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Abstract. We describe a general Taylor series method for computing asymp-

totically valid approximations to deterministic and stochastic rational expectations

models near the deterministic steady state. Contrary to conventional wisdom, the

higher-order terms are conceptually no more difficult to compute than the conven-

tional deterministic linear approximations. We display the solvability conditions for

second- and third-order approximations and show how to compute the solvability

conditions in general. We use an implicit function theorem to prove a local exis-

tence theorem for the general stochastic model given existence of the degenerate

deterministic model. We describe an algorithm which takes as input the equilibrium

equations and an integer k, and computes the order k Taylor series expansion along

with diagnostic indices indicating the quality of the approximation. We apply this

algorithm to some multidimensional problems and show that the resulting nonlinear

approximations are far superior to linear approximations.
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Economists are using increasingly complex dynamic stochastic models and need more

powerful and reliable computational methods for their analysis. We describe a general

perturbation method for computing asymptotically valid approximations to general sto-

chastic rational expectations models based on their deterministic steady states. These

approximations go beyond the normal �linearize around the steady state� approximations

by adding both higher-order terms and deviations from certainty equivalence. The higher-

order terms and corrections for risk will likely improve the accuracy of the approximations

and their useful range. Also, some questions, such as welfare effects of security markets,

can be answered only with higher-order approximations; see Judd and Guu (2001) for

,models where higher-order terms are essential. Contrary to conventional wisdom, these

higher-order terms are no more difficult to compute than the conventional deterministic

linear approximations; in fact, they are conceptually easier. However, we show that one

cannot just assume that the higher-order terms create a better approximation. We ex-

amine the relevant implicit function theorems that justify perturbation methods in some

cases and point out cases where perturbation methods may fail. Since perturbation meth-

ods are not perfectly reliable, we also present diagnostic procedures which will indicate the

reliability of any speciÞc approximation. Since the diagnostic procedures consume little

computational effort compared with the construction of the approximation, they produce

critical information at little cost.

Linearizations methods for dynamic models have been a workhorse of macroeconomic

analysis. Magill (1977) showed how to compute a linear approximation around deter-

ministic steady states and apply them to approximate spectral properties of stochastic

models. Kydland and Prescott (1982) applied a special case of the Magill method to a real

business cycle model. However, the approximations in Magill, and Kydland and Prescott

were just linear approximations of the deterministic model applied to stochastic models;

they ignored higher-order terms and were certainty equivalent approximations, that is,

variance had no impact on decision rules. The motivating intuition was also speciÞc to

the case of linear, certainty equivalent, approximations. Kydland and Prescott (1982)

motivated their procedure by replacing the nonlinear law of motion with a linear law of

motion and replacing the nonlinear payoff function with a quadratic approximation, and

then applying linear-quadratic dynamic programming methods to the approximate model.

This motivation gives the impression that it is not easy to compute higher-order approx-
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imations, particularly since computing the Þrst-order terms requires solving a quadratic

matrix equation. In fact, Marcet(1994) dismissed the possibility that higher-order ap-

proximations be computed, stating that �perturbation methods of order higher than one

are considerably more complicated than the traditional linear-quadratic case ...�

Furthermore, little effort has been made to determine the conditions under which

certainty equivalent linearizations are valid. Linearization methods are typically used

in an application without examining whether they are valid in that case. This raises

questions about many of the applications, particularly since the conventional linearization

approach sometimes produces clearly erroneous results. For example, Tesar (1995) uses

the standard Kydland-Prescott method and found an example where completing asset

markets will make all agents worse off. This result violates general equilibrium theory

and can only be attributed to the numerical method used. Kim and Kim (forthcoming)

show that this will often occur in simple stochastic models. Below we will present a

portfolio-like example which shows that casual applications of higher-order procedures

(such as those advocated by Sims, 2002, and Campbell and Viciera, 2002) can easily

produce nonsensical answers. These examples emphasize two important points. First,

more ßexible, robust, and accurate methods based on sound mathematical principles are

needed. Second, we cannot blindly accept the results of a Taylor series approximation but

need ways to test an approximation�s reliability. This paper addresses both issues.

We will show that it is practical to compute higher-order terms to the multivariate

Taylor series approximation based at the deterministic steady state. The basic fact shown

below is that all the higher�order terms of the Taylor series expansion, even in the sto-

chastic multidimensional case, are solutions to linear problems once one computes the

Þrst�order terms. This implies that the higher�order terms are easier to compute in

the sense that linear problems are conceptually less complex. In previous papers, Judd

and Guu (1993, 1997) examined perturbation methods for deterministic, continuous- and

discrete-time growth models in one capital stock, and stochastic growth models in con-

tinuous time with one state. They Þnd that the high-order approximations can be used

to compute highly accurate approximations which avoid the certainty equivalence prop-

erty of the standard linearization method. Judd and Gaspar (1997) described perturbation

methods for multidimensional stochastic models in continuous time, and produced Fortran

computer code for fourth-order expansions. Judd (1998) presented the general method



Perturbation methods for general dynamic stochastic models 4

for deterministic discrete-time models and presented a discrete-time stochastic example

indicating the critical adjustments necessary to move from continuous time to discrete

time. In particular, the natural perturbation parameter is the instantaneous variance in

the continuous-time case, but the standard deviation is the natural perturbation parame-

ter for discrete-time stochastic models. The reader is referred to these papers and their

mathematical sources for key deÞnitions and introductions to these methods. In this pa-

per, we will outline how these methods can be adapted to handle more general rational

expectations problems.

There has recently been an increase in the interest in higher-order approximation meth-

ods. Collard and Juillard (2001a) computed a higher-order perturbation approximation of

an asset-pricing model and Collard and Juillard (2001b). Chen and Zadrozny (forthcom-

ing) computed higher-order approximations for a family of optimal control problems. Kim

and Kim (forthcoming) applied second-order approximation methods to welfare questions

in international trade. Sims (2000) and Grohe-Schmidt and Uribe (2002) have gener-

alized Judd (1998), Judd and Gaspar (1997), and Judd and Guu (1993) by examining

second-order approximations of multidimensional discrete-time models.

The Þrst key step is to express the problem formally as two different kinds of per-

turbation problems and apply the appropriate implicit function theorems. Even though

we are applying ideas from implicit function theory, there are unique difficulties which

arise in stochastic dynamic models. Perturbation methods revolve around solvability con-

ditions, that is, conditions which guarantee a unique solution to terms in an asymptotic

expansion. We display the solvability conditions for Taylor series expansions of arbitrary

orders for both deterministic and stochastic problems, showing that they reduce to the

invertibility of a series of matrices. The implicit function theorem for the deterministic

problem is straightforward, but the stochastic components produce novel problems. We

give an example where a casual approach will produce a nonsensical result. We use an

implicit function theorem to prove a local existence theorem for the general stochastic

model given existence of the degenerate deterministic model. This is a nontrivial step

and an important one since it is easy for economists to specify models which lack a local

existence theorem justifying perturbation methods.

We then describe an algorithm which takes as input the equilibrium equations and

an integer k, and computes the order k Taylor series expansion along with diagnostic
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indices indicating the quality of the approximation. We apply this algorithm to some

multidimensional problems and show that the resulting nonlinear approximations are far

superior to linear approximations over a large range of states. We also emphasize the

importance of error estimation along with computation of the approximation.

1. A Perturbation Approach to the General Rational Expectations

Problem

We examine general stochastic problems of the form

0 = E {gµ(xt, yt, xt+1, yt+1, εz)|xt} , µ = 1, ...,m (1)

xit+1 = F i(xt, yt, εzt), i = 1, ..., n

where xt ∈ Rn are the predetermined variables at the beginning of time t, such as capital
stock, lagged variables and productivity, yt ∈ Rm are the endogenous variables at time

t, such as consumption, labor supply and prices, and F i(xt, yt, εzt) : Rn ×Rm ×Rs→ R,

i = 1, ..., n is the law of motion for xi, and

gµ(xt, yt, xt+1, yt+1, εz) : Rn ×Rm ×Rn ×Rm ×R→ R, µ = 1, ..., q

are the equations deÞning equilibrium, including Euler equations and market clearing

conditions. The scalar ε is a scaling parameter for the disturbance terms z. We assume

that the components of z are i.i.d. with mean zero and unit variance, making ε the

common standard deviation. Since correlation and heteroscedasticity can be built into

the function g, we can do this without loss of generality. Different values for ε represent

economies with different levels of uncertainty. The objective is to Þnd some equilibrium

rule, Y (x, ε), such that in the ε-economy the endogenous and predetermined variables

satisfy

yt = Y (xt, ε)

This implies that Y (x, ε) must satisfy the functional equation

E {gµ(x, Y (x, ε) , F (x, Y (x, ε) , εz) , Y (F (x, Y (x, ε) , εz) , ε) , εz)|x} = 0 (2)

Our perturbation method will approximate Y (x, ε) with a polynomial in (x, ε) in a

neighborhood of the deterministic steady state. The deterministic steady state is the
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solution to

0 = g(x∗, y∗, x∗, y∗, 0) (3)

x∗ = F (x∗, y∗, 0)

The steady state y∗ is the Þrst step in approximating Y (x, ε) since Y (x∗, 0) = y∗. The

task is to Þnd the derivatives of Y (x, ε) with respect to x and ε at the deterministic steady

state, and use that information to construct a degree k Taylor series approximation of

Y (x, ε), such as in

Y (x∗ + v, ε)
.
= y∗ + Yx (x∗, 0) v + εYε (x∗, 0) (4)

+v>Yxx (x∗, 0) v + εYxε (x∗, 0) v + ε2Yεε (x∗, 0)

+...

+o
³
εk + kvkk

´
(5)

If Y is analytic in the neighborhood of (x∗, 0) then this series has an inÞnite number of

terms and it is locally convergent. The objective is also to be able to use the Taylor

series approximation in simulations of the nonlinear model and be able to produce uni-

formly valid approximations of the long-run and short-run behavior of the true nonlinear

model. This is a long list of requirements but we will develop diagnostics to check out the

performance of our Taylor series approximations.

