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Abstract

The Scarf algorithm was the Þrst practical, almost surely conver-

gent method for computing general equilibria of competitive models.

The current focus of much computational research is computing equi-

librium of dynamic stochastic models. While many of these models

are examples of Arrow-Debreu equilibria, Scarf�s algorithm and subse-

quent homotopy methods cannot be applied directly since they have

∗The author thanks Herb Scarf and Donald Brown for their valuable comments.
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an inÞnite number of commodities. Many methods have been pro-

posed to solve dynamic models and some work well on simple exam-

ples. However, all have convergence problems and are not likely to

perform as well in models with heterogeneous agents, multiple goods,

joint production, and other features often present in general equilib-

rium models. This paper discusses weaknesses of standard methods

for solving dynamic stochastic models. We then present an alternative

Negishi-style approach that combines convergent methods for solv-

ing Þnite systems of equations with convergent dynamic programming

methods to produce more reliable algorithms for dynamic analyses.

The dynamic programming step presents the key challenge since most

practical dynamic programming methods have convergence problems,

but we argue that shape-preserving approximation methods offer a

possible solution.

The Scarf (1967) algorithm was the Þrst practical, surely convergent

method for computing general equilibrium prices and, equivalently, systems

of nonlinear equations in Rn. This was followed by the development of al-

most surely convergent homotopy methods for solving nonlinear equations1.

This work gave us reliable and efficient methods for solving Þnite-dimensional

systems of equations. Economists are now interested in analyzing dynamic

models and there is currently substantial effort on computing equilibrium of

dynamic stochastic models. While many of these models are examples of

Arrow-Debreu general equilibrium models, Scarf�s algorithm and subsequent

homotopy methods cannot be applied directly since dynamic stochastic mod-

1See Eaves (1972), Garcia and Zangwill (1982), and Allgower and Georg (1990) for

presentations of homotopy methods.
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els involve an inÞnite number of commodities. Following the spirit of Scarf

(1967), the focus of this paper is on current efforts to Þnd efficient and con-

vergent methods for solving dynamic economic models.

There is substantial activity on computing equilibria of dynamic stochas-

tic models. See, for example, the papers included in the Taylor and Uhlig

(1990) symposium, the description of projection methods in Judd (1992),

and the surveys in Judd (1996, 1998) and Judd, Kubler, and Schmedders

(2002). However, these methods do not meet the Scarf standard. Most cur-

rent methods revolve around systems of Euler equations. These methods

generally work well for simple cases, but sometimes fail to converge (or con-

verge only after substantial tinkering) even for simple one-good, one-agent

problems. Convergence is even less likely if applied to models with hetero-

geneous agents, multiple goods, multiple factors, and other features often

present in general equilibrium problems.

We will proceed with the same goal displayed in Scarf (1967). Before

Scarf, economists solved general equilibrium models with Newton�s method

and other available algorithms for solving systems of nonlinear equations.

These often worked but were not globally convergent; for example, the basic

convergence theorem for Newton�s method assumes that one has a good

initial guess. Dixon and Parmenter (1996) discusses these early methods

in computable general equilibrium modelling. Of course, there were methods

which would converge but they were impractical. Scarf (1967) points out

that

Sperner�s lemma suggests no procedure for the determination

of an approximate Þxed point other than an exhaustive search
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of all subsimplices until one is found with all vertices labeled

differently. Clearly some substitute for an exhaustive search must

be found if the problem is to be considered tractable..

The chief contribution of Scarf (1967) is the presentation of a tractable

method to Þnd the critical subsimplex. We face a similar problem today

when we attempt to compute equilibrium of competitive dynamic models

because the available methods either have convergence problems or are im-

practical.

This paper examines possible numerical strategies that combine conver-

gent methods for solving Þnite systems of equations with convergent dy-

namic programming methods to produce algorithms that will be more re-

liable for solving competitive equilibria of dynamic stochastic models. We

do not present a general convergence theorem but lay out the critical fea-

tures necessary for efficient convergent methods. SpeciÞcally, we examine the

Negishi approach for computing competitive equilibria of dynamic stochastic

general equilibrium. The basic idea is simple: for each set of Negishi weights

over a Þnite number of agents (or agent types) we solve a dynamic program-

ming problem. The solutions to the dynamic programming problems imply

price and consumption processes for each agent. Equilibrium requires that

the value of the endowments equals the value of consumption plans. If we

can solve the dynamic programming problem for arbitrary Negishi weights,

then any conventional nonlinear equation method can be used to Þnd a Þnite

vector of Negishi weights where each agent is on his intertemporal budget

constraint.

While this is a theoretically straightforward and standard idea (for exam-
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ple, Ginsburgh and Keyzer, 1997, discusses its application in some determin-

istic dynamic models), its implementation for stochastic dynamic problems

presents numerical difficulties. In particular, there are few dynamic pro-

gramming methods suitable for the special demands of this application. This

paper discusses these numerical issues and the availability of numerically ef-

Þcient and reliable algorithms for solving the critical dynamic programming

step. We have the same goal that motivated Scarfs algorithm: Þnd a reli-

able, robust, and relatively efficient algorithm for solving dynamic general

equilibrium. Many of the surely convergent dynamic programming solution

methods are too slow for this application since the Negishi method requires

solutions to many dynamic programming problems. Furthermore, one needs

accurate approximations not only of the value function but also of the gra-

dients of the value function and the allocation policies they imply.

Unfortunately, standard solution methods for dynamic programming prob-

lems are either impractical or have convergence problems that make them

unreliable. The key fact is that most dynamic programming methods either

suffer from a curse of dimensionality or are unstable because of difficulties in

preserving shape. Concavity of production and utility functions is a standard

assumption in competitive equilibrium analysis. These concavity properties

imply concavity of the value function of any social planner�s dynamic pro-

gramming problem. Most dynamic programming algorithms do not exploit

this property of the value function and will often produce nonconcave value

functions for concave problems. Failure of shape preservation can lead to

instabilities in solving dynamic programming problems. We argue that any

convergent algorithm will need to be aware of these shape preservation issues
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and will need to use shape-preserving approximation methods in the dynamic

programming step of the Negishi algorithm.

