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1 Introduction

There is a vast literature on the formation of prices in asset markets when traders have private
information. Much of this literature builds on the seminal work of Grossman (1976, 1981)
and Grossman and Stiglitz (1980) in which competitive, risk-averse investors use private
information and the information in equilibrium prices to make optimal trading decisions.!
In particular, investors are assumed to use the correct equilibrium statistical relationship
between prices and private information to update their beliefs about the \}alue of arisky asset.
This literature, however, largely ignores the role of other publicly observable information
in this regard, in particular, trading volume.? In Grossman (1976), for example, trading
volume plays no informative role since traders learn all relevant information by observing
the equilibrium price alone.> Many subsequent papers include the device of “noise traders”
to prevent equilibrium prices from revealing all relevant information. While this device yields
interesting and tractable models, trading volume once again has no interesting informational
role in these models.* .
There are many volume regularities which have been noted in empirical-studies. Ad-
mati and Pfleiderer (1988), and Brock and Kleidon (1992) have studied intraday volume
and price movements and found that periods of increased trading volume tend to be periods
of increased return variability. In particular, volume and return variability are greatest at

the open and close of trading. Interday studies have also turned up interesting facts relat-

1A vast literature has also built on the work of Kyle (1985) who developed an alternative framework with
imperfectly competitive risk-neutral informed traders, a risk-neutral market maker, and liquidity traders.

2A notable exception is Blume, Easley, and O’Hara (1994). Wang (1994) investigates the implications of
asymmetric information for trading volume, but does not study the informational role of volume.

3The critical special statistical feature of his model is the existence of a one-dimensional sufficient statis-
tic for the collection of private information, allowing a single price to also be a sufficient statistic for all
information.

4See Blume, Easley, and O’Hara (1994, pp. 159-165) for an exoellegt treatment of the trivial informational
role played by trading volume in the standard models.



ing volume and price movements. Karpoff (1987) surveys a large empirical literature that
finds a positive relation between trading volume and the absolute value of price changes in
equity and futures markets. Gallant, Rossi, and Tauchen (1992) and Brock and LeBaron
(1993) have noted several statistically significant properties of the auto- and cross-correlation
functions between price and volume movements. In particular, large price movements to-
day imply large volume today and tomorrow. These properties are difficult to explain in
conventional models.

The empirical facts are only part of the motivation for addressing these issues. When
discussing the role of asymmetric information, it is clearly more realistic to use dynamic
models wherein information leaks out gradually; this is why the Kyle (1985) and Wang
(1994) analyses are so interesting. In these models, however, traders ignore any volume
information. Since traders know (or can easily learn) volume in previous trading rounds
and, perhaps, nearly contemporaneous volume data, we should include it in our analyses.

In this paper we examine how private information affects trading volume, the infor-
mation content of volume data, and if there are any relations between trading volume and
price changes which can be explained by informational differences. We develop a model with
two trading periods in which asymmetrically informed investors learn the first period trading
volume prior to trading in the second period. In period one, investors optimally allocate th;ir
wealth between the risky asset and a riskless bond conditional on their private information
and the information in the equilibrium share price. In period two, however, investors condi-
tion their asset demands on their private information, the sequence of prices, and period-one
trading volume. We compute rational expectations equilibria in which each investor uses the
correct statistical relationship between equilibrium prices, trading volume, and private infor-
mation to make inferences about other investors’ private information from observed market
data. We will make specific functional form assumptions concerning the elements of the
model, but the general method we develop for solving such problems requires only smooth,
concave utility functions, and asset return distributions and signals with smooth densities.

Trading volume has information content in our mdel because we employ a return



and information structure in which investors are uncertain about the mean and variance of
the risky asset’s return. For illustrative purposes, we make distributional assumptions which
ensure that two statistics, corresponding to the sample mean and the sample variance of the
private information signals, summarize all private information. The period-one price alone
does not fully reveal all private information because it is consistent with many possible pairs
of the two statistics. However, we demonstrate that trading volume is more highly correlated
with the sample variance of the private signals than the sample mean. Intuitively, if all
investors observe similar signals, good or bad, trading volume will be relatively low because
all investors will share similar posterior beliefs about the value of the stock. However, when
investors observe different private signals large trading volume is generated by differences in
posterior beliefs. Thus, trading volume data allows investors to make more precise inferences
because, in equilibrium, it is correlated with the dispersion statistic. Consequently, trading
volume has information content beyond that which is in the period-one price.