Equation (1) includes a broad range of dynamic stochastic models, but does leave out

some models. For example, models with intertemporally nonseparable preferences, like

those in Epstein-Zin (1989), are functional equations and do not obviously reduce to a

dynamic system in Rm. However, with modest modiÞcations, our methods can be applied

to any problem of the form in (2), a larger set of problems than those expressible as (1).

We also assume that any solution to (3) is locally unique. This rules out many interesting

models, particularly models with portfolio choices and models where income distribution

may matter. Portfolio problems can probably be handled with dynamic extensions of

Judd and Guu (2001), and income distribution problems can probably be handled by

application of the center manifold theorem, but we leave these developments for later

work.

Computing and evaluating the approximation in (4) is accomplished in Þve steps. The

Þrst is to solve (3) for steady state values (x∗, y∗). This is presumably accomplished by
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applying some nonlinear equation solver to (3) and will not be further discussed here.

The second is to compute the linear approximation terms, Yx (x∗, 0). This is done by

analyzing the the deterministic system formed by setting ε = 0 in (1) to create the perfect

foresight system

0 = gµ(xt, yt, xt+1, yt+1, 0) (6)

xit+1 = F i(xt, yt, 0)

Computing the linear terms is a standard computation, solvable by a variety of techniques.

See the literature on linear rational expectations models for solution methods (Anderson,

et al. , 1996, is a survey of this literature); we will not discuss this step further.

This paper is concerned with the next three steps. Third, we compute the higher-order

deterministic terms; that is, we compute perturbations of Y (x, 0) in the x directions.

Formally, we want to compute ∂
∂xk
Y (x∗, 0), k = 1, 2, .... This produces the Taylor series

approximation for the deterministic problem

Y (x, 0)
.
= y∗ + Yx (x∗, 0) (x− x∗) + (x− x∗)> Yxx (x∗, 0) (x− x∗) + ... (7)

for the solution to (6).

Fourth, with the Taylor series for Y (x, 0) in hand, we examine the general stochastic

problem Y (x, ε). We use the expansion (7) of the deterministic problem to compute the

ε derivatives,
¡
∂
∂ε

¢+ ¡ ∂
∂x

¢k
Y (x∗, 0) . More generally, we show that how to take a solution

of Y (x, 0) and use it to construct a solution to Y (x, ε) for small ε. This last step raises

the possibility that we have an approximation which is not just locally valid around the

deterministic steady state point (x∗, 0) but instead around a large portion of the stable

manifold deÞned by Y (x, 0).

This four-stage approach is the proper procedure since each step requires solutions

from the previous steps. Also, by separating the stochastic step from the deterministic

steps we see the main point that we can perturb around the deterministic stable manifold,

not just the deterministic steady state.

Before we accept the resulting candidate Taylor series, we must test its reliability. LetbY (x, ε) be the computed Þnite order Taylor series we have computed. We evaluate it by
computing

E
negµ(x, bY (x, ε) , F (x, bY (x, ε) , εz), bY (F (x, bY (x, ε) , εz), ε), εz)|xo = 0
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for a range of values of (x, ε) that we want to use, where egµ(xt, yt, xt+1, yt+1, εz) is a unit-
free version of gµ(xt, yt, xt+1, yt+1, εz). That is, each component of E {egµ} is transformed
so that any deviation from zero represent a relative error. For example, if one component

of gµ is supply equals demand then the corresponding component of egµ will express excess
demand as a fraction of total demand and any deviation of E {egµ(xt, yt, xt+1, yt+1, εz)|xt}
from zero represents the relative error in the supply equals demand condition. If these

relative errors are sufficiently small then we will accept bY (x, ε). This last step is critical
since Taylor series expansions have only a Þnite range of validity and we have no a priori

way of knowing the range of validity.

Before continuing, we warn the reader of the nontrivial notational challenge which

awaits him in the sections below where we develop the theoretical properties of our per-

turbation method and present the formal justiÞcation of our algorithm. After being

introduced to tensor notation and its application to multivariate stochastic control, the

reader may decide that this approach is far too burdensome to be of value. If one had to go

through these manipulations for each and every application, we might agree. Fortunately,

all of the algebra discussed below has been automated, executing all the necessary com-

putations, including analytic derivatives and error indices, and produce the Taylor series

approximation discussed below. This will relieve the user of executing all the algebra we

discuss below.

2. Multidimensional Comparative Statics and Tensor Notation

We Þrst review the tensor notation necessary to efficiently express the critical multivariate

formulas. We will follow the tensor notation conventions used in mathematics (see, for

example, Bishop and Goldberg, 1981, and Misner et al., 1973) and statistics (see McCul-

lagh, 1987), and use standard adaptations to deal with idiosyncratic features of rational

expectations models. We then review the implicit function theorem, and higher-order

applications of the implicit function theorem.

2.1. Tensor Notation. Multidimensional perturbation problems use the multidimen-

sional chain rule. Unfortunately, the chain rule in Rn produces a complex sequence of

summations, and conventional notation becomes unwieldy. The Einstein summation no-

tation for tensors and its adaptations will give us a natural way to address the notational
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problems.1 Tensor notation is a powerful way of dealing with multidimensional collec-

tions of numbers and operations involving them. We will present the elements of tensor

notation necessary for our task; see Judd (1998) for more discussion.

Suppose that ai is a collection of numbers indexed by i = 1, . . . , n, and that xi is a

singly indexed collection of real numbers. Then

ai x
i ≡

X
i

ai x
i.

is the tensor notation for the inner product of the vectors represented by ai and xi. This

notation is desirable since it eliminates the unnecessary Σ symbol. Similarly suppose that

aij is a collection of numbers indexed by i, j = 1, . . . , n. Then

aij x
i yj ≡

X
i

X
j

aij x
i yj .

is the tensor notation for a quadratic form. Similarly, aijxiy
j is the quadratic form of the

matrix aij with the vectors x and y, and the expression zj = a
i
jxi can also be thought of

as a matrix multiplying a vector. We will often make use of the Kronecker tensor, which

is deÞned as

δij ≡
 1, if i = j

0, if i 6= j
and is a representation of the identity matrix. δαβ , δ

I
J , etc., are similarly deÞned.

More formally, we let xi denote any vector in Rn and let ai denote any element in the

dual space of Rn, that is, a linear map on vectors xiin Rn. Of course, the dual space of

Rn is Rn. However, it is useful in tensor algebra to keep the distinction between a vector

and an element in the dual space.

In general, ai1,i2,...,i"j1,j2,...,jm
is a 8−m tensor, a set of numbers indexed by 8 superscripts and

m subscripts. It can be thought of as a scalar-valued multilinear map on (Rn)+ × (Rn)m.
This generalizes the idea that matrices are bilinear maps on (Rn)2. The summation

convention becomes particularly useful for higher-order tensors. For example, in Rn,

ci3,j4j3,i4
= ai1,i2,i3j1,j2,j3

bj1,j2,j4i1,i2,i4
≡

nX
i1=1

nX
i2=1

nX
j1=1

nX
j2=1

ai1,i2,i3j1,j2,j3
bj1,j2,j4i1,i2,i4

1The dubious reader should try to read the formulas in Bensoussan(1988) where conventional notation

is used.
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In our applications if f : R→ Rm, then fj will be the derivative of f with respect to

xj . The following equation expresses the multivariate Taylor expansion in tensor notation:

f
¡
x0 + v

¢
= f(x0) + fi(x

0)vi +
1

2
fij(x

0)vivj +
1

3!
fijk(x

0)vivjvk + ...,

where fi ≡ ∂f
∂xi (x

0), fij ≡ ∂2f
∂xi∂xj (x

0), etc. More generally, if f : Rn → Rm, then f ij will

be the derivative of the i0th component of f with respect to xj . We will make extensive

use of the multivariate chain rule. If f : Rn → Rm, g : Rm → R+ and h (x) = g(f (x)),

then h : Rn → R+, and the Jacobian of h is

hij ≡
∂hi

∂xj
= gi+f

+
j .

Furthermore the 1-2 tensor of second-order derivatives is

hijk ≡
∂2hi

∂xj∂xk
= gi+mf

m
k f

+
j + g

i
+f
+
jk.

This can be continued to express arbitrary derivatives.

Equation (1) is based on

g(x, y, z, w, ε) : Rn1 ×Rn2 ×Rn3 ×Rn4 ×R→ R

which is a function of Þve groups of variables. Our perturbation analysis needs to distin-

guish among derivatives with respect to different subsets of the variables. We will use the

standard device of letting different indices denote the differentiation with respect to dif-

ferent sets of variables. For example, in general relativity theory, one typically uses Latin

letters, a, b, c, ..., to represent summation over the three space coordinates (x, y, z) and

Greek letters, µ, ν, ρ, ..., to represent summation over space-time coordinates (x, y, z, t).

We apply this practice here to distinguish among x, y, z, and w. SpeciÞcally, the deriva-

tives of g with respect to xi will be denoted by lower case Latin letters as in

gµi (x, y, z, w, ε) =
∂

∂xi
(gµ (x, y, z,w, ε))

This implies that

gµj (x, y, z, w, ε) =
∂

∂xi
(gµ (x, y, z,w, ε))

denotes the partial derivative of gµ(x, y, z, w) w.r.t. the j�th component of x. In general,

g with a subscript from {i, j, k, ...} denotes the vector of derivatives of gµ(x, y, z, w, ε)
with respect to the components of x. We use different indices to denote derivatives with
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respect to components of y. In particular, we will use lower case Greek letters to index

components of y and deÞne

gα (x, y, z, w, ε) =
∂

∂yα
(g (x, y, z, w, ε))

gβ (x, y, z, w, ε) =
∂

∂yβ
(g (x, y, z, w, ε))

Derivatives of gµ(x, y, z, w) w.r.t. components of z will use capitalized Latin letters, as in

gµI (x, y, z,w, ε) =
∂

∂zI
(gµ(x, y, z, w, ε))

gµJ (x, y, z,w, ε) =
∂

∂zJ
(gµ(x, y, z,w, ε))

and derivatives of gµ(x, y, z, w) w.r.t. components of w will use capitalized Greek letters,

as in

gµA (x, y, z, w, ε) =
∂

∂wA
(gµ(x, y, z,w, ε))

gµΓ (x, y, z, w, ε) =
∂

∂wΓ
(gµ(x, y, z, w, ε))

gµ∆ (x, y, z, w, ε) =
∂

∂w∆
(gµ(x, y, z, w), ε)

The distinction holds only for subscripts. For example, the notation yi will denote the

same vector as would yI .