There is, as usual, a trade-off between speed and safety. The good news

is that easy shape-preserving approximation methods are available for prob-

lems with one continuous dimension. These methods could also easily address

problems with one continuous dimension (such as capital) and many discrete

states (such as productivity levels) which naturally reduce to a Þnite collec-

tion of problems with one continuous dimension. We present an example that

shows that the reliability of shape-preserving approximation comes at little

cost in one dimension. However, the cost of shape-preserving strategies for

higher-dimensional problems is nontrivial. There are some complex methods

for two- and three- dimensional problems, and some costly methods available

for preserving concavity in higher dimensions. While I not now aware of any

practical and efficient method for multidimensional shape-preserving approx-

imation, it is currently an active Þeld of research in numerical analysis. As

shape-preserving approximation methods are developed in the mathematical

literature, economists can apply them to determine their practical value. In

the meantime, economists will probably need to rely on Euler equation meth-

ods. Even though many problems can be solved by Euler equation methods,

it is always valuable to develop reliable alternatives.

Section 1 presents a simple dynamic general equilibrium model, describes

the conventional methods of solution, and discusses their weaknesses. Sec-

tion 2 reviews the basic Negishi method for the static general equilibrium

model. Section 3 presents the Negishi formulation for a general dynamic

model. Section 4 discusses standard methods for solving dynamic program-
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ming problems and their weaknesses. Section 5 presents some simple shape-

preserving approximation methods. Section 5.2 examines the performance of

a shape-preserving method for a simple dynamic programming example.

1 ADynamic General EquilibriumModel and

Standard Solution Methods

To motivate the arguments below, we examine a simple dynamic stochastic

model and the most popular methods for solving it. These methods are often

thought to be very successful, but this perception is possibly due to the very

simple models to which they have been applied and the extra, nonsystematic

steps sometimes used to attain this success. There is little reason to believe

that they will be successful in more general models.

To ease the notational burden we will examine the case of a single sector,

multiple agent model. Let ui (c), i = 1, ...,m, be agent i�s utility function over

consumption c ∈ R in each period, and assume a common constant discount
factor β. Let ki,t ∈ R be agent i�s ownership of capital at the beginning of
period t and let Kt =

Pm
i=1 ki,t denote the aggregate capital stock at the

beginning of period t. We assume that output is CRTS in capital and labor.

Let F (K, θ) be output (including the undepreciated capital stock) when total

capital is K, labor input per capita is one, and productivity level is θ. We

assume that each agent supplies one unit of labor inelastically2; therefore,

the marginal product of labor is (F (K, θ)−KFK(K, θ)) /m. Assume that
2We assume inelastically supplied labor to reduce the notational burden; it is not

essential to any of our arguments.
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capital moves according to

Kt+1 = F (Kt, θt)−
X
i

ci,t

ln θt+1 = ρ ln θt + εt+1

where εt+1 is distributed i.i.d. over t. Since this model is recursive, equilib-

rium consumption of agent i at time t can be expressed as a function of the

wealth distribution at time t, kt = (k1,t, k2,t, ..., km,t) and current productiv-

ity, θt; we let

ci,t = C
i (kt, θt)

denote the equilibrium consumption policy functions. Most current meth-

ods for solving dynamic general equilibrium models focus on Euler equation

representations of equilibrium. The Euler equations for this model are

u0i(C
i (k, θ)) = β E

©
u0i(Ci(k

+, θ)) r
¡
K+, θ+

¢ |θª , i = 1, 2, ...,m (1)

k+i ≡ Yi (k, θ)− Ci (k, θ) , i = 1, 2, ...,m
K ≡

X
i

ki, K
+ ≡

X
i

k+i

θ+ = θρeε

Yi (k, θ) ≡ kir (K, θ) + w(K, θ), i = 1, 2, ...,m

r(K, θ) ≡ FK(K, θ)

w(K, θ) ≡ (F (K, θ)−K.FK(K, θ))m
−1

where, if (k, θ) is today�s state, Yi (k, θ) is a type i agent�s income today,

w(K, θ) is today�s wage, r(K, θ) is today�s rate of return on capital, k+i is a

type i agent�s wealth tomorrow, K+ is tomorrow�s aggregate capital, θ+ is

tomorrow�s productivity level, and r
¡
K+, θ+

¢
is tomorrow�s rate of return on
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capital. Equation (1) is a set of functional equations that must be satisÞed

in equilibrium. We will proceed, as does the dynamic general equilibrium

literature, under the assumption that the stable solutions to (1) are locally

unique.

Solution methods typically use parameterized families of functions to ap-

proximate Ci (k, θ). For example, linear approximations take the form

bCi (k, θ; a) = nX
j=0

aiφi (k, θ)

where the set {φi|i = 1, 2, ..} comprise a basis for the space of continuous
functions over (k, θ). This formulation reduces the inÞnite dimensional prob-

lem to a Þnite-dimensional search for good choices of the a coefficients. There

are many different strategies available here. The tensor product method with

orthogonal polynomials3 approximates each consumption function as

bCi (k, θ; a) = nkX
j1=0

· · ·
nkX
jm=0

nθX
+=0

aij1...jn+ φi1 (k1) · · ·φin (km) ψ+ (θ) , i = 1, ..., n

where the φi (k) are orthogonal polynomials over some interval [km, kM ] and

the ψi (θ) are orthogonal polynomials over the range of θ. Other possibilities

explored in the literature include complete orthogonal polynomials (Judd

and Gaspar, 1997), multivariate splines (Judd et al, 1999, 2000), exponen-

tial polynomials (den Haan and Marcet, 1990), and Pade� functions (Judd

and Guu, 1997). One could use neural networks, wavelets, or trigonomet-

ric polynomials, or one could construct problem speciÞc bases (e.g., see the

discussion of hybrid perturbation-projection methods in Judd, 1998). The

3For more details, such as the possible notions of orthogonality, see Judd (1992) or

Judd (1998).
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basic idea is to Þnd some family of functional forms that produces a parsi-

monious approximation of C (k, θ) and is asymptotically complete in a space

of functions which includes the equilibrium solution Ci (k, θ).