Our model generates many interesting predictions including (i) a positive relation
between trading volume and the absolute value of price changes which has been documented
in numerous empirical studies of equity and futures markets; (ii) a positive relation between
trading volume and subsequent stock price volatility which has been documented in intraday
and interday studies; and (iii) that positive price movements on high trading volume lead, on
average, to positive future price movements. These results suggest that “technical analysis”
of volume-volatility information may be valuable.®

The rest of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 describes the economic model and the equilibrium concept. Section 4 describes

the numerical methods used to compute equilibria and the accuracy of these methods. In

5Brown and Jennings (1989) and Grundy and McNichols (1989) developed multi-trading-period models to
demonstrate that a sequence of prices could provide information that a single price could not. In both models,
however, investors do not use the information contained in trading volume data. In Brown and Jennings
(1989) knowledge of the first-period price and trading volume would lead to a fully revealing equilibrium
and thus, there would be no additional information contained in the second-period price. In Grundy and
McNichols (1989) trading volume has no informational content.

Pring (1991) and Edwards and Magee (1992) devote considerable attention to the technical analysis of
volume data. -



Section 5 we present some qualitative results about the nature of the information content in
trading volume data and the relation between trading volume and price changes. Section 6

gives concluding remarks.

2 Related Literature

This paper builds on a considerable literature attempting to understand the relation between
price movements and trading volume. In a model with competitive, risk-averse investors with
private information and liquidity traders, Pfleiderer (1984) demonstrated that (i) successive
price changes are negatively correlated; and (ii) trading volume is positively correlated with
absolute price changes. However, the first result is a direct consequence of the presence of
the liquidity traders and the second result is dominated by the non-speculative component
of trade induced by the liquidity traders. Admati and Pfleiderer (1988) argued that many
interesting intraday volume-volatility patterns could be explained by investors who strategi-
cally time their trades. They extended the Kyle (1985) framework by introducing two types
of liquidity traders: discretionary and noﬁ—diséretionary. Discretionary liquidity traders time
their trades to minimize the expected cost of transacting. They showed that trading volume
is concentrated because discretionary liquidity traders, and consequently informed traders,
prefer to transact when the market is “thick”. Furthermore, if information acquisition is
endogenous then price variability is greater in these periods of concentrated trading. Foster
and Viswanathan (1993,1995) used a Kyle (1985) framework in which the conditional vari-
ance of the underlying value process depends on past information. Trading volume and price
movements are correlated in the following way: large price movements occur when there
are high realizations, in absolute value, of public information signals. In their model, each
informed traders’ demands are increasing in the realization of the public signal; furthermore,
high signals imply high conditional variance yielding greater profits to the informed traders
holding the number of informed fized. Consequently, in equilibrium, the number of informed

traders increases and trading volume is higher.



Campbell, Grossman, and Wang (1993) developed a model in which stock price move-
ments are due to either innovations in fundamentals or innovations in.risk preferences. There-
fore, a drop in the stock price could be caused by bad news about future cash flows or an
increase in the risk aversion of the marginal investor. In the former case, trading volume will
be low because the bad news about stock fundamentals is public information while in the
latter case trading volume will be high because investors will want to reallocate risk. Con-
sequently, they predicted that price changes accompanied by high volume will tend to be
reversed. Wang (1994) developed a multi-period trading model with competitive, risk-averse
investors who have asymmetric information and heterogeneous private investment opportu-
nities. The model is structured so that investors have speculative and hedging motives for
trade each period. The equilibrium volume-volatility relationship in thié model depends on
the relative strength of these two motives for trade.