Since ε is a scaler, the derivatives w.r.t. ε will be denoted in the standard manner,

gµε (x, y, z, w, ε) =
∂

∂ε
(gµ (x, y, z, w, ε))

gµεε (x, y, z, w, ε) =
∂2

∂ε2
(gµ (x, y, z, w, ε))

Combinations of indices represent cross derivatives. For example,

gµαi (x, y, z, w, ε) =
∂

∂xi
∂

∂yα
(gµ (x, y, z, w, ε))

We will often want the composite gradient of gµ(x, y, z,w, ε) consisting of the derivatives

with respect to (y, z, w). We let ℵ = {α, I,A} denote the set of all indices for (y, z, w)
and use the notation gµℵ(x, y, z, w, ε) to represent the derivatives as in

gµℵ(x, y, z, w, ε) =
³
gµα (x, y, z, w, ε) , gµI (x, y, z,w, ε) , gµA (x, y, z, w, ε)

´
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2.2. Implicit Function Theorem and Solvability Conditions. The general im-

plicit function theorem for Rn is the critical tool motivating our computations, even

though it is not directly applicable to our problems. A review of the Implicit Function

Theorem highlights the critical issues we will face. Let H (x, y) : Rn × Rm → Rm, and

suppose H(x0, y0) = 0. Let

Hµ(x, h (x)) = 0 (8)

implicitly deÞne h : Rn → Rm for x near x0. In particular, we know h(x0) = y0. Taking

the derivative of (8) with respect to xi shows

Hµ
i (x, h (x)) +H

µ
α(x, h (x))h

α
i (x) = 0

which, at x = x0, implies

∂Y α

∂xi
(x0) = h

α
i (x0) = − eHα

µH
µ
i

where eHα
µ is the tensor (matrix) satisfying

eHα
µ

³
Hµ
β (x0, y0)

´
= δαβ

The tensor hαi is the comparative static matrix which expresses how components of h (x)

change as we move x away from x0. The solution hαi exists as long as eHα
q , the inverse ma-

trix of Hq
α(x0, y0), exists. Therefore, the solvability condition for h

α
i is the nonsingularity

of Hq
α(x0, y0). If H

q
α(x0, y0) is invertible, then the linear approximation of h (x) based at

x = x0 is

hα (x0 + v)
.
= hα(x0) + h

α
i v

i.

which is just the beginning of the multivariate Taylor series approximation of h (x) based

at x0.

We often need to go beyond the Þrst-order expression of and construct higher-order

terms of the Taylor series expansion. To do this in a clean and compact fashion, we need

tensor notation. Taking another derivative of (8) w.r.t. xj implies

Hij(x, h (x)) +H
µ
αj(x, h (x))h

α
i (x)h

β
j (x) +H

µ
α(x, h (x))h

α
ij (x) = 0

which, at x = x0, implies

hαij(x0) = − eHα
q

³
Hij +H

q
βjh

β
i h

α
j

´
(9)
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Again, we see that the second-order coefficients are given by (9) as long as Hµ
α(x0, y0) is

invertible. Further differentiation shows that at each stage the critical solvability condition

is the same, the invertibility of Hµ
α(x0, y0). Therefore, we can continue to solve for terms

in a Taylor series expansion as long as H has the necessary derivatives. We will compute

the solvability conditions for the dynamic perturbation problem, and Þnd that they differ

from this in that the k�th order solvability condition depends on k.

3. A Simple Example

We Þrst illustrate regular perturbation in the context of the basic rational expectations

equations in a simple optimal growth model. This will help us see through the complexity

of the multidimensional case and also show why we use ε as a perturbation variable as op-

posed to the variance ε2 which is the perturbation variable in continuous-time asymptotic

methods, such as in Fleming, Judd and Guu (1993), and Gaspar and Judd (1997).

Consider the simple stochastic optimal growth problems indexed by ε

maxct
P∞
t=0 β

t u(ct)

s.t. kt+1 = F (kt − ct)(1 + εzt)
(10)

where the zt are i.i.d. with unit variance, and ε is a parameter expressing the standard

deviation. The solution of the deterministic case, ε = 0, can be expressed as a policy

function, C(k), satisfying the Euler equation

u0 (C(k)) = β u0 (C (F (k −C(k)))) F 0 (k −C(k)) .

Standard linearization methods produce C0(k). Successive differentiations of (10) produce

higher-order derivatives of C(k) at k = k∗. For example, the second derivative of (10)

together with the steady-state condition k = k∗ implies that C00(k∗) satisÞes the linear

equation

u00C 00 + u000C0C0 = βu000 (C0F 0(1−C0))2 F 0 + βu00C00 (F 0(1−C 0))2 F 0
+2βu00C0F 0(1−C0)2 F 00 + βu0F 000(1−C0)2
+βu0F 00(−C 00)

where the parentheses denote multiplication, not application of a function. All functions

are evaluated at the steady state value of their arguments. This is a linear equation in

the unknown C00(k∗). Linear operations combined with successive differentiations of (10)

produce all higher-order derivatives.
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The solution in the general case is a policy function, C (k, ε), which expresses con-

sumption as a function of the capital stock k as well as the standard deviation ε. C(k, ε)

satisÞes the Euler equation

u0 (C(k, ε)) = β E {u0 (g(ε, k, z)) R(ε, k, z)} (11)

g(ε, k, z) ≡ C((1 + εz)F (k −C(k)))
R(ε, k, z) ≡ (1 + ε z)F 0 (k −C(k))

Differentiation of (11) with respect to ε produces a linear equation for Cε (k∗, 0), which has

the solution Cε = 0. This is a natural result since ε parameterizes the standard deviation

of uncertainty, whereas basic economic intuition says that the economic response should be

proportional to variance, which is ε2. Furthermore, the perturbation variable in Fleming

(1971) was instantaneous variance. Therefore, Cε = 0 is a natural result.

Further differentiation with respect to ε produces a linear equation for Cεε (k∗, 0)

shows that

Cεε (k
∗, 0) =

u000C0C 0F 2 + 2u00C0F + u00C00F2

u00C0F 0 + βu0F 00

where all the derivatives of u and F are evaluated at the steady-state values of c and k.

This can be continued to compute higher-order derivatives as long as u and F have the

necessary derivatives.

It may initially appear more natural to use variance, ε2, as the perturbation variable

since Cε (k, 0) = 0. However, using the variance would cause difficulty in a discrete-

time problem. The ε3 term Cεεε is nonzero in the deterministic case since skewness can

be nonzero. This is not a problem in the continuous-time, Ito process case since all

odd (instantaneous) moments are zero. A Taylor series in ε2 in discrete-time stochastic

problems would miss the ε3 terms and would fail at or before the ε3 term. In terms

of asymptotic theory, the appropriate gauge for discrete-time stochastic problems is εk

instead of ε2k.

4. Perturbations of the Deterministic Model

We now begin applying perturbation methods to rational expectations models of the form

in (1).We Þrst describe the perturbation method for the deterministic problem. The

deterministic problem has independent interest. Since the perturbations are with respect

to the state variables x, we drop the ε parameter in this section to simplify the notation.
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Suppose that x ∈ Rn and y ∈ Rm. Then Y (x) : Rn → Rm, g : Rn ×Rm ×Rn ×Rm×
R → Rm, and F : Rn × Rm → Rn. Note that we assume that the number of equations

in g = 0 equals the number of free variables, m. We express equilibrium in the more

convenient form

0 = G (x, Y (x) ,X (x) ,Y (x)) ≡


gµ (x, Y (x) ,X (x) ,Y (x))
X I (x)− F I (x,Y (x))
YA (x)− Y A(X (x))

 (12)

where gµ denotes the µ�th equation in the collection of equilibrium equations. This for-

mulation uses expressions Y (x) and F (x, Y (x)) as well as the composite expressions

X (x) − F (x, Y (x)) and Y (x) = Y (X (x)) = Y (F (x, Y (x)). The introduction of the

intermediate terms X (x) and Y (x) helps us make clear the essentially linear structure of
the problem. It also indicates a direction for efficient programming since it tells us that

we should separately compute the derivatives of X (x) and Y (x) before we compute the
derivatives of g (x, Y (x) ,X (x) ,Y (x)). This approach also distinguishes the cases where
Y occurs as Y (x) as opposed to Y (F (x, Y (x)). Y α will refer to occurrences of Y (x)

and Y A will refer to occurrences of Y (F (x, Y (x)). We used F I , FJ , etc., to refer to

components of F (x,Y (x)) = X (x). X I , XJ , etc., will also refer to components of X (x),
and components of Y (x) = Y (F (x,Y (x))) will be denoted YA, YB, Y∆, etc.
The objective is to Þnd the derivatives of Y (x) with respect to x at the deterministic

steady state, and use that information to construct Taylor series approximations of Y (x).

In conventional notation, that Taylor series is expressed as

Y (x)
.
= y∗ + Yx (x∗, 0) (x− x∗) + (x− x∗)> Yxx (x∗, 0) (x− x∗) + ...

but tensor notation expresses it as

Y (x)
.
= y∗ + Yi (x∗, 0)

¡
xi − xi∗

¢
+ Yij (x∗, 0)

¡
xi − xi∗

¢ ¡
xj − xj∗

¢
+Yijk (x∗, 0)

¡
xi − xi∗

¢ ¡
xj − xj∗

¢ ¡
xk − xk∗

¢
+ ...

