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Abstract

This dissertation is comprised of three distinct papers. The first, entitled “Time-
Varying Risk Premium in the Foreign Exchange Market: Assessing Specification Tests
and Measuring Model-Noise Error”, is an examination of the efficiency of the foreign
exchange market using a signal extraction approach. The inability of forward ex-
change rates to accurately predict future spot rates has continued to be one of the
most puzzling features of the foreign exchange market. Many economists have tested
the idea of “simple efficiency” in the foreign exchange market which requires that
the investors have unbiased rational expectations and that the risk premium be non-
existent. Rejection of these tests has therefore sometimes led researchers to believe
that there exists an exchange rate risk premium. This paper reinvestigates the issue of
efficiency in the foreign exchange market by assessing and ranking the relative power
of the various specification tests. Different information sets used in the orthogonality
tests encompass different implications of the null. Using a signal extraction frame-
work, it is possible to interpret the various regressions in this context. The signal
extraction framework shifts the emphasis away from merely testing for specification
error, and thus rejecting the null, to measuring the deviation from the null model.
It appears worthwhile to move away from being concerned only with the rejection
of the null model to being equally interested in finding out the magnitude of the
specification error that resulted in the rejection.

The second paper, “Illegal Immigration Under Heterogeneous Labor and Asym-
metric Information”, deals with the push and pull factors of illegal immigration.
Given the apparent inability of poli¢y-makers and researchers to deal effectively with
the problem of illegal immigration, there is a need in the present literature to provide
a theory of this labor flow. We construct a theoretical model of illegal immigration
incorporating the two features of heterogenous labor and asymmetric information.
It will be shown that when workers are heterogeneous, it is perfectly reasonable for
source country employment changes to have a greater effect on the migration flow
than host country employment changes. While changes in the demand conditions in

the host country only strengthen the pull effect of the migration flow, source country
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employment changes have both push and pull impacts on the rate of migration.

The third paper in this dissertation is a joint work with Kenneth Judd of the
Hoover Institution and focuses on the existence of finite sample bias in generalized
method of moments estimation The estimation of nonlinear rational expectations
models has traditionally been plagued by difficulties. Primary among these has been
the inability of researchers to obtain closed form solutions, in terms of the structural
parameters, for the equilibrium time paths of the variables of interest. To circum-
vent this problem, Hansen and Singleton (1982) introduced an estimation procedure
known as generalized method of moments (GMM) which exploits the population or-
thogonality conditions by choosing estimates of the parameters that lead the sample
versions of these population conditions to be as close to zero as possible. Typically,
hypothesis testing of the estimates derived from generalized method of moments rests
on the asymptotic properties of these estimates. The goal of this paper is to demon-
strate that small sample biases are in fact substantial. We illustrate this point in
the context of a discrete time stochastic growth model that, unlike previous work
in the literature, has the attractive feature of endogenous consumption and wealth

Using Monte Carlo studies, we ascertain the magnitude of the bias and determine its

relation to the different instruments and lag lengths in the information set
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Chapter IV. Finite Sample Bias of Generalized Method

of Moments Estimation

1. Introduction

Although extensive work has been done with the specific case of dynamic rational
expectations models in which agents are assumed to solve quadratic optimization
problems under linear constraints, the estimation of nonlinear rational expectations
models has traditionally been plagued by difficulties.! Primary among these has
been the inability of researchers to obtain closed form solutions, in terms of the
structural parameters, for the equilibrium time paths of the variables of interest.
To circumvent this problem, Hansen and Singleton (1982) introduced an estimation
procedure known as generalized method of moments (GMM). Standard method of
moments estimation involves choosing admissible parameter values that minimize a
weighted average of a number of the sample counterparts of the population conditions.
A typical example is the case of a normal distribution with mean p and variance o?
where, in the just-identified case, we might choose the sample mean and variance,
respectively, as our estimates of these parameters. GMM techniques, which have
become standard estimation techniques for testing nonlinear rational expectations
asset pricing models, is a specific case of method of moments estimation. It exploits
the population orthogonality conditions by choosing estimates of the parameters
that lead the sample versions of these population conditions to be as close to zero as
possible. When applied to the estimation of the stochastic Euler equations, it allows
one to estimate parameters of the model and to test overidentifying restrictions of the
model without solving for the decision rules. It is important to note, however, that
one must still make assumptions on the functional form specifications surrounding

tastes and technology in the economic environment.