All of these models make predictions consistent with observed volume-volatility rela-
tionships, however, they also assume that investors ignore the information content in trading
volume. In another class of models, investors are endowed with different models of the econ-
omy; consequently, trade occurs becaﬂse in{/estofs interpret public information in different
ways (e.g. Varian (1989), Harris and Raviv (1993), and Kandel and Pearson (1996)). Since
all information in these models is public, the rational expectations equilibrium concept is not
applicable because there is no private information that investors can learn from. equilibrium
prices and/or trading volume. Furthermore, it is assumed that investors do not update their
beliefs about the true model of the economy when they observe prices and/or trading vol-
ume. The no-trade theorems of Milgrom and Stokey (1982) and Tirole (1982) do not apply
in these models because traders disagree about the distribution of the payoffs on the security
even when they have the same information sets. These models generate many interesting
predictions about the relation between price movements and trading volume. Furthermore,
speculative trading can persist in these models because investors will never agree on the cor-
rect model of the economy. However, these striking results come at the considerable expense

of assuming many ad hoc forms of irrationality on the part of investors.
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This paper is most closely related to a recent paper by Blume, Easley, and O’Hara
(1994) which extended the concept of rational expectations equilibrium to allow investors
to learn from observed trading volume data. They developed a Walrasian model in which
aggregate supply is fixed but equilibrium prices are “noisy” because the quality of investors’
private signals is not known with certainty. Volume data is informative in this setting
because prices alone do not fully reveal both the magnitude of the private signals and their
precision. However, they assume that investors are myopic in order to compute equilibria in
their multi-period model. In this paper, we do not introduce any form of ad hoc irrationality.
Verrecchia (1994) also developed a model in which competitive market makers, in a Kyle
(1985) framework, use the information contained in trading volume. If the likelihood that a
trade is uninformed depends on its size, volume data provides information not contained in
net demand data to distinguish informed trades from uninformed trades.

In this paper we propose an alternative model of the information contained in trading
volume data. We assume that investors are uncertain about the mean and the variance of the
risky asset’s payoff; consequently, private information is summarized by two statistics: the
sample mean and variance of the private signals. Prices are not fully revealing in this setting
because a high price could be due to a high mean or low dispersion of the private signals.
Holding the dispersion of the signals fixed, a high signal mean implies a high conditional
expected payoff since it is more likely that the true asset return was drawn from a distribution
with a high mean. Similaﬂy, holding the mean of the signals fixed, high signal dispersion
implies a high conditional variance since it is more likely that the true asset return was drawn
from a distribution with a high variance. We show that equilibrium trading volume in our
model is positively correlated with the sample variance of the private signals; intuitively,
trading volume is larger when investors have different information. Thus, trading volume
contains information that is not in the equilibrium price alone because it helps to distinguish
between assets with high expected cash flows and high risk and assets with low expected

cash flows and low risk.



3 A General Gamma-Gaussian Model with Informa-

tive Trading Volume

Grossman (1976) presented a model which has been widely used to examine problems of
information and asset prices. Its essential features were exponential utility functions, Gaus-
sian returns, common knowledge about return variance, and private information about the
mean return. Grossman demonstrated that there existed a fully revealing rational expecta-
tions equilibrium. The critical special statistical feature of his model is the existence of a
one-dimensional sufficient statistic for the collection of private information, éllowing a single
price to also be a sufficient statistic for all information. In this section, we examine a gen-
eralization of Grossman’s model which allows arbitrary tastes and more general return and
information structures.

We will assume three types of investors, all with different information and possibly
different tastes and endowments. We assume that there are only two assets: one safe asset
(a bond) which will be worth R in the final period, and one risky asset (stock) which will be
worth Z in the final period. Investors are endowed with shares of stock and some cash and
also with some private information. The economy has three periods. In period one, investors
observe private information and allocate their initial wealth between stock and the bond. Tn
period two, period-one trading volume is publicly announced and investors once égain choose
their optimal portfolio; however, in this period investors condition their asset demands on
their private information, the sequence of prices, and period-one trading volume.® The price
of equity is endogenous in periods one and two; our goal is to determine how these prices
evolve and depend on investors’ information. In period three, investors liquidate their wealth
and consume the proceeds. The total supply of equity is given by the sum of the investors’

endowments; we normalize this to unity. The bond will not accumulate any value between

5We assume that investors do not observe contemporaneous volume data in period one because the
subsequent equilibrium in our setup would be fully revealing and, consequently, there would be no trade and
a trivial relationship between price movements and trading volume.
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trading periods; that is, we are assuming that the two trading periods are close to each other,
whereas date three is some nontrivial time in the future. Therefore,-the riskless asset’s price
is unity in periods one and two. |

