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Abstract

change rates to accurately predict future spot rates has continued to be one of the

the investors have unbiased rational expectations and that the risk premium be non-

existent. Rejection of these tests has therefore sometimes led researchers to believe

tests encompass different implications of the null. Using a signal extraction frame-

work, it is possible to interpret the various regressions in this context. The signal

extraction framework shifts the emphasis away from merely testing for specification

error, and thus rejecting the null, to measuring the deviation from the null model.

It appears worthwhile to move away from being concerned only with the rejection

of the null model to being equally interested in finding out the magnitude of the

specification error that resulted in the rejection.

The second paper, "Illegal Immigration Under Heterogeneous Labor and Asym-

metric Information", deals with the push and pull factors of illegal immigration.

Given the apparent inability of polity-makers and researchers to deal effectively with

the problem of illegal immigration, there is a need in the present literature to provide

a theory of this labor flow. We construct a theoretical model of illegal immigration

incorporating the two features of heterogenous labor and asymmetric information.

It will be shown that when workers are heterogeneous, it is perfectly reasonable for

source country employment changes to have a greater effect on the migration flow

than host country employment changes. While changes in the demand conditions in

the host country only strengthen the pull effect of the migration flow, source country
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employment changes have both push and pull impacts on the rate of migration.

The third paper in this dissertation is a joint work with Kenneth Judd of the

Hoover Institution and focuses on the existence of finite sample bias in generalized

method of moments estimation The estimation of nonlinear rational expectations

models has traditionally been plagued by difficulties. Primary among these has been

the inability of researchers to obtain closed form solutions, in terms of the structural

parameters, for the equilibrium time paths of the variables of interest. To circum-

vent this problem, Hansen and Singleton (1982) introduced an estimation procedure

known as generalized method of moments (GMM) which exploits the population or-

thogonality conditions by choosing estimates of the parameters that lead the sample

versions of these population conditions to be as close to zero as possible. Typically,

hypothesis testing of the estimates derived from generalized method of moments rests

on the asymptotic properties of these estimates. The goal of this paper is to demon-

strate that small sample biases are in fact substantial. We illustrate this point in

the context of a discrete time stochastic growth model that, unlike previous work

in the literature, has the attractive feature of endogenous consumption and wealth

Using Monte Carlo studies, we ascertain the magnitude of the bias and determine its

relation to the different instruments and lag lengths in the information set
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Chapter IV. Finite Sample Bias of Generalized Method

of Moments Estimation

1. Introduction

Although extensive work has been done with the specific case of dynamic rational

expectations models in which agents are assumed to solve quadratic optimization

problems under linear constraints, the estimation of nonlinear rational expectations

models has traditionally been plagued by difficulties.1 Primary among these has

been the inability of researchers to obtain closed form solutions, in terms of the

structural parameters, for the equilibrium time paths of the variables of interest.

To circumvent this problem, Hansen and Singleton (1982) introduced an estimation

procedure known as generalized method of moments (GMM). Standard method of

moments estimation involves choosing admissible parameter values that minimize a

weighted average of a number of the sample counterparts of the population conditions

A typical example is the case of a normal distribution with mean J1, and variance (1"2

where, in the just-identified case, we might choose the sample mean and variance,

GMM techniques, which haverespectively, as our estimates of these parameters

become standard estimation techniques for testing nonlinear rational expectations

asset pricing models, is a specific case of method of moments estimation. It exploits

the population orthogonality conditions by choosing estimates of the parameters

that lead the sample versions of these population conditions to be as close to zero as

possible. When applied to the estimation of the stochastic Euler equations, it allows

one to estimate parameters of the model and to test overidentifying resirictions of the

model without solving for the decision rules. It is important to note, however, that

one must still make assumptions on the functional form specifications surrounding

tastes and technology in the economic environment.