Deterministic Steady State and the Linear Approximation. Perturbation

methods begin with the deterministic steady state, which is the solution to

0 = g (x∗, y∗, x∗, y∗)

x∗ = F (x∗, y∗)
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This is a nonlinear set of equations. The second step in perturbation methods is to

compute the linear terms of the approximation Yx (x∗, 0). Standard linearization methods

show that the coefficients Yx (x∗, 0) are the solution, y = y∗ + Yx (x− x∗), to the linear
rational expectations model

gµi x
i
t + g

µ
αy

α
t + g

µ
I x

I
t+1 + g

µ
Ay

A
t+1 = 0 (13)

where all the gradients of gµ in (13) are evaluated at the deterministic steady state. We

assume locally unique and stable dynamics. This may not be true for all steady states; we

conÞne our attention to only saddlepoint stable steady states. This linearization procedure

is justiÞed by the implicit function theorem applied to (6). The solution is

yt − y∗ = H (xt − x∗) (14)

Anderson et al. (1996) and Anderson, Evans, Sargent, and McGrattan (1996) survey

methods for solving such models. This is the difficult step computationally, but can be

handled by conventional methods.

Theorem 1. If g and F are locally analytic in a neighborhood of (x∗, y∗, x∗, y∗), and (13)

has a unique locally asymptotically stable solution, then for some ε > 0 there is a unique

function Y (x) such that Y (x) solves (12) and is locally analytic for kx− x∗k < ε. In

particular, Y (x) is inÞnitely differentiable and its derivatives solve the equations derived

by implicit differentiation (12).

Proof. This follows from the standard application of the analytic implicit function

theorem to the space of sequences that converge to the steady state at an exponential

rate.

Before we move on to the second-order approximation, we need to formulate the Þrst

order problem in functional and tensor form. We start with equilibrium expressed in the

form (12). Let Z (x) = (x, Y (x) ,X (x) ,Y (x)). The Þrst-order derivatives with respect
to the xi variables are

0 = gµi (Z (x)) + gµα (Z (x))Y αi (x) + gµI (Z (x))X I
i (x) + g

µ
A (Z (x))YAi (x)

X I
i (x) = F Ii (x, Y (x)) + F

I
α (x, Y (x))Y

α
i (15)

YAi (x) = Y AI (X (x))X Ii (x)



Perturbation methods for general dynamic stochastic models 17

At the steady state (we drop arguments here since they are all understood to have their

steady state values)

0 = gµi + g
µ
αY

α
i + g

µ
IX Ii + gµAYAi

X Ii = F Ii + F
I
αY

α
i

YAi = Y AI X Ii

After substitution, we see that the tensor (matrix) Y αi is the solution to

0 = gµi + g
µ
αY

α
i + g

µ
I

¡
F Ii + F

I
αY

α
i

¢
+ gµAY

A
I

¡
F Ii + F

I
αY

α
i

¢
This is a matrix polynomial equation for the matrix Y αi (x∗) with n2 equations in the n2

unknown values Y αi . This is also the H matrix in (14) computed by standard methods.

Before we move to higher order approximations, we express the Þrst order system in

(15) in a convenient form. Let

G (Z (x))ℵ =


gµα (Z (x)) gµI (Z (x)) gµA (Z (x))

−F Iα (x, Y (x)) 1n 0

0 0 1m


The (α, I,A) subscript notation represents the fact that G (Z (x))ℵ is three columns of
tensors, the Þrst being derivatives with respect to α, etc. The 1n (1m) entry in G (Z (x))ℵ
represents the n×n (m×m) identity map2. Then the system of equations in (15) deÞning
the Þrst-order coefficients can be expressed as

0 = G (Z (x))ℵ


Y αi (x)

X Ii (x)
YAi (x)

−


0

0

Y AI (X (x))X I
i (x)

+


gµi (Z (x))
F Ii (x, Y (x))

0

 (16)

and the steady state values Y αi (x∗) satisfy

0 = G(z∗)ℵ


Y αi (x∗)

X I
i (x∗)

YAi (x∗)

−


0

0

Y AJ (x∗)XJi (x∗)

+


gµi (z∗)

F Ii (x∗, y∗)

0


where z∗∗ = Z (x∗). We will use the form in (16) below.

2We use the 1n notation instead of the Kronecker delta tensor δij notation since we do not want to

change indices.



Perturbation methods for general dynamic stochastic models 18

Second-order Approximation. We next want to compute Y αij (x∗), the Hessian of

Y α (x) at x = x∗. Let Djf(x) represent the total derivative of f(x) w.r.t. xj. Differenti-

ation of (16) with respect to xj shows

0 = Dj (G (Z (x))ℵ)


Y αi (x)

X Ii (x)
YAi (x)

+ G (Z (x))(α,I,A)

Y αij (x)

X Iij (x)
YAij (x)

 (17)

−


0

0

Y AIJ(X (x))X J
j (x)X Ii (x) + Y AI (X (x))X I

ij (x)

+Dj


gµi (Z (x))
F Ii (x, Y (x))

0


which implies the steady state conditions

0 = Di (G(z∗))


Y αi (x∗)

X Ii (x∗)
YAi (x∗)

+Di


gµi (z∗)

F Ii (x∗, Y (x∗))

0

 (18)

−


0 0 0

XJj (x∗)X I
i (x∗) Y AI (x∗) 0

0 0 0



Y AIJ(x∗)

X I
ij (x∗)

YAij (x∗)



+G (z∗)ℵ


Y αij (x∗)

X I
ij (x∗)

YAij (x∗)


which is a linear equation in the unknowns

¡
Y αij (x∗) ,X Iij (x∗) ,YAij (x∗)

¢
. Note here that

the solvability condition is the nonsingularity of G(z∗∗) plus some other terms.

Theorem 2.
¡
Y αij (x∗) ,X I

ij (x∗) ,YAij (x∗)
¢
satisÞes the linear system (18). It is uniquely

solved by (18) if and only if (18) is nonsingular



Perturbation methods for general dynamic stochastic models 19

Third-order approximation. The third-order terms Zℵijk (x) are found by differ-
entiating (17) with respect to xj , producing

0 = Dk

Dj (G (Z (x))ℵ)

Y αi (x)

X Ii (x)
YAi (x)

+Dj


gµi (Z (x))
F Ii (x, Y (x))

0




+Dk (G (Z (x))ℵ)


Y αij (x)

X Iij (x)
YAij (x)

+ G (Z (x))ℵ

Y αijk (x)

X I
ijk (x)

YAijk (x)



−


0

DijkY A(X (x))
0


The steady state is now given by

0 = (Terms without Zijk) + G (Z (x))ℵ


Y αijk (x∗)

X I
ijk (x∗)

YAijk (x∗)

−


0

DijkY A(X (x∗))
0

 (19)

where

DijkY
A(X (x∗)) = Y AIJK (x∗)XKk (x∗)XJj (x∗)X I

i (x∗)

+Y AIJ(x∗)Dxk
¡X J

j (x∗)X Ii (x∗)
¢

+Y AIK(x∗)XK
k (x∗)X I

ij (x∗) + Y
A
I (x∗)X Iijk (x∗)

Theorem 3.
³
Y αijk (x∗) ,X I

ijk (x∗) ,YAijk (x∗)
´
satisÞes the linear system (19). It is uniquely

solved by (19) if and only if (19) is nonsingular

There are two items to note. First, Y αijk (x∗) satisÞes a linear system of equations.

Second, the solvability matrix for Zijk(x∗) will be different than the solvability matrix for
Zij(x∗). The fact that the solvability conditions change as we change order is a potential
problem. However, one suspects that these matrices are generically determinate, but that

remains an open issue.

The following is an obvious continuation of our method.

Theorem 4. Given the solution to all lower order derivatives, the degree m derivatives¡
Y αi1..im (x∗) ,X I

i1..im
(x∗) ,YAi1...im (x∗)

¢
satisfy a linear equation that is solvable if the linear
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map

G (z∗)ℵ



Y αi1..im (x∗)

X Ii1..im (x∗)

YAi1...im (x∗)


−



0

Y AI1..Im (x∗)X I1i1 (x∗) · · · X Imim (x∗) + Y AI (x∗)X I
i1..im

(x∗)

0


is invertible.

4.1. Algorithm. We have established that Taylor expansions of the equilibrium equa-

tions produce a series of linear equations in the derivatives of Y once we get past the

Þrst-order terms. This implies that a fairly simple algorithm can be applied once we have

the linear systems. DeÞne

Gµ(x) = gµ (x, Y (x) ,X (x) ,Y (x))

where

X I (x) = F I (x, Y (x))

YA (x) = Y A(X (x))

The steady state deÞnition tells us that G (x∗) = 0. Furthermore, if Y αi (x∗) is Þxed at

its true linear solution, Gµi (x∗) = 0. The preceding calculations show that the Taylor

expansion continues with the form

Gµ(x∗ + εv) = Gµ (x∗) + εG
µ
i (x∗) v

i (20)

+ε2
¡
Mµ,2
α (x∗) +Nµ,2

α (x∗)Y αij (x∗)
¢
vivj

+ε3
¡
Mµ,3
α (x∗) +Nµ,3

α (x∗)Y αijk (x∗)
¢
vivjvk

+...

where each Mµ,+
α (x∗) and Nµ,+

α (x∗) term involves no derivative of Y α (x) of order 8 or

higher. Therefore, we take a speciÞc problem, have the computer produce the Taylor

series expansion in (20) where the Y αi (x∗), Y αij (x∗), etc., terms are left free, and then

compute them in a sequentially linear fashion by solving in sequence the linear systems

0 = Mµ,2
α (x∗) +Nµ,2

α (x∗)Y αij (x∗)

0 = Mµ,3
α (x∗) +Nµ,3

α (x∗)Y αijk (x∗)

...
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where at each stage we use the solutions in the previous stage.