Once we have chosen some approximation scheme, we then need to Þx the

a coefficients. There are many methods for determining the a coefficients.

We will brießy discuss them and their limitations.

Time iteration uses the Euler equation in an economically intuitive fashion

to solve for bC (k, θ; a). Time iteration picks a Þnite set Z of (k, θ) points.

Suppose the iteration j approximation for type i consumption is bCi (k+, θ; aj).
In iteration j + 1 we take each (k, θ) ∈ Z, and solve the system of equations

u0i (ci) = β E
n
u0i
³ bCi ¡k+, θ; aj¢´ r ¡K+, θ+

¢ |θo , i = 1, 2, ..., n (2)

k+i ≡ Yi (k, θ)− ci, i = 1, 2, ..., n
K+ ≡

X
i

k+i

for ci, i = 1, ...,m. For a Þxed (k, θ) point, (2) is a nonlinear equation in

the consumption vector c = (c1, .., cm). Intuitively, it is similar to a static

general equilibrium model where the random price of consumption tomorrow

is the marginal utility tomorrow constructed by assuming that tomorrow

agent i will use the bCi (k+, θ; aj) consumption rule. Note that the choice of
ci affects agent i�s wealth tomorrow but does not affect tomorrow�s decision

rule. Solving (2) for several choices of z+ ∈ Z generates solutions c+. These
results are then used as data used to Þnd aj+1, either through interpolation

or regression, so that the consumption functions bCi (k, θ; aj+1) approximate
the c+ solutions.

Successive approximation methods proceed more directly, using less com-
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putation per step. SpeciÞcally, successive approximation also begins with

some set of points Z, but now solves for the ci values in

u0i(ci) = β E
n
u0
³ bCi ¡k+, θ; aj¢´ r ¡K+, θ+

¢ |θo , i = 1, 2, ...,m (3)

k+i ≡ Yi (k, θ)− bCi ¡k, θ; aj¢ , i = 1, 2, ...,m
K+ ≡

X
i

k+i

for a Þnite number of points (k, θ). The system (3) basically solves for

consumption choices today taking as given tomorrow�s marginal utilities if

agents use the consumption rule bCi (k+, θ; aj) both today and tomorrow.
This set of equations for cji is simpler to solve than the equations in time

iteration since ci do not appear on the right-hand side. However, if were

were to have multiple goods then there would be several Euler equations

relating the current gradient of utility to future utility, creating a little general

equilibrium problem for current allocation and production decisions. As with

time iteration, the c data is used to Þnd the coefficients a so that, for each i,bCi,j+1(k, θ; a) Þt the ci data.
Successive approximation was used in the rational expectations model

in Miranda and Helmburger (1988) who observed that it was an efficient

method for computation. It was also motivated in den Haan and Marcet

(1990) by learning arguments from Marcet and Sargent (1989). Successive

approximation is often quite stable, converging to the equilibrium. For the

case of a simple growth problem, Judd (1998, pages 557-8) shows that suc-

cessive approximation is locally convergent except for some extreme choices

of tastes and technology.

Projection methods (see Judd, 1992), such as Galerkin and collocation
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methods, offer more a more general approach motivated by numerical con-

siderations instead of economic tatonnement stories. They begin by Þrst

deÞning the residual functions

Ri(k, θ, a) = u0i
³ bCi (k, θ; a)´− β E nu0 ³ bCi ¡k+, θ+; a¢´ r ¡K+, θ+

¢ |θo(4)
k+i ≡ Yi (k, θ)− Ci (k, θ) , i = 1, 2, ..., n
K+ ≡

X
i

k+i

A projection method then constructs a Þnite set of projections conditions

Pij(a) ≡
Z θM

θm

Z kM

km

· · ·
Z kM

km

bRi(k, θ; a)ψj (k, θ) ω (k, θ) dk1 · · · dkndθ
where i = 1, ..., n, and j = 1, ...,m, ω (k, θ) is a weighting function and the

ψj (k, θ) are a set of test functions. Finally, a nonlinear equation solver is used

to solve the projection equations for the coefficients a. This approach has

the potential of being much faster than time iteration and successive approx-

imation. For example, Newton�s method converges quadratically. Newton-

style methods may not be practical if a is large but some combination of

a block Gauss-Seidel method with Newton methods used within the blocks

can bring some of the advantages of Newton�s method to solving the large

system. Time iteration and successive approximation methods are examples

of projection methods since they use particular choices for projections and

nonlinear equation solving methods.

These methods have proven successful for simple problems but will likely

have problems for more general problems. There are three obvious problems.

First, the issue of multiplicity raises several difficulties. Time iteration and

successive approximations both revolve around solving a large number of
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small artiÞcial problems similar to static general equilibrium models. Solving

these equations at any particular (k, θ) point in Z is not a problem because

one could use surely convergent methods, but multiple equilibria present

coordination difficulties. Suppose that there were multiple equilibria to the

dynamic model. Then there will possibly be multiple equilibria at some of the

(k, θ) points we use. Since these problems are solved independently, there is

no guarantee that the equilibrium selection will be consistent. This will not

a problem with the Negishi method we present below since the constancy

of the Negishi weights impose strong connections across choices in various

(k, θ) states. In any case, the possibility of multiple equilibria in the dynamic

economy means that we need to Þnd all of the equilibria in the Euler equation

problems and make consistent choices, a very difficult problem.