Hansen and Sargent (1982) analyze linear rational expectations models in which

agents forecast infinite geometrically-declining sums of the forcing variables.
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Hypothesis testing of the estimates derived from GMM procedures typically,
as discussed by Hansen and Singleton, rests on the asymptotic properties of these
estimators. When one is dealing with macroeconomic variables, however, one may
be skeptical of making inferences based on asymptotic distribution theory. Other
works which have used alternative approaches to the numerical solution of these

{ nonlinear models have found the existence of finite sample bias in GMM estimation
procedures. The objective of this paper is to go further in demonstrating that small
sample biases of GMM estimation are indeed substantial. We illustrate this point

{ in the context of a discrete time stochastic growth model that, unlike previous work
in the literature, has the attractive feature of endogenous consumption and wealth.
Using Monte Carlo studies, we attempt to ascertain the magnitude of the bias and to
determine its relation to the different instruments and lag lengths in the information
set. In addition, we investigate the correlation, if any, between the magnitude of the
bias and the degree of risk aversion in the utility function.

Tauchen (1986) and Kocherlakota (1989) both examine the finite sample prop-
erties of these method of moments techniques in nonlinear asset pricing models.
Tauchen examines the finite sample properties of GMM estimators using a simple
asset pricing model with one asset. The main idea behind this work is to build a
small-scale artificial economy patterned on the asset pricing model in Lucas (1978).
Lucas models a one-good, pure exchange economy with identical consumers. The

| good is produced costlessly in different praductive units where the productivity in
| each unit fluctuates stochastically through time. Output is perishable and therefore
consumption at time ¢ must be less than or equal to output at time . A single repre-
sentative consumer maximizes E{Y F'U(C,)} where E is the expectation operator,

C¢ 1s consumption governed by an exogenous stochastic process, (3 is the discount

factor and U(-) is the current period utility. Tauchen uses this one-agent economy
with externally given stochastic laws of motion for consumption and asset dividends.

One difference between the model in Tauchen and that in Lucas is that Tauchen

defines consumption and the M-asset dividends as having a non-degenerate (M + 1)

dimensional probability distribution while in Lucas, the consumption endowment is
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defined as the sum of the dividends implying a singular joint distribution for divi-
dends and consumption. However, one can imagine that there exists an M + 1 asset
and that consumption is the sum of all the M + 1 dividends; in which case, there is
no difference between the two set-ups. In particular, consumption follows a process
calibrated to be similar to U.S. data. Using numerical procedures for solving integral
equations, Tauchen computes the equilibrium solution for asset prices as a function of
current and lagged income. Given the assumed consumption process, the computed
solution for asset prices, and random realizations of exogenous shocks, he computes
a simulated time series of consumption and asset prices. He then annliac ctandard
GMM procedures to the simulated data. He generates several such simulated data
sets and estimations, thereby building up a sample distribution of parameter esti-
mates and standard errors. With this empirical distribution in hand, he compares
the known true parameter values to their estimates, and the standard deviation of
the estimates to the asymptotic standard error computed by GMM procedures.
Tauchen assumes a CRRA utility function in his paper and chooses the constant
relative risk aversion parameter 7 to be -0.30 and -1.30. He finds that under certain
circumstances there is bias in the estimate of 7y with the bias being at least as large
as the asymptotic standard error. The direction of the bias appears to depend on
the covariance structure of the dividend growth process and the consumption growth
process. Widely divergent parameter estimators result when different lag lengths are
imposed on the instrument set. Short lags used in forming the instrument sets result
in nearly asymptotically optimal estimates. However, as the lag lengths increase, the
sampling distributions of the estimates become more and more concentrated around
severely biased values The sampling distribution of the estimators shows a vari-
ance/bias tradeofl as the number of lags used in the instrument set increases. As the
number of lags rises, sample estimates are less dispersed but the bias rises. Therefore,
Tauchen suggests that among a large set of estimates produced with different informa-
tion sets, the most reliable estimates are thoge obtained with the smailest instrument
set, i.e., shortest lag length, because the confidence intervals of those estimates will

be more reliable. This is especially true for any loss function that penalizes heavily
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for incorrect inferences that arise from a bias that is large relative to the standard
error. Tauchen finds that for short lag lengths, the confidence intervals are very reli-
able as the coverage rate is close to the anticipated rate of 0.95. Furthermore, tests
of overidentifying restrictions perform well in moderately-sized samples.

Kocherlakota also tests for the finite sample bias of GMM procedures using the
basic methods of Tauchen. He examines a single agent economy where the process
governing the growth rates of consumption and dividends is an N-state Markov chain.
The specification of the stochastic process of stock market dividends and aggregate
consumption is found by fitting a vector autoregression to accord with annual data
for the United States economy. Unlike Tauchen’s model, Kocherlakota includes a
riskfree asset in his simulations. The model is thus calibrated so as to mimic real
data. A coefficient of constant relative risk aversion of —13.7 is chosen. This large
degree of risk aversion is consistent with the findings by Hansen and Jagannathan
(1989) who note that in a correct model of asset pricing, the standard deviation of
the intertem  ral marginal rate of substitution of the representative agent should be
large relative to its mean Kocherlakota shows that for GMM estimators typically
used, the small sample distribution of the J-statistic stochastically dominates its large
sample distribution, and therefore it tends to lead to overrejection of the model