Hansen and Sargent (1982) analyze linear rational expectations models in which

agents forecast infinite geometrically-declining sums of the forcing variables.
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,
procedures. The objective of this paper is to go further in demonstrating that small

sample biases of GMM estimation are indeed substantial. We illustrate this point

in the context of a discrete time stochastic growth model that, unlike previous work(

determine its relation to the different instruments and lag lengths in the information

bias and the degree of risk aversion in the utility function.

Tauchen (1986) and Kocherlakota (1989) both examine the finite sample prop-

erties of these method of moments techniques in nonlinear asset pricing models.

Tauchen examines the finite sample properties of GMM estimators using a simple

asset pricing model with one asset. The main idea behind this work is to build a

small-scale artificial economy patterned on the asset pricing model in Lucas (1978).

Lucas models a one-good, pure exchange economy with identical consumers. The

good is produced costlessly in different productive units where the productivity in

each unit fluctuates stochastically through time. Output is perishable and therefore

consumption at time t must be less than or equal to output at time t. A single repre-

sentative consumer maximizes E{l::/3tU(Ct)} where E is the expectation operator,

Ct is consumption governed by an exogenous stochastic process, /3 is the discount

factor and U(.) is the current period utility. Tauchen uses this one-agent economy

with externally given stochastic laws of motion for consumption and asset dividends.

One difference between the model in Tauchen and that in Lucas is that Tauchen

dimensional probability distribution while in Lucas, the consumption endowment is

75



t
,

He then applies standard

as the asymptotic standard error The direction of the bias appears to depend on

the covariance structure of the dividend growth process and the consumption growth

process. Widely divergent parameter estimators result when different lag lengths are

imposed on the instrument set. Short lags used in forming the instrument sets result

in nearly asymptotically optimal estimates. However, as the lag lengths increase, the

sampling distributions of the estimates become more and more concentrated around

severely biased values The sampling distribution of the estimators shows a vari-

ance/bias tradeoff as the number of lags used in the instrument set increases. As the

number of lags rises, sample estimates are less dispersed but the bias rises. Therefore,

Tauchen suggests that among a large set of estimates produced with different inform a-

tion sets, the most reliable estimates are those obtained with the "malle"t instrument

set, i.e., shortest lag length, because the confidence intervals of those estimates will

be more reliable. This is especially true for any loss function that penalizes heavily
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for incorrect inferences that arise from a bias that is large relative to the standard

t error. Tauchen finds that for short lag lengths, the confidence intervals are very reli-

able as the coverage rate is close to the anticipated rate of 0.95. Furthermore, tests

basic methods of Tauchen. He examines a single agent economy where the process

governing the growth rates of consumption and dividends is an N -state Markov chain.

The specification of the stochastic process of stock market dividends and aggregate

consumption is found by fitting a vector autoregression to accord with annual data

for the United States economy.

Unlike 

Tauchen's model, Kocherlakota includes a

riskfree asset in his simulations. The model is thus calibrated so as to mimic real

( data. A coefficient of constant relative risk aversion of -13.7 is chosen, This large

degree of risk aversion is consistent with the findings by Hansen and Jagannathan

(1989) who note that in a correct model of asset pricing, the standard deviation of

the intertern ral marginal rate of substitution of the representative agent should be

large relative to its mean Kocherlakota shows that for GMM estimators typically

used, the small sample distribution of the J -statistic stochastically dominates its large

sample distribution, and therefore it tends to lead to overrejection of the model

For each estimator, Kocherlakota generates 400 data sets of 90 observations each

on the growth of consumption and the asset returns using the probability structure

of his model economy. The numerical procedure always begins at the true parameter

values. In this case, the preference parameters consisting of the discount factor and

the coefficient of constant relative risk aversion are set at 1.139 and -13.7 respectively.