There is an even more fundamental problem presented by multiple equi-

libria. All of these methods assume the existence of a selection for equilib-

rium consumption C (k, θ) which is smooth in (k, θ). In more general models,

we would be making the same assumption for price functions. This is not

justiÞed by general equilibrium theory. Each (k, θ) point corresponds to a

different dynamic general equilibrium problem where k is the initial endow-

ment and θ is the initial productivity state. Regularity theory (see Debreu,

1976) tells us that the equilibrium manifold is smooth in endowments for

generic endowments, but not at all endowments. The standard Euler equa-

tion formulation of the problem assumes that there is a smooth manifold

which is an equilibrium selection map over all initial endowments. Since this

is not true for some simple static general equilibrium problems, it is not a

safe assumption for dynamic models.
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Second, economists are often interested in the ergodic character of equilib-

rium. Unfortunately, ergodic properties will probably not be approximated

well by standard methods. The approximations to consumption functions

C (k, θ) will have errors that will accumulate over time. For example, we

know that consumption and wealth will be perfectly correlated across indi-

viduals in the true equilibrium. Approximations to C (k, θ) will not have

this property, and these errors will mean that the computed ergodic distri-

butions for consumption and wealth may not be close to the true long-run

distributions.

Third, we have no convergence theory for these methods. We would like

to know that the sequence of bCi (k, θ; aj) approximate solutions converge
to the true Ci (k, θ) as we increase j and the degree of the approximating

polynomials (or splines or trigonometric polynomials, etc.) This is a difficult

in inÞnite-dimensional nonlinear functional analysis.

Euler equation methods have been reliable for simple models but they

have not been tested on more complex models. Since the focus of this paper

is on reliability, we look elsewhere.

2 Reliable and Efficient Computation of Gen-

eral Equilibrium

We Þrst review the basic ideas from the computational general equilibrium

literature used in the next section�s discussion of dynamic problems. Stan-

dard general equilibrium theory focusses on computing a zero of the excess

demand function E (p). The Scarf algorithm (see Scarf, 1967, 1973, and
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1982) and homotopy methods can be applied directly to solving E (p) = 0.

If the number of goods and prices is large, the system E (p) = 0 is large.

If the number of agents is much smaller than the number of goods, it is often

desirable to use instead the Negishi method (also known as the planning

method). The Negishi method exploits the Þrst theorem of welfare economics,

which states that any competitive equilibrium of an Arrow-Debreu model is

Pareto efficient. Let ui (ci) be agent i�s utility function over consumption

ci ∈ Rn and let ei ∈ Rn be his endowment4. Therefore, for any equilibrium
there is a set of nonnegative social welfare weights, λi, i = 1, . . . ,m, such

that the equilibrium allocation of Þnal consumption, ci, i = 1, · · · ,m, is the
solution to the social welfare problem

max
c1,c2,...

mX
i=1

λiui(ci) (5)

s.t.
nX
i=1

(ei − ci) = 0

The Negishi approach Þnds a set of social welfare weights, λi, i = 1, . . . ,m,

such that the solution to (5) is an equilibrium allocation. Without loss of

generality, we assume λ ∈ ∆ ≡ ©λ ≥ 0 ¯̄Pm
i=1 λ

i = 1
ª ⊂ Rm.

The Negishi approach proceeds in a two-stage fashion. Given a vector of

social welfare weights, λ, we compute the unique5 allocation (c1, c2, . . . , cm)

which solves (5). As long as tastes are strictly concave and C2, this is an easy

optimization problem that can exploit the fastest optimization methods. Let

X (λ) = (X1 (λ) , X2 (λ) , . . . , Xm (λ)) : ∆→ Rm×n be the optimal allocation
4We examine an endowment problem to keep the notation simple; all ideas apply to

economies with production.
5For the purposes of this paper, we will assume strict concavity of all utility functions.

15



given Negishi weight vector λ ∈ ∆. Since u is concave, X (λ) is continuous.
The allocation X (λ) implies a pattern of marginal rates of substitution that

must equal the equilibrium prices if X (λ) were an equilibrium allocation.

These prices are deÞned by

pj =
u1j (X

1 (λ))Pn
+=1 u

1
+ (X

1 (λ))
≡ Pj (λ) . (6)

In an equilibrium, each agent i can afford his allocation, X i (λ), at the prices

P (λ). To check this we deÞne the excess budget function

Bi (λ) ≡ P (λ) · (ei −X i (λ)), i = 1, . . . ,m

If Bi (λ) is nonnegative, then agent i can afford X i (λ) at prices P (λ) and

have Bi (λ) in unspent funds. The weights λ correspond to an equilibrium

if and only if Bi (λ) = 0 for each i. Therefore the Negishi approach reduces

the equilibrium problem to solving the system of nonlinear equations

Bi (λ) = 0, i = 1, . . . ,m− 1 (7)
mX
i=1

λi = 1

for λ ∈ ∆. Existence theory tells us that there exists a solution. Once we
have a λ ∈ ∆ that solves (7), we then take P (λ) to be the equilibrium prices
and X (λ) the equilibrium consumption allocation.

The Negishi approach has substantial advantages if there are fewer agents

than goods even though it adds new variables, λ, to the problem. The reason

is that the equilibrium (and numerically more difficult) part of the problem,

(7), is a nonlinear equation with am unknowns independent of the number of

goods. Of course, the consumption bundles ci are also computed each time we
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evaluate B (λ), but that is done by a collection of m concave optimization

problems over n variables. If m is substantially smaller than n, as would

be the case in dynamic problems with a Þnite, but long, horizon, then the

nonlinear equation problem is much smaller in the Negishi approach than in

a more direct approach focussed on solving E (p) = 0. If solutions to (5) can

be computed in closed form, then this approach reduces to m− 1 equations
in m − 1 unknowns in a simplex. More typically we need to use numerical
methods to compute solutions to (5). This is not a substantial problem as

long as the optimization method for solving (5) produces accurate answers.

Therefore, the Negishi approach replaces a possibly large system of ex-

cess demand conditions for equilibrium prices with a possibly much smaller

set of nonlinear equations combined with a collection of well-behaved con-

cave optimization problems. This approach works well for Þnite-dimensional

problems. It also works well in deterministic dynamic problems since there

are good methods for solving deterministic, concave dynamic problems; see

Keyzer and Ginsburgh (1997) for a discussion of this case. We now focus on

the Negishi approach for dynamic, stochastic problems.

3 ANegishi Approach to Stochastic, Dynamic

General Equilibrium

We next present the Negishi approach to a simple stochastic dynamic model.