For each estimator, Kocherlakota generates 400 data sets of 90 observations each
on the growth of consumption and the asset returns using the probability structure
of his model economy. The numerical procedure always begins at the true parameter
values. In this case, the preference parameters consisting of the discount factor and
the coefficient of constant relative risk aversion are set at 1.139 and -13.7 respectively,
The tests are performed over 7 different sets of instruments, resulting in seven different
estimators. Estimators 1 through 3 are based on actual annual data and use multiple
instruments. By multiple instruments, he refers to returns on the stock market, the
riskfree rate of return and the growth rate of consumption. Kocherlakota finds that
these estimators with multiple instruments perform poorly in the small sample data
set. They tend to bias the preference parameters towards zero. Furthermore, the

sample distribution of the J-statistic is not approximately chi-square. Assuming that
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it is leads to overrejection of the model at the 5 percent significance level. In other
words, suppose that one assumes that the J-statistic has a chi-square distribution,
a much lower significance level of test should be used in order to have a 5 percent
rejection rate. However, Kocherlakota also finds that 2 of the 3 estimators with
multiple instruments do converge slowly to their large sample properties. At the
same time, Kocherlakota notes that the discount factor greater than 1 cannot account
for the poor small sample properties since, in general, lowering the discount rate
and raising the CRRA worsen the estimates. Estimators 4 through 7 which involve
only one instrument are shown to perform well. These estimators are based on an
instrument set that contains one of any of the three instruments: the stock market
return, the riskfree rate of return or the growth rate of consumption.

In order to test for finite sample bias, we must be able to first solve and then
estimate these nonlinear models. As alluded to earlier, the analysis performed in this
paper goes a step further than Tauchen and Kocherlakota in that we allow consump-
tion, wealth and income to be endogenous. In our model, wealth, consumption and
asset returns are not deterministically related as they are in the analyses performed
by Tauchen and Kocherlakota. Tauchen assumes that the law of motion for income
1s exogenously given and that the consumption process follows that of income. He
then uses the first order condition to solve for the implied asset prices. Our model
is much more realistic in allowing consumption and the capital stock to be endoge-
nously determined. Consumption is completely described by the two state variables,
the capital stock and the productivity shock.

Briefly, the methodology is as follows. We stipulate a nonlinear discrete time
model of stochastic growth and calculate the decision rules for consumption. By
solving this model, we can simulate time series of consumption, production, capital
stock and asset returns. We then perform generalized method of moments estimation
on these simulated data sets and test whether the estimated parameters are centered
around their true values. We provide statistics on the sample distribution of the
estimators as well as on the J-statistic testing the overidentifying restrictions of the

model,
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One of our main objectives is to determine how sample bias depends on the
instrument set chosen, or whether sample bias is an inherent result of the estimation
procedure and independent of the choice of instruments. Typically, we project the
Euler equation error against lagged consumption and lagged asset returns. Estimators
that employ several instruments are more common than estimators which only use
one single instrument although Kocherlakota appears to find that a single instrument
leads to better parameter estimates than using multiple instruments. However, the
same orthogonality arguments should apply to nonlinear functions of the lagged
consumption and lagged asset returns data. In fact, there is no theoretical basis to
restrict the information set to linear functions of the elements. One way of adding
in these nonlinear functions is through the incorporation of higher powers of lagged
consumption and lagged asset returns.

Furthermore, rather than use only consumption data and asset returns in the
instrument set, in this model it may be more appropriate to include capital stocks as
well. This is because the capital stock equals the total value of the assets. The divi-
dend variable that is typically included in generalized method of moments estimations
equals, in our model, the capital stock multiplied by the asset returns.

Therefore, in addition to simulating a model with endogenous consumption, the
question we pose is whether by adding new orthogonality conditions, generalized
method of moments would be better able to detect deviations from the Euler con-
ditions and whether finite sample bias would be reduced. We will also attempt to
determine whether with these added instruments, the results obtained by Tauchen
concerning the optimal lag lengths of the instruments continue to hold true

Section 2 describes the growth model and the assumptions underlying this model
economy. Section 3 outlines the numerical algorithm we use to solve this discrete time
stochastic growth model. In section 4, we briefly review the GMM methodology and
then apply it to the data generated in this model economy. Section 5 provides our

results. We conclude in Section 6.
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2. Discrete Time Stochastic Growth Model

We will examine the Brock-Mirman discrete time model of stochastic growth under

an AR(1) productivity specification. Agents maximize the present value of expected

lifetime utility:

E{gﬂ‘U(Ct)}

where
Ct1+‘Y
UC,) = 0, -1
( t) 1+~ b < ¥ #
=In Ct 7= -1

where C, is consumption at time ¢ and 7 1s the coefficient of constant relative risk

aversion. The underlying economy is described by the following equations:
Kt+1 = otf(Kt) -C,
f(K:) = aK{

Inbiyy = pln6; + €144

where K, is the capital stock at time ¢. 6, is defined as a stationary AR(1) multi-
plicative productivity parameter and €, ~ N(0,0?). Both the initial capital stock Kj
and the initial value of 6, 6,, are exogenous.

