

1

4
hkkεε (k∗, 0) ε2 (k − k∗)2 + ..

We accomplish this by differentiating the Generalized Euler equation with respect to ε to arrive

at

0 =
d

dε

¡
G
¡
k, h (k) , h (h (k)) , εh0 (h (k))

¢¢¯̄̄̄
ε=0,k=k∗
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which produces a linear equation for hε (k∗, 0). We continue with differentiations of GEE with
respect to k and ε until we have a Taylor series expansion for h (k, ε) of degree 12 in (k, ε).

We applied this method to the four cases of hyperbolic discounting examined in Table 1. Figure

2 displays the net savings functions of the solutions. They are all stable.

0.2 0.4 0.6 0.8 1

-0.04

-0.02

0.02

0.04

Figure 2: Net savings functions

Table 3 displays the steady states of the solutions from the perturbation method. Note that

Tables 1 and 3 are identical. The Euler equation errors for each problem are displayed in Figure

3. Note that they are practically identical except for capital stocks near k = 1 where they are

essentially zero for each problem. The Euler equation errors for the solutions in Table 1 were much

smaller, but those solutions should be better since they used degree 31 polynomials. It is doubtful

that perturbation methods could produce such high order solutions. However, they may produce

good initial guesses for other methods, a fact which may be particularly important if we have

multiple solutions to the true problem and/or the numerical procedure. Furthermore, even when

β = .8 and the steady state is k∗ = .625, the Euler equation errors near the steady state are no

more than 10−8. Therefore, all tests say that the perturbation solutions are excellent approximate
solutions.

Table 3: Steady State Capital Stock from Perturbation Method

β : 1.00 .950 .900 .850 .800

steady state k : 1.00 .904 .809 .716 .625
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Figure 3: Log10 Euler equation errors

8 Time-Consistent Government Tax and Spending

We next briefly outline how these techniques can be used to analyze government tax and spending

policies. Suppose u (c, g) is the utility function of the representative individual over consumption

c and government expenditure g. Suppose output is F (k) where k is the capital stock, and the

capital accumulation follows kt+1 = F (kt) − ct − gt. We assume that there is a gross income

tax, τF (k), no bonds, and that spending equals revenue in each period, g = τF (k). We assume

that governments and consumers make simultaneous decisions at the beginning of each period,

the consumers choosing c and the government choosing g and τ . This makes private investment,

F (kt)− ct − gt the residual element that ensures material and financial balance.

The equilibrium analysis will follow recursive forms. The consumer follows the decision rule

c = C (k), and the government follows the tax rule τ = T (k). Define

G (k) = T (k)F (k)

h (k) = F (k)−C (k)−G (k) .

The consumer’s Euler equation will be, as always,

uc (ct, gt) = βuc (ct+1, gt+1)F
0 (kt+1) (1− T (kt+1))
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which implies the recursive functional equation

uc (C (k) , G (k)) = βuc (C (h (k)) , G (h (k)))F
0 (h (k)) (1− T (h (k))) .

The government’s problem is more complex. The value function for government is

V (k) = u (C (k) ,G (k)) + βV (h(k)).

The current government faces the choice problem

τ ≡ argmax
τ

u (C (k) , τF (k)) + βV (F (k)−C (k)− τF (k))

which implies the first-order condition

0 = ug (C (k) , G (k))− βV 0 (F (k)−C (k)− τF (k)) .

The combination of consumer and government problems implies that the equilibrium system

for the functions V (k), C (k) and T (k) are

uc (C (k) , G (k)) = βuc (C (k+) ,G (k+))F
0 (k+) (1− T (k+))

V (k) = u (C (k) ,G (k)) + βV (k+)

0 = ug (C (k) ,G (k))− βV 0 (k+)

where

G (k) ≡ T (k)F (k)

k+ ≡ F (k)−C (k)−G (k)

We next need to find a special case where we know the answer. Economic intuition suggests that

we begin with a case where the first-best optimal g is zero, and T (k) = 0. Under these conditions,

C (k) solves the simple Euler equation from optimal growth theory

uc (C (k) , 0) = βuc (C (h (k)) , 0)F
0 (h (k)) .

We want to parameterize the problem so g = 0 is optimal when ε = 0. This is not trivial

and requires some care. For example, a bad approach would be to assume u (c, g) = u (c) + εg.

In this case, the optimal g at ε = 0 is −∞ since negative g would augment output. Similarly,

u (c, g) = u (c) + ε ln g is not good since it is not locally analytic for (ε, g) near (0, 0).

One good example would be

u (c, g) = u
¡
c+ (1 + ε) g − g2

¢
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In this case, uc = ug at ε = 0 = g and the optimal g is zero at ε = 0. Furthermore, u (c, g) is locally

analytic for (ε, g) near (0, 0). Another choice would be

u (c, g) = u
¡
c+ (1− ε)

¡
g − g2

¢¢
+ ελ ln (1− ε+ g)

This choice is also analytic for (ε, g) near (0, 0). Moreover, it is a homotopy construction in the

sense that utility is a u (c)+λ ln (g) at ε = 1, which is a more conventional utility function. In this

case, we would want the Taylor series to work at ε = 1; this is a reasonable conjecture if λ close to

zero since optimal g is close to zero.

9 Conclusion

We have proved a local existence and uniqueness theorems for smooth solutions to a hyperbolic

savings problems with small amounts of hyperbolic discounting. The analysis used general tools

from nonlinear functional analysis and the dynamic stability of the exponential discounting case.

This indicates that the techniques are applicable to a much wider range of dynamic strategic

problems. Also, the proofs were constructive and lead directly to a stable and reliable numerical

procedure for solving such problems.
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