5. A General Stochastic Problem

We next compute the stochastic portion of our approximation. The stochastic rational

expectations problem is

0 = E {gµ(xt, yt, xt+1, yt+1, εz)|xt} , µ = 1, ...,m
xit+1 = F i(xt, yt, εzt), i = 1, ..., n

The objective is to Þnd some equilibrium rule, Y (x, ε), such that

E {g (x, Y (x, ε) , F (x, Y (x, ε) , εz) , Y (F (x, Y (x, ε) , εz) , ε) , εz) |x} = 0 (21)

We have constructed the derivatives of Y (x, 0) with respect to the components of x. We

now compute the ε derivatives.

Before we describe our method, we Þrst present an example which highlights the

pitfalls of pursuing a Taylor series expansion procedure in a casual fashion ignoring the

relevant mathematics. We will posit a simple example of a rational expectations model and

follow the approach taken in Kydland and Prescott (1982), and elsewhere. This casual

application of the standard approach will produce a nonsensical result and highlight a

potential problem. We will then proceed to develop an approach consistent with the

implicit function theorem.

5.1. A Cautionary Example. We now present a simple example which highlights

the dangers of a casual approach to computing Taylor series expansions. Suppose that

an investor receives K endowment of wealth and that there are two possible investments,

I1 and I2; therefore, I1,t + I2,t = K. We allow negative values for I1,t and I2,t, making

this example like a portfolio problem. Assume a gross �adjustment cost� for deviations

of type 1 investment from some target Ī equal to α
¡
I1,t − Ī

¢2
/2 units of utility. In

period t+1 the investments produce f (I1,t, I2,t, Zt+1) of the consumption good. Assume

f (I1,t, I2,t, Zt+1) = I1,t + I2,tZt+1 where Zt is log Normal with mean 1 + µ and variance

σ2. Assume that all of the second-period gross return is consumed and that the utility

function is u (c) = c1−γ/ (1− γ). The complete utility function is

U (I1,t, I2,t, Zt+1) = −α
¡
I1,t − Ī

¢2
/2 +Et {u (I1,t + I2,tZt)} (22)
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This is a rational expectations model where the endogenous variables are deÞned by the

equations

0 = −α ¡I1,t − Ī¢+Et {u0 (I1,t + I2,tZt)Zt} (23)

K = I1,t + I2,t

This is a trivial rational expectations model3, but if a method cannot reliably approximate

the solution to this problem then we would not have any conÞdence in its general validity.

The deterministic �steady state� is I1,t = Ī, I2,t = K− Ī; that is, we set type 1 invest-
ment equal to the type 1 target Ī and put the rest of the capital in type 2 investments.4 .

This is obvious since the investments have the same return and there is an adjustment

cost for any deviations of I1,t from zero. We now want to know how the investment pol-

icy is altered if we add some noise to the risky type 2 investment. If we were to take

a certainty equivalent approximation then the investment rules are unchanged by an in-

crease in variance. However, this will produce nonsensical answers if Ī < 0 and I2,t > K

since this would imply that there is some chance that I1,t+ I2,tZt < 0, implying negative

consumption. A more sophisticated application of the key idea in Kydland and Prescott

(1982)5 tells us to replace the utility function in (22) with a quadratic approximation

around the deterministic consumption K and solve the resulting linear equation for I1,t.

For any Ī, µ, and σ2, as α goes to zero we converge to the limiting investment rule

I2,t = K
µ/γ

σ2 + µ2
(24)

Consider the situation when µ/γ > σ2+µ2, as is the case when µ = .06 and σ2 = .04, the

standard calibration for equity investment, and γ = 1, which is log utility. In this case I1,t,

the safe investment, would be negative, implying that one borrows (I1,t < 0) to buy more

than K dollars of the risky investment. This, however, is nonsensical since the support

of log Normal Z is all of the nonnegative real line, implying that there is some chance

of negative consumption, which is inconsistent with CRRA utility. The possibility of a

3This example is also a bit silly with the utility adjustment costs, but it is an attempt to construct an

example which looks like a portfolio problem (think of I1 and I2 as investments in alternative securities)

but avoids the complications examined in Judd and Guu (2001).
4Note that if Ī < 0 then I2,t > K.
5 Strictly speaking, Kydland and Prescott assume additive noise in the law of motion for the state,

in which case their approximation is certainty equivalent. However, the application of their key linear-

quadratic approximation idea to this example with nonadditive disturbances is clear.
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negative consumption makes expected utility undeÞned and can be avoided6 by choosing

any nonnegative I1,t. Therefore, the ad hoc approximation in (24) cannot be a useful

approximation to the the solution of (23).

What went wrong? There is an implicit constraint on consumption being positive in

(23) since the utility function is not deÞned for negative consumption. However, that

constraint is not binding in the deterministic problem since consumption is surely posi-

tive. Since this constraint is not present in the deterministic case, it is not present when

one executes a purely local procedure. If there are no restrictions placed on the random

disturbances, the Kydland and Prescott (1982) procedure implicitly replaces a nonlinear

problem with a linear-quadratic problem globally. The approximate quadratic utility func-

tion is deÞned for negative consumption and is not an appropriate global approximation

since the true utility function may not be deÞned for negative consumption. Therefore,

without restrictions on the disturbances, the Kydland and Prescott approach is not a local

analysis based on some implicit function theorem.

This is not a problem unique to the strategy recommended by Kydland and Prescott.

The second-order procedure of Sims (2000) is a natural extension of Kydland and Prescott

and would fail in this case for similar reasons. In fact, any scheme using purely local in-

formation and moments and ignoring global considerations can fail on problems like this

since local information cannot alone model global considerations. The approximation

procedure advocated in Campbell (2002) is different but also fails on this point, often

producing approximations with positive probabilities of negative consumption. Camp-

bell�s approach begins with the observation that one can analytically compute expected

utility if utility is CRRA and consumption is log Normal. Therefore, it would be nice

if our portfolio problems always reduced to computing the expected CRRA utility of log

Normal consumption. However, if asset returns are log Normal, consumption will gener-

ally not be log Normal since nontrivial linear combinations of log Normal returns are not

log Normal. Campbell approximates the original portfolio problem (our problem in (23) is

a portfolio problem if α = 0) by replacing the ex post distribution of consumption with an

�approximating� log Normal distribution, and then Þnds that portfolio which maximizes

the approximate expression for expected utility. Of course, the support of the log Normal

6The reason for choosing log Normal z is obvious; if we had made z Normal than no nonzero choice

for I2 is consistent with the nonnegativity constraint on consumption.
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approximation will not include any negative values and if mean returns are sufficiently

large relative to the variance and risk aversion, the Campbell �approximation� will short

bonds and cause a positive probability of negative consumption.

These problems do not go away even if we take the time period to zero. If we were

to embed (23) in a sequence of problems with ever shorter time periods, we would want

to maintain the Sharpe ratio, µ/σ2, above some positive limit. Then, for many γ, the

approximation in (24) would always be greater thanK, implying shorting in each discrete-

time problem and a positive probability of negative consumption.

The mathematical economics literature has long been aware of this problem and has

recognized the importance of proceeding locally. In particular, Samuelson (1970) noted

this problem and assumed that the disturbance Z has bounded support. Judd and Guu

(2001) generalized this to a local analyticity condition. Judd (1998) (see chapter 16)

also points out the importance of controlling the distribution of Z. In this paper, we

will proceed with a bounded support assumption since that is the most general way to

proceed. We will display the critical conditions which need to be checked before one can

proceed with a perturbation approximation of rational expectations models.

The key point is that there are regularity conditions which must be satisÞed if we

are to use the implicit function theorem to justify asymptotic expansions as approxima-

tions. Our example shows that it may not be possible to combine popular utility functions

with popular stochastic processes. We take the view that it is more important to accu-

rately approximate the economic process than to stay with popular stochastic processes.

Therefore, we assume Assumption 1:

Assumption: The support of z is Þnite and E {z} = 0.

5.2. Local Perturbation Approach for Stochastic Models. We have already

computed the Taylor series approximation of the deterministic problem

Y α (x, ε)
.
= y∗ + Y αi (x∗, 0)

¡
xi − xi∗

¢
+Y αij (x∗, 0)

¡
xi − xi∗

¢ ¡
xj − xj∗

¢
+Y αijk(x∗, 0)

¡
xi − xi∗

¢ ¡
xj − xj∗

¢ ¡
xk − xk∗

¢
+...
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We next move to the stochastic terms, Yε (x∗, 0), Yεε (x∗, 0), etc. The general stochastic

system is

0 = E {g (xt, yt, xt+1, yt+1, εz) |xt}
xt+1 = F (xt, yt, εzt)

Up to this point, we have been denoting the equilibrium as the function Y (x, ε)making

explicit the fact that equilibrium y depends on both the current state x as well as the value

of ε. We will slightly change the notation to make clearer the functional relationships.

We will not take ε as a paramter and let Y (x) be the function such that yt = Y (xt). For

any speciÞc value of ε Y (x) must satisfy the functional equation

0 = E {gµ (x, Y (x) , F (x, Y (x) , εz) , Y (F (x, Y (x) , εz)), εz)} (25)

= Nµ (Y, ε) (x)

at all x. We assume that Y (x) : U → V is Cr, for x ∈ U ⊂ Rn where x∗ ∈ U ,

y∗ ∈ V ⊂ Rm, and kfk is deÞned by7

kfkr = max
1≤i≤r

sup
x∈U

°°Dif (x)°°
Let Cr (U) denote the space of Cr functions with domain U ⊂ Rn and range in V ⊂ Rm.
Cr (U) is a Banach space with the norm kfkr. When ε = 0 the problem in (25) is

deterministic. We assume that there is a locally unique Y 0 (x) such that N ¡Y 0, 0¢ = 0.
The task is to show that there is a unique map Y : (−ε0, ε0) → Cr (U) such that for

all ε ∈ (−ε0, ε0), N (Y (ε) , ε) = 0. We also want Y (ε) to be differentiable in ε thereby
allowing us to compute Y (ε) via Taylor series expansions.
To accomplish this we must apply the implicit function theorem for Banach spaces of

functions to N . We need to show that N satisÞes the conditions for the IFT. The map

N has domain Cr (U). We need to show that the range of N is also Cr (U) and that N
is a differentiable map. First, suppose that U is such that

x ∈ U ⇒ Y (F (x, Y (x) , εz)) ∈ U, ∀z.