One property of this model is that the capital stocks and productivity shocks
completely describe the state of the economy. One can deduce the capital stock for
the ¢ + 1 period from the capital stock of the previous period ¢ and the productivity
shock of the present period t+1. Production and current consumption can then easily
be derived from the capital stock variable. This implies that consumption decisions
are a function, h(K, @), of current values of K and 6. The decision rule must satisfy

the Euler equation:

U'(h(K,8)) = ﬁE{U'[h[ﬂf{K} — h(K,8),8))8f(0f(K) - h(K,8)) | E} (2.1)
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where the decision rule is denoted by h(K,8) and 6 is the productivity shock one
period forward. Since we know that this algorithm that we will be using to solve the

model works well for linear problem, we rewrite (2.1) as

0 = h(K,6) — (U")"? (ﬂE{ 3
(2.2)
so that it looks more like a linear problem. The RHS now has two terms, one linear

and the other similar to a constant returns to scale function of next period’s potential

consumption values.

3. Minimum Weighted Residual

Our analysis can be broken down into two stages. In the first stage, we solve for the
decision rules for consumption. In the second stage, after generating the simulated
data series using these decision rules, we estimate the values of the parameters of
interest through GMM procedures. The class of techniques which we will use in this
paper to solve this growth model is known as Minimum Weighted Residual (MWR)
and is carefully explained in Judd (1991). This method was developed in the mathe-
matical literature to solve for numerical solutions to partial differential equations. Its
wide application to economic problems has been demonstrated in Judd (1991). The
1dea is to express the equilibrium as a solution to some operator equation, such as an
Euler equation or a differential equation. We then specify a topological space? which
contains the solution and look for an approximate solution in a finite dimensional
subspace of that space. This algorithm is especially appropriate for our purposes
in that it is a fast algorithm. Since empirical analysis requires repeated use of the
algorithm, a fast algorithm allows us to feasibly perform econometric estimation of

the underlying model. The algorithm is performed in FORTRAN using LINPACK's

* Imposing the assumption of & topological space is unnecessary for the purposes of this

paper but will be relevant should one attempt to prove convergence of our palynomial

estimates.




SNSQE on a VAX.? We present here a succinct description of the Minimum Weighted
Residual algorithm specifically in the context of the discrete time stochastic growth
model we are fitting.*

We first define the problem which js represented as a solution to the nonlinear

operator equation

N(f)=0

where A: B — B, B is a Banach space of functions f : D C R® — R'. The
domain D will represent the N state variables, the unknown function f will represent
the decision rules and A will represent the M Euler conditions. Recall that in our
model, consumption defined as h(K,6) is the unknown function and it must satisfy

equation (2.2).

0= K0 - @) ({0 (hOK) - WK, 0,0)0(07(0) - bk, 0) | o})

which is the error to the Euler equation.
We now show how to implement MWR in a step-by-step manner.

S1: Choose a set of parameters I" to estimate:

I'={8,~}

In this model, our parameters of interest are the discount factor 4 and the
coefficient of constant relative risk aversion 7. We may, if we choose to, also include
in this set a, the capital share, 02, the variance in the productivity shock, and p, the
serial correlation of the productivity shocks.

S2: Assign initial values to I' and to any other taste and technology parameters,

In our estimations using monthly series, we set

o= .008

* See Judd (1991) for more details on the speed and accuracy of this algorithm.

* Other numerical techniques which have been used in the literature to deal with non-
linear systems that tend to arise in dynamic economic models with rational agents
are discussed in Judd (1991).
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a

|

9957
5= —.5,-20,.,~10.0

Since we are simulating monthly data, a 8 of 0.9957 corresponds roughly to an annual
discount factor of .95, We solve for the decision rules of consumption for a range of
¥ s.
S3: Express the equilibrium as a solution to some operator equation.