The tests are performed over 7 different sets of instruments, resulting in seven different

estimators. Estimators 1 through 3 are based on actual annual data and use multiple

instruments. By multiple instruments, he refers to returns on the stock market, the

riskfree rate of return and the growth rate of consumption. Kocherlakota finds that

these estimators with multiple instruments perform poorly in the small sample data

They tend to bias the preference parameters towards zero. Furthermore, theset

sample distribution of the J -statistic is not approximately chi-square. Assuming that
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words, suppose that one assumes that the J -statistic has a chi-square distribution,

a much lower significance level of test should be used in order to have a 5 percent

rejection rate. However, Kocherlakota also finds that 2 of the 3 estimators with

multiple instruments do converge slowly to their large sample properties. At the

same time, Kocherlakota notes that the discount factor greater than 1 cannot account

for the poor small sample properties since, in general, lowering the discount rate

and raising the CRRA worsen the estimates. Estimators 4 through 7 which involve

only one instrument are shown to perform well. These estimators are based on an

instrument set that contains one of any of the three instruments: the stock market

return, the riskfree rate of return or the growth rate of consumption

In order to test for finite sample bias, we must be able to first solve and then

estimate these nonlinear models. As alluded to earlier, the analysis performed in this

paper goes a step further than Tauchen and Kocherlakota in that we allow consump-

tion, wealth and income to be endogenous. In our model, wealth, consumption and

asset returns are not deterministically related as they are in the analyses performed

by Tauchen and Kocherlakota. Tauchen assumes that the law of motion for income

is exogenously given and that the consumption process follows that of income. He

then uses the first order condition to solve for the implied asset prices. Our model

is much more realistic in allowing consumption and the capital stock to be endoge-

nously determined. Consumption is completely described by the two state variables,

the capital stock and the productivity shock

Briefly, the methodology is as follows. We stipulate a nonlinear discrete time

model of stochastic growth and calculate the decision rules for consumption By

solving this model, we can simulate time series of consumption, production, capital

stock and asset returns. We then perform generalized method of moments estimation

on these simulated data sets and test whether the estimated parameters are centered

around their true values. We provide statistics on the sample distribution of the

estimators as well as on the J -statistic testing the overidentifying restrictions of the

model
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One of our main objectives is to determine how sample bias depends on the

instrument set chosen, or whether sample bias is an inherent result of the estimation

procedure and independent of the choice of instruments. Typically, we project the

Euler equation error against lagged consumption and lagged asset returns. Estimators

that employ several instruments are more common than estimators which only use

one single instrument although Kocherlakota appears to find that a single instrument

leads to better parameter estimates than using multiple instruments. However, the

same orthogonality arguments should apply to nonlinear functions of the lagged

consumption and lagged asset returns data. In fact, there is no theoretical basis to

restrict the information set to linear functions of the elements. One way of adding

in these nonlinear functions is through the incorporation of higher powers of lagged

consumption and lagged asset returns.

Furthermore, rather than use only consumption data and asset returns in the

instrument set, in this model it may be more appropriate to include capital stocks as

well. This is because the capital stock equals the total value of the assets. The divi-

dend variable that is typically included in generalized method of moments estimations

equals, in our model, the capital stock multiplied by the asset returns.

Therefore, in addition to simulating a model with endogenous consumption, the

question we pose is whether by adding new orthogonality conditions, generalized

method of moments would be better able to detect deviations from the Euler con-

ditions and whether finite sample bias would be reduced. We will also attempt to

determine whether with these added instruments, the results obtained by Tauchen

concerning the optimal lag lengths of the instruments continue to hold true

Section 2 describes the growth model and the assumptions underlying this model

economy. Section 3 outlines the numerical algorithm we use to solve this discrete time

stochastic growth model. In section 4, we briefly review the GMM methodology and

then apply it to the data generated in this model economy. Section 5 provides our

results. We conclude in Section 6.
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2. Discrete Time Stochastic Growth Model

an AR(I) productivity specification. Agents maximize the present value of expected

lifetime utility:

where

~
1+-y

= In Ct

U(Ct) = 'Y < 0, i #-1

"Y = -1

Kt+l = 8t!(Kt) -Ct

f(Kt) = aK~

In8t+l = pIn8t + ft+l

where Kt is the capital stock at time t. °t is defined as a stationary AR(l) multi-

plicative productivity parameter and ft , , N(O, (1"2). Both the initial capital stock Ko

and the initial value of 0, 00, are exogenous.