We assume that the deterministic equilibrium is locally asymptotically stable. Therefore,

such a U exists for ε = 0 since stability implies that F (x,Y (x) , 0) is a strict contraction

7See Abraham et al. (1983) for a discussion of the relevant theorems for calculus on Banach spaces.
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for x near x∗. If z is bounded, then such a U exists for sufficiently small ε. Furthermore,

since gµ is analytic, all of its derivatives exists and are bounded. Therefore, for all z,

N (Y, ε) deÞned in (25) maps a function Y ∈ Cr (U) and an ε ∈ R to a function in

Cr (U).

We next need to show that N (Y, ε) is (Frechet) differentiable uniformly in z with
respect to Y for Y near Y 0 and for ε near zero. This is obvious by the chain rule (again

boundedness of z and analyticity of gµ and F are crucial) except for Y (F (x, Y (x) , εz))

term. The key fact is that the evaluation map ev(Y (., ε) , x) → Y (x, ε) is a Cr map-

ping from Cr (U) × (−ε0, ε0) to U ; see Proposition 2.4.17 in Abraham et al. The term

Y (F (x, Y (x) , εz)) is Cr since it is the composition of evaluation maps:

Y (F (x, Y (x) , εz)) = ev (Y, φ)

φ = F (x, ev (Y, x) , εz)

The last step is to show that the derivative of N (Y, ε) with respect to Y is invertible
in the neighborhood of

¡
Y 0, 0

¢
. We need to compute that derivative. Recall our earlier

notation

Z (x) = (x, Y (x) ,X (x) ,Y (x))
= (x, Y (x) , F (x, Y (x)) , Y (F (x, Y (x)))

Let

Z0 (x) = ¡x, Y 0 (x) , F ¡x, Y 0 (x)¢ , Y 0(F ¡x, Y 0 (x)¢)¢
With this notation, the derivative of N (Y, ε) with respect to Y is a linear map

d

dY α
Nµ

¡
Y 0, 0

¢ ≡ Nµ
α

¡
Y 0, 0

¢
: Cr (U)m → Cr (U)m

deÞned by¡Nµ
α

¡
Y 0, 0

¢¢
(hα) (x) = gµα (Z (x) , 0)hα (x)

+gµJ (Z (x) , 0)FJα
¡
x, Y 0 (x) , 0

¢
hα (x)

+gµA (Z (x) , 0)Y 0,Aα (F
¡
x, Y 0 (x)

¢
hα
¡
F
¡
x, Y 0 (x)

¢¢
≡ G1,µα (x)hα (x) +G2,µα (x)hα

¡X 0 (x)¢
We need to establish that the operator Nµ

α

¡
Y 0, 0

¢
is invertible; that is, for every ψ ∈

Cr (U)
m there is a unique h ∈ Cr (U)m such that (we now switch to matrix notation to
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denote the matrix functions G1 (x) and G2 (x) and the vector functions h (x) and X 0 (x))

G1 (x)h (x) +G2 (x)h
¡X 0 (x)¢ = ψ (x) (26)

At the steady state, X 0 (x∗) = x∗, and any solution hα (x) to (26) must satisfy the matrix
equation

G1 (x∗)h (x∗) +G2 (x∗)h (x∗) = ψ (x∗) .

Hence, invertibility of Nµ
α

¡
Y 0, 0

¢
requires that the matrix

G1 (x∗) +G2 (x∗)

is nonsingular. We further assume that G1 (x∗) is nonsingular. By continuity, G1 (x) is

nonsingular for x sufficiently close to x∗; we assume U is sufficiently small so that G1 (x)

is nonsingular for x ∈ U . We can then deÞne

G (x) = −G1 (x)−1G2 (x)

and rewrite (26) as

h (x) = G (x)h
¡X 0 (x)¢+ ψ (x) (27)

The form of (27) suggests recursion; in particular, (27) implies

h
¡X 0 (x)¢ = G ¡X 0 (x)¢h ¡X 0 ¡X 0 (x)¢¢+ ψ ¡X 0 (x)¢

which in turn implies

h (x) = G (x)G
¡X 0 (x)¢h ¡X 0 ¡X 0 (x)

¢¢
+G (x)ψ

¡X 0 (x)¢+ ψ (x)
Further substitution shows

h (x) = G (x)G
¡X 0 (x)¢h ¡X 0 ¡X 0 (x)

¢¢
+G (x)ψ

¡X 0 (x)¢+ ψ (x)
In general, (27) implies

h (x) = ψ (x) +
∞X
t=0

γtψ (xt+1) (28)

x0 = x, xt+1 = X 0 (xt)
γ0 = G (x0) , γt+1 = γtG (xt+1)

The representation in (28) converges if ψ (xt) is bounded (which is true since ψ is contin-

uous and xt converges to x∗) and γt converges to zero at an exponential rate, which will
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be true if we assume that the eigenvalues of the matrices G (x) are uniformly less than

one in modulus8 for all x ∈ U . If this is true at x = x∗ then it is, by continuity of G, true
for x near x∗; we assume U is sufficiently small so that all eigenvalues of G (x) are less

than one in modulus for all x ∈ U .
The next proposition summarizes our necessary conditions for invertibility ofNµ

α

¡
Y 0, 0

¢
.

Proposition 5. If (i) G1 (x∗) + G2 (x∗) is nonsingular, (ii) G1 (x∗) is nonsingular, (iii)

the spectral radius of G (x∗) is less than one, then Nµ
α

¡
Y 0, 0

¢
in an invertible operator

for sufficiently small U continaing x∗ and sufficiently small ε.

The next theorem summarizes our argument local existence theorem.

Theorem 6. If (i) gµ (x, y, �x, �y, εz) exists and is analytic for all z in some neighborhood

of (x, y, �x, �y, ε) = (x∗, y∗, x∗, y∗, 0), (ii) there exists a unique deterministic solution Y (x, 0)

locally analytic in x and locally asymptotically stable, (iii) Nµ
α

¡
Y 0, 0

¢
is invertible, (iv)

E {z} = 0, and (v) z has bounded support, then there is an r > 0 such that for all (x, ε) ∈
Br (x∗, 0), there exists a unique solution Y (x, ε) to (29). Furthermore, all derivatives of

Y (x, ε) exist in a neighborhood of (x∗, 0) and can be solved by implicit differentiation.

Proof. Follows directly from the assumptions and the implicit function theorem for

Banach spaces of functions.

This theorem sounds obvious, but the conditions are important ones and should be

checked. In particular, our example in (23) fails to satisfy condition (i). One natural and

general way to insure (i) is to assume z has bounded support. This may sound limiting

since many popular processes in dynamic analyses, such as linear processes with Normal

or log Normal. Also, continuous time Ito processes often imply Þnite-horizon distributions

with inÞnite support. However, assuming z has bounded support is a suitable assumption

for discrete-time models, and, in fact, may be a superior way to approximate continuous-

time problems. Consider, for example, Merton�s (1972) portfolio analysis. For some

parameters, investors will short the bond market and use the proceeds to buy stocks even

for log utility. Our example above shows that this would be unwise in a discrete-time

model where returns have log Normal returns since there would be some chance that

wealth goes negative. Therefore, assuming log Normal returns in a discrete-time model is

8This condition appears similar to solvability conditions in Sims (2000).
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a poor way to approximate the continuous-time model. Why is there such a difference?

In the continuous-time model with an Ito process driving the returns, an investor hit

with a series of negative return shocks can reduce his exposure to risk before his wealth

goes negative, but this is impossible in the discrete-time model and log Normal returns.

The Þnite-support assumption for z similarly allows an investor facing a series of negative

shocks to adjust his position before hitting ruin.

Now that we have established the existence of a solution Y (x) in (25) for each ε, we

now proceed to compute the Taylor series coefficients. We now consider y as a function

of (x, ε) jointly and return to the y = Y (x, ε) notation. This produces the equation

0 = E {gµ (x, Y (x, ε) , F (x,Y (x, ε) , εz) , Y (F (x, Y (x, ε) , εz) , ε), εz)} (29)

= N (Y ) (x)

Differentiation with respect to ε shows

0 = E
©
gµαY

α
ε + g

µ
I

¡
F IαY

α
ε + F

I
ε z
¢
+ gµA

¡
Y AI

¡
F IαY

α
ε + F

I
ε z
¢
+ Y Aε

¢
+ zgµε

ª
= E {gµαY αε }+E

©
gµI F

I
αY

α
ε

ª
+E

©
gµI F

I
ε z
ª
+E

©
gµAY

A
I F

I
αY

α
ε

ª
+E

©
gµAY

A
I F

I
αF

I
ε z
ª
+E

©
gµAY

A
ε

ª
+E {zgµε }

= Y αε

³
E {gµα}+E

©
gµI F

I
α

ª
+E

©
gµAY

A
I F

I
α

ª
+ δAαE {gµA}

´
(30)

+E
©
gµI F

I
ε z
ª
+E

©
gµAY

A
I F

I
αF

I
ε z
ª
+E {zgµε }

holds at all (x, ε)9. Note that in the last step we use the identity Y Aε = δAαY
α
ε . At the

steady state of the deterministic case, (x, ε) = (x∗, 0), the εz terms collapse to zero, the

derivatives gµα, g
µ
I , g

µ
A, F

I
α, F

I
ε , and g

µ
ε become deterministic, and (30) reduces to

0 = Y αε

³
gµα + g

µ
I F

I
α + g

µ
AY

A
I F

I
α + δ

A
αg

µ
A

´
+
¡
gµε + g

µ
I F

I
ε + g

µ
AY

A
I F

I
αF

I
ε

¢
E {z} (31)

which has a unique solution for Y αε iff all the terms in (30) exists at ε = 0 and

NY = gµα + gµI F Iα + gµAY AI F Iα + δAαgµA
9We are slightly abusing notation by writing

d

dε
g (x, y, �x, �y, εz) = gε (x, y, �x, �y, εz) z

More formally, this should be g5 (x, y, �x, �y, εz) z but we use the gε (. . .) notation for its mnemonic advan-

tage. The same comment applies to our notation Fε (. . .).
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is an invertible matrix. The problem of existence arises with the terms gµε and F
I
ε which

only arise here. As we saw above, there are examples where these terms do not exist.