In our example, equilibrium is expressed as the solution to the Euler equation
(2.2) above.
S4: Specify the topological space which contains the solution to the model and derive
the decision rules h(K,f). Specifically, this involves the following steps:
Choose a basis, ® = {{;}2,, of the space of continuous functions where we will
search for the approximate solution and the norm.
The basis should be flexible, capable of yielding a good approximation to the
solution, and the inner product < .,- > should induce a useful norm on the space
spanned by ®. The considerations that should go into choosing a basis are discussed
in Judd (1991). Briefly, a basis should be easy to compute and be orthogonal relative
to a relevant norm. Furthermore, the basis elements should resemble the solution so
that only a few elements will be sufficient to generate a good approximation. We
could conceivably have used ordinary polynomials {1,z,2?,2%...} but they are all
monotonically increasing and positive on RB*. They will not be orthogonal in any
natural norm since they are potentially very similar. The reason we prefer terms
that are orthogonal with respect to the inner product < -, > is essentially the same
as why one wants uncorrelated explanatory variables in a regression. Nonorthogonal
bases reduce numerical accuracy just as multicollinear regressors enlarge confidence
intervals. The bases we therefore select here are the Chebyshev polynomials. The
Chebyshev polynomials are defined over [-1,1]. A Chebyshev polynomial of degree n
is denoted by T,(z) and is given by the formula

Tn(z) = cos(narccos z)
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They are generated by the recursive scheme

To(.’t) =1
Ti(z) ==z
To(z) = 22 -1

Trt1(z) = 22T(z) — Tu-1(z) n>1

The Chebyshev polynomials form a suitable basis set in that they obey the discrete

orthogonality relationship

ZTi(mk)Tj(mk) =0, 1#j

k=1

where

Ty = cos (f_@ﬁ_‘_l_)) , k=1,..n

2m

It is not the case that Chebyshev polynomials are necessarily more accurate than
some other approximation polynomial of the same order n but that the Chebyshev
polynomial can be truncated to a polynomial of lower degree m in such a way as to
yield the most accurate approximation of degree m.

We allow for two state variables, K, the capital stock and 6, the productivity
shock. We therefore need a basis for a function of two variables. This basis function
1s built from the one-dimensional case by constructing a tensor product of the one

dimensional basis.

{ei( K)e;(0)}5=,
For problems with n-dimensions, one can take the n-fold tensor product of a one-
dimensional basis. One advantage of the tensor product approach is that if the

one-dimensional basis is orthogonal, so is the tensor product. The disadvantage is

that as the dimension increases, the number of elements increases exponentially.
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54.2: Choose a degree of approximation n; for each state variable i.

We have chosen an n; of 7 for the capital state variable and an ng of 5 for the
productivity shock variable. The only correct value for n is oc but for computation
purposes, it is in our interest to choice the smallest n; to give us a good approximation.
In previous work by Judd (1991), he shows that approximations of low order appear
to be sufficiently accurate. We choose for this model to let h(K,8) be a sizth-order
polynomial in K and a fourth-order polynomial in 6.

S4.3: For a guess a, compute the approximation, f = Son ., aabi( K, 8), and the resid-

ual

R(K,8;4a) = N(f)

We specify the residual set of vectors R as the errors to the Euler equations.
We attempt to find an f that fits (2.1) with the smallest error. The first guess of a
should therefore reflect some knowledge about the solution.
54.4: Choose and compute the projection conditions used to identify a.
There are a variety of ways to choose the projection conditions. They include
the method of moments, subdomain and collocation, all discussed in Judd (1991).
Projections generally involve integration which is often difficult to do for nonlinear
economic problems. Therefore, a feasible alternative is to use quadrature formulas
which are essentially weighted collocation methods since they involve evaluating the
mtegrand at a finite number of points. The advantage of quadrature formulas is that
information at more points is used to compute the approximation of the projections.
54.5: Iterate over steps 4.3 and 4.4, to find the {a;}, that sets the projection equa-
tions to zero.
Once we have solved for the {a;}I,, we can solve for consumption at each state

of capital stock and productivity shock.

Once we have numerically solved this model, we move onto the simulation and
estimation stages of this analysis. With the computed decision rules, we can create

many sitmulated data sets to test for finite sample bias of our estimators. Recall that
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our model does not include labor supply, instead treating that as fixed or exogenous,
although it can be incorporated in this model. We, therefore, chose not to test the
simulated data set here against actual realized consumption and production data.
Thus we first simulated a reference data set.

In the Monte Carlo study, we run simulations on a number of different sample
lengths. Nruns number of runs were performed for series of lengths 240 and 24000
respectively. These lengths refer to the number of months in the sample period and
correspond to time series paths of 20 years and 2000 years. B is chosen so that the
annual discount factor is 0.95. We had initially performed the exercises on series of
length 1200 months, i.e., 100 years, but found that the results between these runs
and those of length 240 months were very similar. We also performed runs on a
set of annual data. In each case, we obtain a sample distribution of the parameter
estimates and their standard errors. Our objective is to track the sample distributions
of these estimates as we increase the sample size. We estimate the coefficient of the
constant relative risk aversion parameter v and the discount factor 3 using generalized
method of moments. Unlike Tauchen, however, we include nonlinear functions of
the instruments in the instrument set. One question we are attempting to address
is whether the finite sample bias found by Tauchen is a feature of the estimation
procedure itself or a result of the poor choice of instruments. If we find that the small
sample bias has not improved, then we may conclude that nonlinear functions of the
instruments set do not improve the efficiency of this estimator.