One property of this model is that the capital stocks and productivity shocks

completely describe the state of the economy. One can deduce the capital stock for

the t + 1 period from the capital stock of the previous period t and the productivity

shock of the present period t+l. Production and current consumption can then easily

be derived from the capital stock variable. This implies that consumption decisions

are a function, h(K, 8), of current values of K and 8. The decision rule must satisfy



where the decision rule is denoted by h( K, 8) and 8 is the productivity shock one

period forward. Since we know that this algorithm that we will be using to solve the

model works well for linear problem, we rewrite (2.1) as

0 = h(K, 8) -(U')-l

I:)
(2.2)

so that it looks more like a linear problem. The RHS now has two terms, one linear

and the other similar to a constant returns to scale function of next period's potential

consumption values.

3. Minimum Weighted Residual

decision rules for consumption In the second stage, after generating the simulated

data series using these decision rules, we estimate the values of the parameters of

interest through GMM procedures. The class of techniques which we will use in this

paper to solve this growth model is known as Minimum Weighted Residual (MWR)

and is carefully explained in Judd (1991). This method was developed in the mathe-

maticalliterature to solve for numerical solutions to partial differential equations. Its

wide application to economic problems has been demonstrated in Judd (1991). The

idea is to express the equilibrium as a solution to some operator equation, such as an

Euler equation or a differential equation. We then specify a topological space2 which

contains the solution and look for an approximate solution in a finite dimensional

subspace of that space. This algorithm is especially appropriate for our purposes

in that it is a fast algorithm. Since empirical analysis requires repeated use of the

algorithm, a fast algorithm allows us to feasibly perform econometric estimation of

the underlying model. The algorithm is performed in FORTRAN using LINPACK's

2 Imposing the assumption of a topological space is unnecessary for the purposes of this

paper but will be relevant should one attempt to prove convergence of our polynomial
estimates.
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operator equation

N(f) = 0

0 = h(K,tJ) -(U')-

which is the error to the Euler equation

S 1: Choose a set of parameters r to estimate:

r= {,B,t}

serial correlation of the productivity shocks.

52: Assign initial values to r and to any other taste and technology parameters

In our estimations using monthly series, we set

0" = .008

4 Other numerical techniques which have been used in the literature to deal with non-

linear systems that tend to arise in dynamic economic models with rational agents
are discussed in Judd (1991).
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0. = .3333

,8 = .9957

"Y = -.5, -2.0, .., -10.0

Since we are simulating monthly data, a.8 of 0.9957 corresponds roughly to an annual

discount factor of 0.95. We solve for the decision rules of consumption for a range of

" s.

83: Express the equilibrium as a solution to some operator equation.

In our example, equilibrium is expressed as the solution to the Euler equation

(2.2) above.

54: Specify the topological space which contains the solution to the model and derive

the decision rules h(K,fJ). Specifically, this involves the following steps:

54.1: Choose a basis, cf> = {CPi}~l' of the space of continuous functions where we will

search for the approximate solution and the norm.

The basis should be flexible, capable of yielding a good approximation to the

solution, and the inner product < O,. > should induce a useful norm on the space

spanned by cI>. The considerations that should go into choosing a basis are discussed

in Judd (1991). Briefly, a basis should be easy to compute and be orthogonal relative

to a relevant norm. Furthermore, the basis elements should resemble the solution so

that only a few elements will be sufficient to generate a good approximation. We

could conceivably have used ordinary polynomials {1,x,x2,x3...} but they are all

monotonically increasing and positive on R2, They will not be orthogonal in any

natural norm since they are potentially very similar. The reason we prefer terms

that are orthogonal with respect to the inner product < .,. > is essentially the same

as why one wants uncorrelated explanatory variables in a regression. Nonorthogonal

bases reduce numerical accuracy just as multicollinear regressors enlarge confidence

intervals. The bases we therefore select here are the Chebyshev polynomials. The

[-1,1]. 