Let ui (ci) be agent i�s utility function over nc consumption goods6, ci ∈
6This formulation can include leisure. Let one of the components of c be labor supply,

l. Then the marginal utility of l is negative and the �consumption expenditure� on l is
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Rnc, in each period. We assume a common constant discount factor β. Let

θt ∈ Rnθ be the productivity state in period t. We assume that productivity
follows a stochastic law of motion; for speciÞcity, we assume ln θt+1 = ρ ln θt+

εt+1 where the productivity shocks εt are i.i.d. Let Kt denote the vector of

nk aggregate capital stocks at time t, and let ki,0 ∈ Rnk be agent i�s initial
endowment of capital stocks at the beginning of period t = 0. Assume that

the convex production possibility set in period t in productivity state θt is

deÞned by F
³
yt, Kt+1, eKt

´
≤ 0 where Kt+1 is the capital available at the

beginning of period t + 1 and eKt ≤ Kt is the amount of capital actually

used in production in period t. General equilibrium welfare theory again

applies, telling us that for any equilibrium there is a set of nonnegative social

welfare weights, λi, i = 1, . . . , n, such that the equilibrium is, for some set of

nonnegative weights λ, the solution to the social welfare problem

W (K0) = max
cit, yt,

ekt
mX
i=1

λiE

( ∞X
t=0

βt ui
¡
cit
¢)

(8)

F
³
yt, Kt+1, eKt, θt

´
≤ 0eKt ≤ KtX

i

cit − yt ≤ 0

ln θt+1 = ρ ln θt + εt+1

For any given set of nonnegative weights λ, the problem in (8) is a dynamic

negative. This allows us to use our compact notation.
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programming problem. The Bellman equation for (8) is

W (K, θ) = TW (K, θ) (9)

≡ max
ci, eK

X
i

λi u
i
¡
ci
¢
+ βE

©
W
¡
K+, θ+

¢ |θª
F
³
yt, K

+, eK, θ´ ≤ 0eK ≤ KX
i

cit − yt ≤ 0

ln θt+1 = ρ ln θt + εt+1

where T is the Bellman operator. Since T is a contraction operator (under

mild assumptions on u and F ) there is a unique Þxed point in the space of

bounded functions to the Bellman equation W = TW . In particular, the

sequence W j = TW j−1 converges to the solution W . In our discussion we

will assume that we solve (9) via value function iteration; that is, the W j

iterates are constructed by

W j+1 (K, θ) = TW j (K, θ) (10)

DeÞne

Z (K, θ) =
³
C (K, θ) , eK (K, θ) , Y (K, θ) ,K (K, θ)´

to be the vector of the equilibrium decision rules: the consumption allocation

function Ci (K, θ) for each consumer, the capital utilization policy eK (K, θ),
the output function Y (K, θ), and the gross saving function K (K, θ) denoting
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the next period�s aggregate capital stock. Z (K, θ) solves

Z (K, θ) ≡ arg max
ci, eK,y,K+

X
i

λi u
i
¡
ci
¢
+ βE

©
W
¡
K+, θ+

¢ |θª (11)

F
³
y,K+, eK, θ´ ≤ 0eK ≤ KX

i

ci − y ≤ 0

ln θ+ = ρ ln θ + εt+1

The solution to this problem implies a pattern of marginal rates of substi-

tution that in turn implies a sequence of prices. Let good 1 be the numeraire;

then the prices for goods at time t is pt, the vector of marginal rates of substi-

tution with respect to the numeraire. Let Ψi (K) be the current value at time

s of consumer i�s expenditure in periods in terms of commodity 1 at time

s if the economy has aggregate capital stock K at time s. Since marginal

utilities are proportional to prices, Ψi (K) satisÞes the recursive expression

Ψi (K, θ) = ui1
¡
ci
¢−1 ¡

uic
¡
ci
¢ · ci + βE ©ui1 ¡ci,+¢Ψi ¡K+, θ+

¢ª |θ¢ (12)
ci ≡ Ci (K, θ)

K+ ≡ K (K, θ)
ci,+ ≡ Ci

¡K (K, θ) , θ+¢
where uc is the vector of marginal utilities with respect to the various con-

sumption goods. Equation (12) is a linear integral equation in the unknown

function Ψi (K, θ).

The lifetime budget constraint of agent i includes the value of his initial

wealth. Let ψ0 (λ) be the price of capital relative to the numeraire at time
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t = 0. For each agent i deÞne the excess budget function,

Bi (λ) = Ψi (K, θ0)− ψ0 (λ) ki,0 (13)

Equilibrium is deÞned by the solution to

Bi (λ) = 0, i = 1, ...,m (14)

λ is any λ such that 0 = B (λ) ≡ (Bi (λ))
m
i=1. Equation (14) deÞnes the

Negishi approach to computing equilibrium.

We will assume that B (λ) is well-behaved; that is, we assume that it

has a Þnite number of zeroes and is smooth with respect to the parameters

of the model. These regularity properties require some additional assump-

tions. The recent paper by Shannon (1999) gives a general statement on

sufficient conditions for regularity of inÞnite-dimensional models of general

equilibrium. Her result covers many interesting instances of our model.

Determinacy Assumption: B (λ) is Lipschitz continuous with Þnitely

many zeroes.

The Negishi approach has reduced equilibrium in an inÞnite-dimensional

model to a Þnite set of equations deÞned on a Þnite number of welfare weights.