S5: Generate a simulated data set given the decision rules obtained in S4 and treat
this as the reference data.
S6: Simulate nruns data series.

We now use the decision rules derived in the numerical section above to simulate
the consumption, asset returns, capital stock, and production data series. Uncertainty
15 introduced through the productivity shock that we had defined earlier as following
an AR(1) process:

11'1 !?14_] = Iﬂ].ﬂ Bi + £33

g=10.9
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T mulate 6, nitialize fn  1d generate random series of dr from
ormal distribiti  wi  mean d vari o? which agan choice parameter.
With his of 6, nla. he capital stack and prod ction level. We
discard the first 00 periods of mulated data to ensure that th itial val of
will not affect results. The consumpti tream  constructed using the a,.
solved for earlier the Chebyshe polynomials
S Choose set of moment condi ions for the simulated data set Af TV
For this paper the choose are th orthogonality projections. We
perform these projections using differen  strument sets The instrument sets in-
clude lagged consumption capital tock preduction d he marginal prod ctivity
of capital Another chaice for A7 T may he  comhine orthogonali  conditions with
ice 1d covariances of the time es although unclear how

should th  calenlate th  timal ghting matrix.
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4. Generalized Method of Moments

Here, we first provide a brief overview of the GMM technique and then proceed to
explain any modifications made in this paper. Hansen and Singleton (1982) developed
the GMM technique for estimating the underlying parameters of a representative
agent's utility function. This involved the orthogonality conditions implied by the first
order conditions for maximizing lifetime utility subject to the budget constraint. For
any such intertemporal asset pricing model, the conditional expectation of the Euler
equation error should be zero when evaluated at the true parameter value. Given
data on consumption and asset returns, define I' as the set of parameter values with
I’y being the set of true parameter values. Let e, be the error to the Euler equation
and z; a set of instruments in the I, information set of agents. By construction it
must be true that the error at time ¢ be uncorrelated with variables in the information

set of time t. Letting E; be the conditional expectation operator at time 1,
E{ed(To)l2} =0
Rewriting €:(T's) ® z¢ as g¢(To),

Et{ﬂ:(rn:‘} =0

Define

1 T
9r(T) = ( 2_ 9(I))

t=1

as the sample average of the g,(T") where T'is the sample size. Then as T — oo, gr(l’)
must converge almost surely uniformly to E{g(TI')} under regularity conditions. In

particular, GMM minimizes the quadratic form
Qr(T) = g7(I') Wrgr(T')

where Wy is a symmetric nonsingular weighting matrix that satisfies Wpr — W

almost surely where W is symmetric and nonsingular.
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GMM parameter estimates are therefore complicated nonlinear functions of the
data. The nonlinearities arise directly through those introduced in the objective
functions and indirectly through the second step of the estimation procedure, the
estimation of the optimal weighting matrix. Implicit in the technique, however, is the
important assumption, noted by Garber and King (1983), that the functional form
of the agent’s objective function is known to the econometrician and not subject to
shocks and fluctuations.

Since GMM is classified as an application of instrumental variable estimation, 1t is
useful to review some more findings on the small sample properties of the IV estimator.
Nelson and Startz (1990) addressed the issue of how finite sample bias varies with the
quality of the instruments. Consider the regression y = Az + u to be estimated with
instrument z. A good instrument is one where the instrument is highly correlated
with the regressor z and uncorrelated with the regression error u. If the correlation
between z and =z is small, the normal approximation is asymptotically valid, but a
poor approximation to the true distribution in small sample. Their findings show
that the finite sample distribution of the IV estimator is bimodal. Furthermore, with
poor instruments and a small sample size, the asymptotic approximation is a poor
approximation. The distribution of 3 may be quite concentrated around a point away
from the true parameter value. In an accompanying paper, Nelson and Startz (1990)
note that the conventional wisdom is that the consequence of having a poor instrument
is a large standard error and a low t-ratio. However, in fact, the consequence may be
more damaging in that the bias in the estimated coefficient will be large relative to
its calculated standard error.

Given this brief review of QMM estimators, our next step is to apply the proce-
dure to our simulated data series.

58: Perform generalized method of moments estimation on the simulated data set to
estimate the parameters of the model.

Traditionally, in asset pricing models of this type, the instrument set includes
lagged consumption and lagged rates of return. We include in the information set

nonlinear functions of these variables as well as those of lagged capital stock. The
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type of nonlinearity we have chosen to introduce is to take higher powers of these
variables by decomposing them into orthogonal Chebyshev polynomials. It is onto

these polynomials that we project the Euler equation error
< R,T(z) >

§89: Plot the estimates of # and 7 for the different information sets and check for the
existence of finite sample bias. Calculate the moments of the sample distribution
of 8 and + as well as the J-statistic on the overidentifying restrictions of the
model.