A Chebyshev polynomial of degree nChebyshev polynomials are defined over I

is denoted by Tn(x) and is given by the formula

Tn(~) == CO5(narCCO5~)
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They are generated by the recursive scheme

To(x) :=: 1

T!(x) == x

T2(z) == 2z2 -1

Tn+l(Z) == 2zTn(z) -Tn-l(Z) n~l

The Chebyshev polynomials form a suitable basis set in that they obey the discrete

orthogonality relationship

m

L Ti{Zk)Tj{Zk) = 0,
k=l

i#j

where

.1:k == COoS( 7r(2k -1) )2m ' k = I, n

It is not the case that Chebyshev polynomials are necessarily more accurate than

some other approximation polynomial of the same order n but that the Chebyshev

polynomial can be truncated to a polynomial of lower degree m in such a way as to

yield the most accurate approximation of degree m.

We allow for two state variables, K, the capital stock and 8, the productivity

shock. We therefore need a basis for a function of two variables. This basis function

is built from the one-dimensional case by constructing a tensor product of the one

dimensional basis.

{r,oi(K)r,oj(8)}~=1

For problems with n-dimensions, one can take the n-fold tensor product of a one-

dimensional basis. One advantage of the tensor product approach is that if the

one-dimensional basis is orthogonal, so is the tensor product. The disadvantage is

that as the dimension increases, the number of elements increases exponentially.
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our model does not include labor supply, instead treating that as fixed or exogenous,

although it can be incorporated in this model. We, therefore, chose not to test the

I

Thus we first simulated a reference data set

In the Monte Carlo study, we run simulations on a number of different sample

lengths. N runs number of runs were performed for series of lengths 240 and 24000

respectively. These lengths refer to the number of months in the sample period and

correspond to time series paths of 20 years and 2000 years. fJ is chosen so that the

annual discount factor is 0.95. We had initially performed the exercises on series of

length 1200 months, i.e., 100 years, but found that the results between these runs

and those of length 240 months were very similar. We also performed runs on a

set of annual data. In each case, we obtain a sample distribution of the parameter

estimates and their standard errors. Our objective is to track the sample distributions

of these estimates as we increase the sample size. We estimate the coefficient of the

constant relative risk aversion parameter 'Y and the discount factor /3 using generalized

method of moments. Unlike Tauchen, however, we include nonlinear functions of

the instruments in the instrument set. One question we are attempting to address

is whether the finite sample bias found by Tauchen is a feature of the estimation

procedure itself or a result of the poor choice of instruments. If we find that the small

sample bias has not improved, .then we may conclude that nonlinear functions of the

instruments set do not improve the efficiency of this estimator.

85: Generate a simulated data set given the decision rules obtained in 84 and treat

this as the reference data.

S6: Simulate nruns data series.

We now use the decision rules derived in the numerical section above to simulate

the consumption, asset returns, capital stock, and production data series. Uncertainty

is introduced through the productivity shock that we had defined earlier as following

an AR(l) process:

In8t+l = pln8t + f:t+l

p = 0.9
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4. Generalized Method of Moments

Here, we first provide a brief overview of the GMM technique and then proceed to

explain any modifications made in this paper. Hansen and Singleton (1982) developed

the GMM technique for estimating the underlying parameters of a representative

agent's utility function. This involved the orthogonality conditions implied by the first

order conditions for maximizing lifetime utility subject to the budget constraint. For

any such intertemporal asset pricing model, the conditional expectation of the Euler

Givenequation error should be zero when evaluated at the true parameter value,

data on consumption and asset returns, define r as the set of parameter values with

r 0 being the set of true parameter values. Let et be the error to the Euler equation

By construction itand Zt a set of instruments in the It information set of agents.