With the determinacy assumption, we can safely proceed with computation

if we can evaluate B (λ). The key problem lies in efficiently computing B (λ),

a problem to which we now turn.
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4 Dynamic Programming: Conventional Meth-

ods and Their Limitations

If the computer could do an inÞnite amount of mathematics, then the equa-

tions (11,12,13,14) express all that needs to be said. Unfortunately, the Þxed

point equation in (10) is an inÞnite dimensional problem sinceW is a function

of continuous variables k. The key decision in any dynamic programming al-

gorithm is to Þnd some way to approximate theW j functions. Once we have

decided on some parametric family to use for W j approximations, we then

apply (10) to these approximations. The expenditure function problem (12)

is also an inÞnite-dimensional problem, but it is a linear Fredholm integral

equation of the second kind for which there are many reliable solution meth-

ods. Similarly, once we have computed solutions to (10) and the expenditure

function problem (12), the step for Þnding equilibrium λ involves solving a

Þnite system of nonlinear equations just as in the static case. The only dif-

ference between the static and dynamic cases is the extra effort in computing

the efficient allocations and their cost conditional on λ. Therefore, we focus

on solution methods for (10).7

There are several details that need to be decided to compute approxi-

mations to (10). Since we cannot deal directly with the space of continuous

functions, we focus on a Þnite-dimensional subspace and approximateW (K)

7There are other methods for solving dynamic programming problems. Policy iteration

(a.k.a. Howard improvement) could also be used. Trick and Zin (1997) combine the linear

programming approach to solving dynamic progrmming problems with spline approxima-

tions. While they may be better than value function iteration they both must face the

same approximation issues.
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with some parameterized set of functions. For example, we could choose

some basis φi (K) for the space of continuous functions and some integer N,

and use the approximation

W (K)
.
=cW (K; a) ≡ NX

i=1

aiφi(K) (15)

Numerical procedures then focus on the Þnite-dimensional task of Þnding a

vector a ∈ RN such that cW (K; a) approximately solves (9). Examples of
this approach are in Daniel (1976) and Johnson et al. (1993).

The basic task replaces T , a contraction mapping from continuous func-

tions to continuous functions, with a Þnite-dimensional approximation, bT ,
that maps functions of the form in (15) to functions of the same form. We

construct bT in two steps. First, we choose a Þnite collection, X, of states
K, and evaluate wi = (TcW )(Ki) at Ki ∈ X. We will refer to this as the
maximization step since it is the maximization problem in (9) at Ki. The

resulting wi values are data, called Lagrange data, we use to approximate the

function TcW . Since we want to stay in the family deÞned by (15), we use
that data to Þnd a value for a such thatcW (K; a) Þts the wi data. This is the
critical approximation step, and we denote the result bTcW . The nature of the
approximation could be interpolation or it could be regression. In essence, bT
takes a function cW of the form (15) and maps it to another function of the

same form. We are now looking for a Þxed point in the N-dimensional space

of coefficients, or, equivalently, a Þxed point of bT in the space of functions of
form (15).

Dynamic programming also presents us with more information than is

available in many approximation contexts. Standard value function approxi-
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mation just focuses on Þnding the wi values in the maximization step. How-

ever, since the maximization step is an optimization problem with the para-

meter K, we can use the envelope theorem to easily compute the gradient of

(TcW ) (K) at each Ki; denote this information as δi = ∇(TcW ) (Ki). Since

this information is so cheap to generate, we would like to use it in any ap-

proximation scheme. The collection of wi and δi values constitute Hermite

data.

Furthermore, we want to choose approximation schemes that help the

algorithm proceed efficiently. For example, we want to choose a cW (K; a)
approximation scheme which is smooth since that will help us solve the max-

imization step efficiently. Furthermore, we want the problem of Þnding the

new coefficients a to be easy.

We now face the critical challenge. bT is generally not a contraction map-
ping on the space of functions of the form (15). The construction of an

algorithm to solve (9) revolves around choices that make the algorithm go

fast versus choices that make bT a contraction map or nearly a contraction,
map.

There are several ways to approximate the value functions in (9) but some

are not suitable for use in this context. We need a method which not only

solves for the value function in (9) but also accurately solves the consumption

policy function, i.e., c = C (k, λ) since they are used to compute prices

and the excess budget functions Bi (λ). This requirement makes it more

difficult to Þnd an approximation scheme that Þts the needs of the method

we use to Þnd the zero of the excess budget system (7). For example, if we

use a piecewise smooth homotopy method to solve (7) then we will need a
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method of (9) accurately approximate derivatives of the Bi (λ) in (7), and

accurate approximation of the derivatives of Bi (λ) puts an extra burden on

the method used to approximate W .

One basic approach for solving (9) is to discretize all state variables.

This is ill-advised here for two reasons. First, the curse of dimensionality

generally makes this approach impractical if there is more than one state

variable. Second, even if one could compute a reasonable approximation of

W in (9) with a reasonable number of states, that does not mean that it

can result in good approximation of the equilibrium λ. Under value function

iteration, the sequence of value functions W j converge in the L∞ norm.

This is comforting if we are interested in accurate computation of the value

function. However, we care about the prices implied by the solution to (9),

not the value function. The prices implied by anyW (k, λ) are related to the

gradients of W (k, λ), and the gradient error k∇W i −∇Wk∞ may be much

larger than the value function error kW i −Wk∞. Errors in computing the
value function�s gradient will translate into errors in computing B (λ) and

even larger errors in solving B (λ) = 0. This problem may be particularly

severe in cases where we discretize the state space where gradients ∇W can

be no more than secants between two points in the discretization of W .

Approximation theory offers us many alternatives to discretization and

are a key part of most numerical procedures. Polynomials could be used if

the problem were smooth. Daniel (1977) and Johnson et al. (1993) argue

for using splines in dynamic programming problems. There is a large variety

of functional forms, including neural networks and rational functions, which

could be used for dynamic programming problems.
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Unfortunately, most standard function approximation methods have prob-

lems. The key problem is the lack of shape preservation. We know that the

true value functionW (k, λ) is concave but many approximation methods will

not produce concave approximants even when the data are consistent with

concavity. Polynomial interpolation and spline interpolation methods can

produce high quality approximations but they are particularly susceptible

to failures of shape preservation. In fact, they can take concave monotone

increasing data in one dimension and produce highly oscillatory interpolants.

These failures of shape preservation means that bT is not generally a contrac-
tion map.