Steps 81 through 59 provide a brief autline of the methodology we use to solve
this discrete time stochastic growth model and to estimate the parameters of interest

1o us.

4. Results

We will discuss first our results from the simulatjon section and then the estimation

stage of the analysis,

A. Simulations

From the stochastic simulations of consumption, capital stock and asset returns, we
provide a number of descriptive statistics. In Table 1, we provide four summary
statistics. They include the following:®

1. The statistic m suggested by Den Haan and Marcet (1989) provides a test for
the martingale difference property E,_yn, = 0 which is satisfied by the theoretical

solution. ny is the residual of the Euler equation and the statistic m equals

a() 2z )Y zizn?) (Y 2lze)a

® All four summary statistics are suggested in Taylor and Uhlig (1990) as a means ta
differentiate among the many numerical techniques used to solve nonlinear rational

expectations models,
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where
&= () zize) " (z\m)

1s the ordinary least squares estimator in a regression of the Euler equé.tion residual
on a list of regressors which include a constant and five lags of consumption and
6. Using the asymptotic distribution, a two-sided test at a significance level of 2.5
percent for each side would be 3.82< m <21.92.

2. TR? from the regression of €; on five lags of consumption, capital and 6.
This statistic tests for the martingale difference property E;_ e, = 0. Since TR? was
constructed using 15 regressors plus a constant term, TR? has an asymptotic x2(15)
distribution. The two-sided test at a significance level of 2.5 percent for each side is
given by 6.26< TR? <27.49.

3. R? from the regression of the first difference of consumption on both lagged
consumption and capital. This tests the random walk hypothesis of consumption.
Results from Taylor and Uhlig ( 1990) note that among nearly all of the numerical
solutions derived, the tabulated R? of the random walk declines as the coefficient of
relative risk aversion rises.

4. Ratios of the variance of investment to the variance of the change in consump-
tion. This ratio is a measure of the relative volatility of consumption and investment

In our 21 simulated cases, 6 cases satisfy the martingale difference property
Ei—1m: = 0 while 18 cases satisfy the martingale difference property for €. The
tabulated R? of the random walk remains fairly constant over all ranges of v but
does appear to decline as the coefficient of relative risk aversion moves from -0.5 to
2.0, thus being consistent with the results from Taylor and Uhlig (1990).

In Figure 1, we also illustrate the density function of the simulated consumption

data series for length of 50000 months.

91




B. Estimation

In this section, we present our results on a sample set of simulations. Our first set
of Monte Carlo studies is with an information set that consists of linear functions
of the instruments, i.e., lagged consumption, lagged marginal productivity of capital
and lagged capital stock. We run all our simulations over a 4 range of -0.5 to -10.0.
For a sample period of 240 months, we choose #=0.9957 and ¢=0.008. Qur findings
on the point estimates show that, in the case of one lag, the estimated 8 coefficient
is unbiased throughout while the 7 coefficient exhibits a high degree of bias. While
true values of 4 range over [-0.5,-10.0], the estimated 7’s fall predominantly between
1.0 and -2.0. As the true value of 7 approaches -10.0, the number of true +'s that
fall within the 95 percent confidence interval fall. Furthermore, the standard errors
increase as the true value of ¥ approaches -10.0. In a graph with the true ¥'s on
the horizontal axis and the estimated 4's on the vertical axis, the resulting plot is a
horizontal line centered around 0.2, as shown in Figure 2.

When we replace the linear instrument set with nonlinear functions of the in-
struments, i.e., increase the order of polynomial to 2, the results do not appear to
mmprove. In fact, the estimators appear to perform even worse. The estimated value
of 4 continues to center around zero while the true values of v fall increasingly outside
the 95 percent confidence interval,

We next perform a Monte Carlo study on a sample period of 40 yvears. The
parameters chosen are §=0.95, p=0.5 and ¢=0.02. As we can tell form Figure 4 and
Figure 5, the results are very similar to those obtained from the monthly data series.
However, when we increase the sample size to length 240 vears, we obtain strikingly
different results. With a polynomial order of 2, while in the case of monthly data,
the estimated 4's centered closer to 0, they seem to fall close to -2.0 with annual
data. The percentage of estimated 7’s that fall within the confidence intervals also
increases. The degree of bias s, however, still severe for lower values of the coeficient
of relative risk aversion. Our brief sampling of lag lengths greater than 1 appear
to support Tauchen's findings that longer lag lengths tend to worsen the estimates.

Furthermore, we also find that with longer lag lengths, the sampling distribution
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becomes more and more concentrated around severely biased values of +.