must be true that the error at time t be uncorrelated with variables in the information

set of time t. Letting Et be the conditional expectation operator at time t

Et{et(ro)\Zt} = 0

Rewriting et(ro) t,&) Zt as 9t(ro),

Et{gt(ro)} = 0

Define

Then as T 00, 9T(r)as the sample average of the 9t(r) where T is the sample size

must converge almost surely uniformly to E{gt(r)} under regularity conditions. In

particular, GMM minimizes the quadratic form

QT(r) = 9T(r)'WT9T(r)

almost surely where W is symmetric and nonsingular,
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type of nonlinearity we have chosen to introduce is to take higher powers of these

variables by decomposing them into orthogonal Chebyshev polynomials. It is onto

these polynomials that we project the Euler equation error

<R,T(z) >

59: Plot the estimates of {:J and "Y for the different information sets and check for the

existence of finite sample bias. Calculate the moments of the sample distribution

of /3 and "Y as well as the J -statistic on the overidentifying restrictions of the

model.

Steps Sl through S9 provide a brief outline of the methodology we use to solve

this discrete time stochastic growth model and to estimate the parameters of interest

to us.

4. Results

We will discuss first our results from the simulation section and then the estimation

stage of the analysis.

A. Simulations

From the stochastic simulations of consumption, capital stock and asset returns, we

provide a number of descriptive statistics. In Table 1, we provide four summary

statistics. They include the following:5

1. The statistic m suggested by Den Haan and Marcet (1989) provides a test for

the martingale difference property Et-l17t = 0 which is satisfied by the theoretical

solution. 17t is the residual of the Euler equation and the statistic m equals

5 All four summary statistics are suggested in Taylor and Uhlig (1990) as a means to

differentiate among the many numerical techniques used to solve nonlinear rational

expectations models.

90



where

2. T R2 from the regression of Et on five lags of consumption, capital and ().

This statistic tests for the martingale difference property Et-l Et = O. Since T R2 was

constructed using 15 regressors plus a constant term, T R2 has an asymptotic X2 (15)

distribution. The two-sided test at a significance level of 2.5 percent for each side is

given by 6.26< T R2 <27.49.

relative risk aversion rises,

Et-l11t = 0 while 18 cases satisfy the martingale difference property for f. The

tabulated R2 of the random walk remains fairly constant over all ranges of 'Y but

does appear to decline as the coefficient of relative risk aversion moves from -0.5 to

data series for length of 50000 months.
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percent tor each side would be 3.82<: m <21.92.

consumption and capital. This tests the random walk hypothesis of consumption.









Summary Statistics on Simulated Time Series

Table 1

TR2

9.79
17.62
5.60

29.52
14.42
25.26
14.12
9.40

14.56
7.48
7.42

11.92
21.90
15.57
13.58
15.19
14.44
5.85

22.17
20.02
9.68

R2

0.42
0.21
0.06
0.01
0.02
0.01
0.02
0.02
0.01
0.01
0.03
0.02
0.01
~

0.01-
0.01
0.01
0.01
0.01
0.01
0.03
0.01

var(~t+l-ict)
~ar(Ac)
28.95

19.72
9.45
7.23
0.88
6.07

i 6.77
c

I 8.04

i 4.60

I 6.47

I 7.38

I 6.22
[

[ 5.78

~- ~~Q-,--,-
3.80

5.83
3.91
5.76
5..5i
8.01
5.97

"Y--
-0.5

-1.0

-1.5

-2.0
-2.5
-3.0

-3.5-
-4.0

-4.5-
-5.0
-5.5

-6.0
-6.5

-7.0

-7.5

~8.0
-8.5

-9.0

-9.5
~

-10.0
-10.5

m

70.26
868.07

45.49
11.44

510.33
37.85
18.60
6.26

108.32
12.01

106.48
88.81
30.51
47.31
25.04
25.13
41.64
17.21
21.60
50.24
32.14
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Figure 5

G MM Estimates and Confidence Intervals
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