Matters only get worse in higher dimensions. These problems could pos-

sibly be overcome by taking sufficiently ßexible approximations with suffi-

ciently large amounts of data, but we do not know a priori how much ßexi-

bility will be needed to achieve a stable algorithm. That approach would be

like saying that computing general equilibrium is no problem because if you

take a sufficiently Þne grid of the unit simplex and evaluate excess demand

at the grid points, you will eventually Þnd all the equilibria. This is the kind

of exhaustive search that we want to avoid.

We should also mention the perturbation approach to solving (9). The

Þrst step is Þnding a steady state of the solution to (9) with zero variance.

Hansen and Koopmans (1972) noted that the problem of Þnding an invariant

capital stock of a deterministic optimal control problem, the term they used

for what we now call the steady state of (9), can be solved by an application

of Scarf�s algorithm. The perturbation method then constructs Taylor series

approximations of the solution to (9) around the deterministic steady state.
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The Þrst step is Þnding a linear approximation to the consumption policy

function C (k) around the steady state for the deterministic problem. Magill

(1977) and Kydland and Prescott (1982) have described this procedure. One

can achieve far more accurate approximations by computing a higher-order

Taylor series approximation around the steady state, as is done in Judd and

Guu (1993, 1997) and Jin and Judd (2002). These approximations include

terms involving the variance of the disturbances. Taylor series expansions

have many advantages. They are computed in a direct, noniterative fashion

and need no initial guess or information other than the initial steady state.

They are very good for states near the deterministic steady state. However,

the accuracy of these approximations decays as one considers values for k

distant from the deterministic steady state and as one increase the volatility

of exogenous shocks. Jin and Judd Þnd that third- and fourth -order ap-

proximations are very good for capital stocks within 25% of the steady state,

but even Þfth- and sixth-order expansions are not good for k equal to half

of the steady state even if computing these expansions were feasible. Taylor

series expansions constructed as in Jin and Judd (2002) will often be very

competitive methods for solving (9), but their limited range of validity make

them unreliable in general. In particular, if the aggregate capital stock at

time zero differs substantially from the steady state aggregate capital stock

then the perturbation approximation may not be valid along the transition

path.

These points all indicate that it is difficult to solve the dynamic program-

ming problem (9) in a reliable and efficient fashion using standard methods.

The next section offers an alternative which will avoid many of the problems.
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5 Shape-Preserving Approximation Methods

Since the value function is concave, shape preservation is a necessary compo-

nent of any efficient and reliable computation method for dynamic economies.

In this section we describe a shape-preserving approximation method that

is available for problems with one continuous endogenous state variable and

arbitrarily many discrete exogenous states. There are several methods for

preserving shape in one-dimensional approximation of functions. In this sec-

tion, we describe one simple approach due to Schumaker (1983). There are

now many such techniques; Kvasov (2001) is a recent book which surveys

the literature. We Þrst examine the Hermite interpolation version and then

discuss the Lagrange version.

5.1 Schumaker�s Shape-Preserving Splines

Consider the shape-preserving Hermite interpolation problem on the inter-

val [x1, x2]. We begin with the data y1, y2, s1, s2, and want to construct a

piecewise-quadratic function s ∈ C1[x1, x2] that satisÞes the four Hermite

interpolation conditions.

s(xi) = yi, s
0(xi) = si, i = 1, 2. (16)

We Þrst examine a nongeneric case in which a single quadratic polynomial

works. SpeciÞcally, if (s1 + s2) /2 = (y2 − y1) / (x2 − x1), then the quadratic
function

s(t) = y1 + s1(t− x1) + (s2 − s1)(x− x1)
2

2(x2 − x1) (17)

satisÞes (16). Straightforward computation shows that if the initial data are

consistent with a concave shape then this quadratic polynomial is concave.
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In general, we won�t be so lucky. The Schumaker method then adds a knot

to the interval [x1, x2] and constructs a spline with the desired properties.

Schumaker provides formulas for a ξ ∈ (x1, x2) such that there is a quadratic
spline with nodes at ξ, x1, and x2 that satisÞes (16). The general Hermite

interpolation problem has data {(yi, si, xi) | i = 1, · · · , n}. If the data is
concave, then we can apply Schumaker�s method to [xi, xi+1] and preserve

concavity. If we have Lagrange data, {(yi, xi) | i = 1, · · · , n}, we must Þrst
add estimates of the slopes (Schumaker provides some simple estimates) and

then proceed as we do with Hermite data. As long as the data is consistent

with global concavity, we can produce a globally concave function. However,

it is always better to use the true slopes if they are available.

5.2 Performance in a Simple Example

There is a legitimate concern that shape preservation comes at signiÞcant

cost. Judd and Solnick (1994) presents evidence that shape preservation is

practical in one-dimensional problems. They consider the optimal growth

problem

max
∞X
t=0

βtu(ct)

kt+1 = f(kt)− ct

where ct is consumption in period t, u(c) is the utility function at each date,

kt is the capital stock at the beginning of period t, and f(k) is the aggregate
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production function in each period. They assume the speciÞcations

u(c) =
c1−γ

1− γ
f(k) = k +

(1− β)
αβ

kα

which imply that the steady state capital stock is k = 1.

Judd and Solnick (1994) solved this problem using several techniques:

discretizing the state space, piecewise linear approximation for the value

function, cubic spline approximation of the value function, polynomial inter-

polation of the value function, and the Schumaker shape-preserving quadratic

spline approximation for the value function. They used the following pa-

rameter values: α = .25, β = .95, .99, γ = 10, 2, .5 over the interval

k ∈ [.4, 1.6]. They ran the discretization method using mesh sizes ∆k =

.01, .001, .0001, .00001. We take the solution to the ∆k = .00001 discretiza-

tion, which implies 120,001 discrete states over [.4, 1.6], as the truth and

compare other solutions to this one. They used both level and slope informa-

tion when they applied the Schumaker shape-preserving method. The other

methods use only level information. The polynomial interpolation method

used Chebyshev zeroes (adapted for the interval [.4, 1.6]) since that is the

optimal interpolation grid for polynomials.