Given that the GMM technique appears to have a severe finite sample bias, we
perforn: ‘he same Monte Carlo exercise with a longer sample of 24000 months. Qur
objective here is to get a general idea of the range of sample length over which the
asymptotics theories will hold, and to check whether the asymptotic properties hold
for all values of ¥. Our results are somewhat startling. With such a long sample of
24000 months, the estimator performs relatively well for high and moderate values of
the coefficient of relative risk aversion. The bias is small and very close to the true
value for ¥ > —5.0. With v values smaller than -8.0, the bias rises as the estimated
Y's appear to level off between -6.0 and -8.0. However, over the entire range of true
7 values, the estimated +’s all fall within the 05 percent confidence intervals. It is
somewhat surprising that with as long a sample as 24000 months, our estimators
are still biased. It is difficult to believe that with macroeconomic variables, 2000
years i1s too short a time period to capture asymptotics. We have not performed the
Monte Carlo simulations with any sample greater than 2000 years. However, with
our studies of 240, 2400 and 24000 months, it is clear that although 24000 months is
not a long enough period to approximate asymptotics, asymptotics do begin to hold
as we increase our sample length.

With the long sample of 24000 months, the J-statistics calculated show that in
21 cases of different +'s, the overidentifying restrictions were rejected in 5 cases at
the 5 percent significance level. With a lag length of 1 and an order of polynomial of
I in the instruments, the number of degrees of freedom for the x? statisticis 2. If a
critical region of size 0.05 is chosen, in those 5 cases, the x? value exceeds the value
5.991 which cuts off 5 percent of the right tail of the x? distribution. In the smaller
samples of both monthly and annual data, the overidentifying restrictions could not

be rejected at the 5 percent significance level for most of the v values.
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5. Conclusions

While generalized method of moments techniques have the attractive feature of al-
lowing one to estimate parameters of nonlir‘lea.r rational expectations asset pricing
models, any confidence in the estimates obtained through this technique must be
tempered by the knowledge of the existence of finite sample bias. Our results show
that this bias, in particular, becomes substantial for small values of the coefficient of
relative risk aversion. Furthermore, it appears that introducing nonlinear functions
and higher orders of polynomials in the instrument sets does not help to lessen the
degree of bias. This suggests that finite sample bias may be an inherent feature of
this estimation technique, and hypothesis testing which relies on asymptotic testing
may be highly misleading. Our results confirm the findings by Tauchen that longer
lag lengths in the instruments tend to lead to sampling distributions becoming more
and more concentrated around severely biased values.

As Judd (1991) noted, economists are increasingly turning to numerical methods
for analyzing dynamic economic models and this paper suggests that there are many
avenues of research, previously only briefly explored, that such techniques will open
up to researchers. Another possible area of work not unrelated to GMM estimation
that this numerical technique may permit is to attempt to estimate and test the model
with more than orthogonality conditions. Since one is able to solve for the decision
rule for consumption, one can include other second moments such as the variance
and covariance terms of the various processes. This may be of importance not only
in discovering whether this inclusion eliminates the small sample bias problem but
also in finding out whether these inclusions provide more efficient estimation of the
parameters. This type of approach is in line with work by Duffie and Singleton (1989)

and is an avenue for further research.
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Summary Statistics on Simulated Time Series

Table 1
5 m TR? R? erliih)
0.5 70.26 9.79 0.42 28.95
1.0 868.07 17.62 0.21 19.72
15 45.49 5.60 0.06 9.45
2.0 11.44 29.52 0.01 7.23
2.5 510.33 14.42 0.02 0.88
3.0 37.85 25.26 0.01 6.07
35 18.60 14.12 0.02 6.77
4.0 6.26 9.40 0.02 8.04
45 108.32 14.56 0.01 4.60
-5.0 12.01 7.48 0.01 6.47
5.5 106.48 7.42 0.03 7.38
6.0 88.81 11.92 0.02 6.22
6.5 30.51 21.90 0.01 5.78
7.0 47.31 15.57 0.01 5.30
5 25.04 13.58 0.01 3.80
8.0 25.13 15.19 0.01 5.83
8.5 41.64 14.44 0.01 3.91
9.0 17.21 5.85 0.01 5.76
9.5 21.60 22.17 0.01 5.51
-10.0 50.24 20.02 0.03 8.01
105 32.14 9.68 0.01 5.97
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Figure 1

1600 Density Function for Consumption
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Figure 2

GMM Estimates and Confidence Intervals
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Figure 3

GMM Estimates and Confidence Intervals
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Figure 4

GMM Estimates and Confidence Intervals
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Figure 5

GMM Estimates and Confidence Intervals
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Figure 6

GMM Estimates and Confidence Intervals
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Figure T

GMM Estimates and Confidence Intervals
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