We can take higher-order derivatives of (29) with respect to ε to arrive at equations

for Y αεε, Y
α
εε, etc. The formulas are complex, however, the pattern is clear. For example,

the derivative of (30) with respect to ε implies

0 = Y αεε

³
E {gµα}+E

©
gµI F

I
α

ª
+E

©
gµAY

A
I F

I
α

ª
+ δAαE {gµA}

´
Y αε

d

dε

³
E {gµα}+E

©
gµI F

I
α

ª
+E

©
gµAY

A
I F

I
α

ª
+ δAαE {gµA}

´
+
d

dε

¡
E
©
gµI F

I
ε z
ª
+E

©
gµAY

A
I F

I
αF

I
ε z
ª
+E {zgµε }

¢
which in turn implies that Y αεε (x∗, 0) solve an equation of the form

0 = NY · Y αεε +M

where M contains only derivatives of g and F and moments of z. This will determine

Y αεε (x∗, 0) if the terms in M exists and NY is invertible. Notice that the solvability

condition, the invertibility of NY , is the same as the solvability condition for Y αε (x∗, 0).
Continuing this process shows that the ε derivatives of Y exist as long as g and F have

the necessary derivatives and the moments of z exist.

The following theorem follows directly from E {z} = 0 and successive differentiation of
(29). It just ratiÞes common sense that a Þrst-order change in standard deviation affects

nothing, and that the dominant order effect is variance, which here equals ε2.

Theorem 7. If E {z} = 0, then 0 = Y αε = Y αεi = Y αεij = ...

Proof. 0 = Y αε follows from (31) and E {z} = 0. The other results follow from

the fact that derivatives of (30) with respect to state variables in x will always reduce to

expressions of the form 0 = Y αεi1..i" (...) + (...)E {z}.

6. Nonlocal Accuracy Tests

Perturbation methods produce the best possible asymptotically valid local approximations

to a problem. However, we often want to use them for nonlocal approximations. The exist-

ing literature shows that Taylor series approximations are often quite good even for states

not close to the deterministic steady state. Judd and Guu (1993, 1997) investigated this

issue in simple growth models. They Þnd that, for empirically reasonable choices of tastes
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and technology, linear approximations do well for small but nontrivial neighborhoods of

the deterministic steady state. However, the region of validity will be too small if the

stochastic shocks cause the state to wander substantially from the deterministic steady

state. Fortunately, they Þnd that the quality of the approximations improve substantially

as the higher�order terms are added. They also Þnd that the certainty nonequivalence

terms are important to achieve high quality approximations for stochastic approximations.

More precisely, they substitute the computed Taylor series into the deÞning equations and

evaluate the resulting error. The resulting error for capital stocks near the steady state is

often the order of machine zero, an accomplishment which few other methods can claim.

While their investigations have been limited to relatively small models, there is no reason

to suspect that the performance of this approach will decay drastically as we move to

larger models. In any case, any user of these methods should use some diagnostics to

estimate the region where the constructed series is a good approximation.

It is tempting to compute higher-order approximations and then just assume that

they are better than the certainty equivalent linear approximation. This approach is

dangerous since it ignores the essential fact of Taylor series expansions � their range of

validity is limited. Some elementary analysis shows the importance of this fact. Suppose

that f(x) =
¡
9802− 198x+ x2¢−1 and we wanted to compute its power series around

x = 100. The fourth-order Taylor series is

bf(x) = 99990001− 3999800x+ 59999x2 − 400x3 + x4
To measure the accuracy of this Taylor series, we computed the relative error in logarithm

terms,

E (x) = log10

¯̄̄̄
¯ bf(x)f(x)

− 1
¯̄̄̄
¯ .

The results are displayed in Table 1.

Table 1: Relative errors in Taylor series

expansion of
¡
9802− 198x+ x2¢−1

x− 100 : .1 .2 .3 .5 1 1.5

E (x) : -13 -9.7 -7.2 -4.2 0 2.4

Table 1 says that the fourth-order Taylor series approximation has very small errors

for x within 0.5% of the central value of x = 100, but that it falls apart when |x− 100| >
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1. We also computed the order 5, 10, and 20 Taylor series expansions and found the

approximations to get better for |x− 100| < 1 but worse for |x− 100| > 1. It appears

that we cannot construct a Taylor series based at x = 100 which is valid for any value of

x more than 1% away from x = 100. The key fact is that the radius of convergence for

the power series expansion of f (x) around x = 100 is 1. This follows directly from the

theory of power series in the complex plane. The polynomial 9802 − 198x + x2 has two
zeroes of x = 100± 2

√−1, both of which are distance 1 away from x = 100. Therefore, the
inÞnite-order Taylor series based at x = 100 has a radius of convergence equal to 1. Radii

of convergence for power series can be small; in fact, they can be arbitrarily small even

when the function is simple and has no singularities on the real line. We have no idea

about the radius of convergence for the Taylor series constructed by our methods. This is

particularly problematic for us in stochastic models where, in reasonably calibrated cases,

we do expect the state variables to roam more than 1% away from the deterministic steady

state.

This cautionary example and the portfolio example above both show that we need

ways to determine if our solutions are good, and these evaluations should be performed

for any application before a computed approximation is accepted and used to make some

economically substantive point. Therefore we need to develop diagnostic tools which can

be applied to any problem.

To measure the accuracy of our approximations we evaluate

E (x, ε) = max
µ
egµ ³x, bY (x, ε) , F (x, bY (x, ε) , εz), bY (F (x, bY (x, ε) , εz), ε), εz´

where egµ is a normalized, unit-free, version of gµ. The speciÞc details of the normalization
depends on the equation. For example, Euler equations should be normalized so that the

errors are in terms of percentage of consumption. SpeciÞcally, the unnormalized Euler

equation is often expressed as

0 = u0 (ct)− βE {u0 (ct+1)Rt+1}

which has units �utils per unit of consumption�. We need to get rid of both the utility

and consumption units. A unit-free version is

0 = 1− βE {u
0 (ct+1)Rt+1}
u0 (ct)
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a form often used in empirical studies. If an equation is a market-clearing condition with

form form 0 = S−D for supply S and demand D, then a natural unit-free form would be

0 = 1−D/S where any deviation expresses the excess supply as a fraction of total supply.
In general, we need to use some set of equations egµ where deviations from zero represent

a unit-free measure of irrationality of the agents, lack of market-clearing, mistakes in

predictions, and whatever else is involved in describing equilibrium, all of which we want

to make small in any approximation.

7. Specific Examples

We have developed the full perturbation method for stochastic models and proposed diag-

nostic tests to ascertain accuracy. We next apply this approach to dynamic programming

problems of the form

max
{Lt,Iit}

Et

∞X
τ=t

βtu(ct, lt)

ct = F (K
1
t ,K

2
t , · · · ,Kn

t , Lt, θt)−
nX
i=1

Iit

Ki
t+1 = K

i
t + ϕi

µ
Iit
Ki
t

¶
Iit, i = 1, · · · , n

θt+1 = λθt + σξt+1

where Ki
t , i = 1, · · · , n, is the stock of type i capital goods at the beginning of period t,

Iit is gross investment of type i capital in period t, θt is the productivity level in period t,

and ξt is the i.i.d. productivity shock with mean zero and unit variance. We assume that

ξt is truncated Normal with truncation at 3 standard deviations. The function ϕi(I
i
t/K

i
t)

represents net investment of type i capital after deducting adjustment costs. We assume

that ϕi(·) has the following form

ϕi(s) = 1−
δi
2
s (32)

Denote Kt = (K1
t ,K

2
t , · · · ,Kn

t ), s
i
t = I

i
t/K

i
t . Let V (Kt) be the value function. The

Bellman equation for the above problem can be written as:

V (Kt) = max
Lt,sit

u(ct, lt) + βEtV (Kt+1)
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subject to

ct = F (Kt, lt)−
Pn
i=1 s

i
tK

i
t

Ki
t+1 = (1 + ϕi(s

i
t)s

i
t)K

i
t , i = 1, · · · , n

θt+1 = λθt + εσξt+1

(33)

The law of motion equation in (33) displays the position and of the perturbation parameter

ε. The ξt shocks are i.i.d. random variables and are unchanged by the perturbation. The

deterministic case is when ε = 0 since then the ξt shocks have no effect on production.

When ε = 1, the variance of the productivity shocks is σ2.

The Þrst order conditions are:

0 = uc(ct, lt)FL(Kt, lt) + ul(ct, lt) (34)

0 = −uc(ct, lt) + βEt {Vi(Kt+1)}
¡
ϕ0i(s

i
t)s

i
t + ϕ(s

i
t)
¢

(35)

Vi(Kt) = uc(ct, lt)
¡
Fi(Kt, lt)− sit

¢
+ βEt {Vi(Kt+1)}

¡
1 + ϕi(s

i
t)
¢

(36)

while Fi = ∂F (K,L)/∂Ki, Vi = ∂V (K)/∂Ki. Note that the Euler equations (34), (35)

and (36) are functional equations, which implicitly deÞnes the policy functions lt = L(Kt)

and sit = S
i(Kt), and the gradient functions Vi(K). We are going to solve these functions

by the perturbation method as described by Judd (1998), that is, to compute Taylor

expansions around the steady state and use them as approximations.

7.1. Error Bounds. At each capital stockKt, the error bound of our solution, E(Kt),

is deÞned as the maximum of absolute Euler equation errors at this point.