Table 1 reports the relative errors in the consumption function for vari-

ous methods. N is the number of intervals used in spline methods and the

degree of polynomial used in the polynomial method. Table 1 shows that

linear interpolation is roughly an order of magnitude more accurate than

the discrete method, and shape-preserving interpolation is at least another

order of magnitude better. Cubic spline and polynomial interpolation meth-
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ods were often better. However, they encountered the shape problems we

hypothesized above. In fact, Table 1 shows that the fourth-order polynomial

interpolation method did not converge (DNC). In general, if the range of k

is large or the curvature high then polynomial interpolation fails to preserve

shape and value function iteration is unstable. Judd and Solnick also show

that the time penalty of shape-preserving approximation is negligible.

These results make two important points. First, discretizing the state

space is a very expensive way to proceed. Any of the interpolation meth-

ods achieved the same accuracy using much less computer time. This dis-

advantage surely grows with dimension. Second, the advantages of shape-

preserving method come at small computational cost. The shape-preserving

method was faster than linear interpolation methods which achieved the same

accuracy, and they were often faster than polynomials and cubic splines with

the same number of free parameters. The key question is how this generalizes

to higher dimensions. Economists should follow the progress approximation

theorists make in their continuing work on this problem.

5.3 Alternative Shape-Preserving ApproximationMeth-

ods

The Schumaker method is just one of many one-dimensional methods. Un-

fortunately, there is no such rich set of choices for higher dimensions. This

is an active area of research in approximation theory. There are some two-

dimensional methods; Wang and Judd (2000) applied a two-dimensional ap-

proach to a portfolio problem. Also, one could discretize the exogenous vari-

ables, such as productivity, and then for each exogenous state use a different
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low-dimensional shape-preserving spline for the endogenous states.

While we currently have no general efficient shape-preserving approxima-

tion methods for higher dimension, there are some brute-force approaches

for higher dimensions that immediately come to mind. For example, if

Φ = {φ1, φ2, ...} were a set of concave functions, then so is any convex com-
bination

P
i αiφi where the αi ≥ 0. Therefore, one could use regression

methods where the φi are the regressors and the αi are constrained to be

nonnegative. In fact, there is no reason why one could not use overÞtting

procedures where the number of regressors exceed the number of data points.

We are only trying to Þnd some concave function that Þts the data well. The

shape-preserving approximation problem is regression in a cone, not a linear

space.

Another possibility is to use the fact that any concave function equals the

minimum of its tangent hyperplanes. That is, if T (x, z) is the function linear

in x and tangent to f (x) at x = z, then f (x) = minz T (x, z). One possible

approximation of f is minz∈Z T (x, z) where Z is a Þnite set of points. This

approximation would have kinks that would violate our objective of approxi-

mating smooth functions with smooth functions. However, this problem can

be avoided with exponential smoothing, as in

bf(x;α, β, σ) = −σ lnÃX
i

e−(αi+β
ix)/σ

!

where the vectors βi and scalars αi are free parameters chosen so that bf(x) is a
good approximation of f(x). Another possibility is to use concave functional
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forms familiar to economists, such as the CES functional form8

bf(x;α, σ, γ) = ÃX
i

αix
σ
i

!γ/σ
These are all cumbersome approaches to shape preservation and may

prove useful in some cases. At least they demonstrate that shape preservation

is not a hopeless goal. Shape-preserving approximation of higher dimensions

is an active area of research which will hopefully produce far better methods.

6 Conclusions

We have outlined the some of the difficulties that will be encountered when

one wants to construct reliable algorithms for solving dynamic general equi-

librium models. Standard Euler equation methods would have many prob-

lems since they ignore issues of multiplicity of equilibrium. The Negishi

method offers us a way to solve general dynamic models by reducing the

problem to a series of dynamic programming problems. However, we need

reliably convergent methods for the dynamic programming problems. Shape

issues then become critical.

We have shown that shape-preserving dynamic programming methods are

available at little computational cost for one dimensional problems. There

are some shape-preserving methods available for two dimensions

The goal of this paper is to ask �Can we construct an algorithm for dy-

namic general equilibrium that surely converges to equilibrium?� While we

have not accomplished this task to the extent Scarf (1967) succeeded, we

8Professor Scarf made this suggestion in his discussion of this paper.
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have identiÞed the key difficulties. If one takes a Negishi approach then the

key problem is Þnding a surely convergent method for the dynamic program-

ming portion. Here shape preservation is the challenge. In low dimensional

problems, that challenge can be met. Progress in approximation theory will

hopefully allow us to tackle higher dimensions in the future.
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Table

Table 1: L2 norm of relative errors in consumption

N (β, γ)

(.95,-10.) (.95,-2.) (.95,-.5) (.99,-10.) (.99,-2.) (.99,-.5)

Discretized model

12 7.6e-02 2.8e-03 5.3e-03 7.9e-01 1.8e-01 1.1e-02

1200 1.0e-04 2.1e-05 5.4e-05 2.9e-03 5.4e-03 1.3e-04

Linear Interpolation

12 1.5e-03 9.8e-04 5.6e-04 1.5e-03 1.0e-03 6.3e-04

120 1.1e-04 3.7e-05 1.3e-05 1.4e-04 8.4e-05 4.2e-05

Cubic Spline

12 8.7e-05 1.5e-06 1.8e-07 1.3e-04 4.9e-06 1.1e-06

120 5.3e-09 5.6e-10 1.3e-10 4.2e-07 4.1e-09 1.5e-09

Polynomial

4 DNC 5.4e-04 1.6e-04 1.4e-02 5.6e-04 1.7e-04

12 3.0e-07 2.0e-09 4.3e-10 5.8e-07 4.5e-09 1.5e-09

Shape Preserving Quadratic Hermite Interpolation

4 4.7e-04 1.5e-04 6.0e-05 5.0e-04 1.7e-04 7.3e-05

12 3.8e-05 1.1e-05 3.7e-06 5.9e-05 1.7e-05 6.3e-06

40 3.2e-06 5.7e-07 9.3e-08 1.4e-05 2.6e-06 5.1e-07

120 2.2e-07 1.7e-08 3.1e-09 4.0e-06 4.6e-07 5.9e-08
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