E(Kt) = max{||EL||, ||EKi ||, ||EVi ||, i = 1, · · · , n}

where El, EKi , EVi are normalized errors, as given by:

El = (ucFl + ul)/ul

EKi = βEt {Vi(Kt+1)}
¡
ϕ0i(s

i
t)s

i
t + ϕ(s

i
t)
¢
/uC − 1

EVi = 1− uc(Fi − sit)− βEt {Vi(Kt+1)}
¡
1 + ϕi(s

i
t)
¢
/Vi(Kt)

Normally we expect the error bounds become bigger as we move away from the steady

state. To see how the errors grow, we introduce an overall measure of error bounds as

a function of relative distance from the steady state. Formally, for every r ≥ 0, we can
deÞne:

E(r) = sup

(
E(K)

¯̄̄̄
¯
nX
i=1

µ
Ki − K̄i

K̄i

¶2
≤ r

)
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where K̄i denotes the steady state value of Ki. The E(r) is the error bound function we

are seeking.

In practice, however, we cannot check all points on the surface of a sphere. We must

conÞne to some Þnite sets. Let D = {−1, 0, 1}n. DeÞne

X =

¡x1, · · · , xn¢
¯̄̄̄
¯̄xi = diqPn

j=1 (d
j)2
, d ∈ D, d 6= 0


Thus all points in X are on the surface of a unit sphere. We deÞne our error bound

function as

E(r) = max{E(K) | Ki = (1 + rxi)K̄i, x ∈ X }

7.2. Computational Results. Our examples use the following functional forms:

u(c, l) =
c1−γ

1− γ −
l1+η

1 + η
, γ > 0, η > 0

F (K, l) =
¡
K1
¢α1 ¡

K2
¢α2 · · · (Kn)αn l1−

P
i αi , αi > 0,

X
i

αi < 1

We compute the model for the cases of 2,3 and 4 capital goods. In all the cases we choose

β = 0.95, and δi = 0.1, all i. We test the algorithm on several parameter values displayed

in Table 1. For each combination of parameters in Table 1, we compute the Þrst through

fourth, and sometimes Þfth, order Taylor series expansion. For each case, we compute

E (r) for various values of radii r, dimensions n, and expansion orders k. We then Þnd

the worst case for each scenario. That is, for radius r, dimension n, and order k, we Þnd

that case which had the worst E (r). We report the worst cases in Table 2. For example,

in the two capital good cases, the worst Euler equation error for the linear approximation

at radius r was 10−3.2. That worst case may be different for the r = .05 case and for the

k = 2 case. Therefore, every solution for the cases in Table 1 was better than the errors

reported in Table 2.

Table 1: Parameter Values

(n, αi): (2,.15), (3,.1), (4, .075)

γ: 0.5, 2, 5, 10

η: 10, 3, 1

(λ, σ): (0, 0), (0.05, 0), (0.10, 0) (0.01, 0.90), (0.01, 0.95)
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The results in Table 2 show that the higher order approximations are very valuable

and follow our intuition. For a Þxed order k, the errors of the k�th order approximation

increase as we move away from the steady state. The linear approximation is acceptable

for r < .01, but is of questionable value for r > .05. None of the approximations have

acceptable Euler equation errors for r = .5.

For any Þxed radius r we see that there is substantial payoff to using higher-order

approximations. In particular, at r = 0.10, the linear approximation has Euler equation

errors up to 10% of consumption but the Þfth-order approximation has normalized errors

on the order of 10−5, an improvement of four orders of magnitude.
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Table 2: Error bounds log10E(r)

r k = 1 k = 2 k = 3 k = 4 k = 5

2 capital good cases

0.01 -3.2 -3.7 -4.1 -5.5 -5.7

0.05 -1.8 -2.8 -4.1 -5.1 -5.7

0.10 -1.1 -2.1 -3.1 -4.1 -5.1

0.20 -0.5 -1.2 -1.9 -2.6 -3.4

0.30 -0.1 -0.6 -1.3 -1.8 -2.3

0.40 0.2 -0.2 -0.7 -1.1 -1.6

0.50 0.6 0.2 -0.2 -0.6 -1.0

3 capital good cases

0.01 -3.2 -3.8 -4.0 -5.5

0.05 -1.8 -2.9 -4.0 -5.2

0.10 -1.2 -2.2 -3.3 -4.3

0.20 -0.6 -1.3 -2.1 -2.8

0.30 -0.2 -0.7 -1.3 -1.9

0.40 0.2 -0.3 -0.8 -1.3

0.50 0.5 0.1 -0.4 -0.8

4 capital good cases

0.01 -3.3 -3.9 -4.1 -5.6

0.05 -1.9 -3.0 -4.1 -5.6

0.10 -1.3 -2.3 -3.4 -4.4

0.20 -0.7 -1.4 -2.2 -2.9

0.30 -0.3 -0.8 -1.5 -2.1

0.40 0.1 -0.4 -0.9 -1.5

0.50 0.4 -0.1 -0.5 -1.0

Table 2 examined the quality of the approximations near the deterministic steady state.

While this information is useful and exactly the kind of information which is related to

the implicit function theorem, it does not tell us what we need to know about how good

the approximation is for a stochastic problem because we do not know the range of the



Perturbation methods for general dynamic stochastic models 38

states. For example, the linear approximation looks good for only k within 5% of the

steady state. If the capital stocks stay within that range, the linear approximation may

be acceptable, but we would not be so accepting if the stochastic shocks pushes some

capital stocks to levels more than 10% away from the steady state.

Tables 3 and 4 address these issues with stochastic simulation for a particular case.

Tables 3 and 4 takes a degree k approximation and uses it to simulate the economy for 105

periods. We compute the deviation, (Kt−K̄)/K̄, from the steady state and the magnitude
of the Euler equation error at each realized state. Table 3 reports the mean deviation from

the steady state of the capital stock, the standard deviation, and the maximum deviation.

The mean deviation for k = 1 is nearly zero, as it should be since the linear approximation

is a certainty equivalent approximation. Higher order approximations indicate that the

mean capital stock is about 2% from the deterministic steady state, a fact not possible

to approximate with the linear approximation. The other moments are largely unaffected

by the higher orders of approximation.

Table 3: (K − K̄)/K̄ along the simulation path

γ = 10, η = 10, (σ, λ) = (0.1, .95)

k = 1 k = 2 k = 3 k = 4 k = 5

mean -0.002 0.019 0.018 0.019 0.019

std. dev. 0.087 0.090 0.089 0.089 0.089

maximum 0.257 0.304 0.291 0.294 0.293

minimum -0.249 -0.229 -0.227 -0.226 -0.226

Table 4 reports the mean of the absolute value of the errors, their standard deviation,

and the maximum Euler equation error over the 10,000 period simulation. Since the true

distribution of the states is not centered at the deterministic steady state, the results in

Table 4 are not as impressive as in Table 2, but they again indicate the great value of

higher-order approximations.
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Table 4: Error bounds log10E(r) along simulation paths

γ = 10, η = 10, (σ, λ) = (0.1, .95)

k = 1 k = 2 k = 3 k = 4 k = 5

mean 2.6× 10−2 1.2× 10−3 1.1× 10−4 6.2× 10−5 3.4× 10−7
std. dev. 3.7× 10−2 2.5× 10−3 1.5× 10−3 1.6× 10−4 1.4× 10−6
maximum 4.4× 10−1 4.0× 10−2 9.8× 10−3 3.0× 10−3 2.9× 10−5

We need to be clear about these error results. We do not present them to indicate that

higher-order perturbation methods are good approximations and that the reader should

feel free to apply them to his problems. Our point is that these error analyses need to

be done as part of any application of perturbation methods. It is the critical Þfth step in

the perturbation method. The statistics displayed in Tables 2 and 4 should be reported

in any application of the perturbation method just as t statistics and conÞdence intervals

are reported in any application of regression and other statistical methods.

Table 5 displays the computational costs associated with the higher-order approxima-

tions. We see that the number of derivatives to compute rise substantially as we increase

approximation order and dimensions. There is a similar increase in time and space needed

to compute the approximations. We include statistics on space since the space necessary

to store all the necessary derivatives may be a limitation for perturbation methods. While

the computational costs are substantial, they are not a serious problem. With increas-

ing speed of computers and the fall in memory prices, perturbation methods are clearly

competitive with alternatives for multidimensional problems.
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Table 5: Computation costs

no. of state endog. order

capitals vars. vars. 1 2 3 4 5 6 7

number of derivatives to compute

2a 2 5 10 25 45 70 100 135 175

2b 3 5 20 70 170 345 625 1045

3a 3 7 21 63 133 238 385

3b 4 7 35 140 385 875 1757

4a 4 9 36 126 306 621

4b 5 9 54 243 747 1881

computing time in seconds

2a 2 5 0 0.03 0.37 3.38 23.6 148 923

2b 3 5 0 0.06 0.83 15.5 199 907

3a 3 7 0 0.13 2.34 35.0 415 308

3b 4 7 0 0.22 6.58 127 1424

4a 4 9 0 0.40 9.89 202

4b 5 9 0 0.66 22.8 640

memory used in megabytes

2a 2 5 2.5 2.5 2.8 4.2 12.0 48.0 200

2b 3 5 2.6 2.6 3.1 7.2 51.0 440

3a 3 7 2.6 2.6 3.8 17.0 132

3b 4 7 2.7 2.7 4.8 33.0 386

4a 4 9 2.7 2.8 6.9 74.0

4b 5 9 2.8 2.9 9.5 135

Note: a is the riskless case and b is the risky case
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Table 6 summarizes the steps of the perturbation method.

Table 6: Perturbation Method for Rational Expectations Models

Step 1: Compute the deterministic steady state with nonlinear

equation solver

Step 2: Compute linear approximation with some rational expectations

solution method

Step 3: Compute higher-order terms of deterministic problem through

differentiation and linear equation solving

Step 4: Compute stochastic deviation terms through differentiation

and linear equation solving

Step 5: Compute normalized errors in ergodic set of states through

deterministic sampling and stochastic simulation

8. Conclusion

This paper has shown that it is feasible to apply perturbation methods to numerically

solve rational expectations models substantially more complex than the usual represen-

tative agent, single good model. However, theory shows that the perturbation approach

faces some limitations related to the range of the stochastic shocks and the local valid-

ity of the approximations. In response, we develop diagnostic methods to evaluate the

approximations.
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