The realization of Z and investor’s information is determined in a three-stage process.
First, Nature determines the distribution of Z ~ N(m, 1) in a two-step fashion. It draws
the precision parameter, W = w, with density proportional to w®~! exp(—Bw), which is the
Gamma distribution with parameters oo and 3. Given the precision value w, nature draws
the mean parameter, m, from the distribution N (y, i)"’ Second, information is gathered by
investors. Type i investors observe y;-+¢;, where y; is distributed N (m, %) and ¢; is distributed
N(0, afi), for i = 1,2,3. The draws of y; and ¢; are all mutually independent. Thus, Nature
chooses a distribution from which it will draw the final return, and investors’ information
consists of independent experiments modelled as draws from the true distribution chosen by
nature, N(m, ﬁ), plus some experimental noise®. In the third and final stage, Nature chooses
draws a realization of Z with distribution N(m, ).

This is a more general model of asymmetric information than typically used. First,
if the precision w is drawn from a degenerate distribution with a mass at wy then Z ~
N(m, w—1~o) and we have a model similar to Grossman (1976). In this degenerate case, there
exists a one-dimensional statistic for Z, which is perfectly correlated to the full information
rational expectations equilibrium price, and, hence, there will be a fully revealing rational
expectations equilibrium. Second, the more general model allows us to examine a richer
variety of information structures, most of which will not produce fully revealing equilibria.
For example, it allows us to consider asymmetric information about the variance of an asset’s
return. This is particularly important since investors are often uncertain about an asset’s
riskiness as well as its expected return. If there is asymmetric information about the mean

and the variance of the asset’s return in our model there does not exist a one-dimensional

"Multivariate versions of this model will implement multivariate specifications with a Wishart conjugate
prior for the variance-covariance matrix.

8The choice of gamma priors for the precision and conditionally normal priors for the mean ensures that
there exists a two-dimensional sufficient statistic for all private information.
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sufficient statistic for all private information. Thus, a single price will not, in general, be a
sufficient statistic for all private information.
We now consider investor i’s problem. The uncertain final-period consumption of a

type ¢ investor is given by:

C’i = 92;‘2 + [VVz +m (9_i — 01;) + po (61 — 921‘)]3 (1)

where p; is the share price of stock in period j, 8); is the number of shares held by type i
agents after the date j round of trading, j = 1,2, 8; is the typei endowment of stock, and W;
is the type ¢ cash endowment. The evolution of information impiies that 8y; can depend on
only p; and y;, and 6; may depend on only p;, 1, p2, and period one volume. The functions
61; and 0y; are the trading strategies which type i investors choose.

A type i investor’s period one problem is to solve

max E[U(C) | L] (2)

1i

where a Ij; is type ¢ investor’s conditioning information at period one. In this paper, we
use constant absolute risk aversion utility functions of the form U(C) = — exp™* where a
is investor i’s coefficient of absolute risk aversion. Ij; includes investors 7’s private signs
i, and the price, p;. Since he sees only p; and y;, a type 4 investor’s first-period dema
function will depend only on p; and y;, and can be written 0y;(p;, 4:). In every state (p;,
differentiation of (2) with respect to 61;(p1,3:) produces the first-order condition for
choice of 6::(p1, y;)

0= E[U'(C))(Z - pR) | pr,wil-

This says that the excess return should be uncorrelated with the final marginal ut

consumption when conditioned on an investor’s information set.

LS
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A type i investor’s period two problem is to solve

max BU(C:) | In] ' 4

where a I,; is type ¢ investor’s information in period two. In the model of this paper, Iy,
includes Iy;, his private signal, y;, and the price p;, plus the new period two information

which is the price pq, and first-period trading volume, V;. Period one volume is defined by

i=1

The first-order condition, conditional on Is;, for the choice of 6y; will be
0= E[U'(Ci) (Z — p2R) | p1, P2, i, VA. (6)

Again, this is the familiar condition that the excess return of equity over the riskless asset
should be uncorrelated with the final marginal utility of consumption when conditioned on
an investor’s information set.

While this structure is rather simple, it is arbitrary in the number of investors, the
distribution of Z, and the information allocation of investors. We can also extend the model
to include a variety of assets, including derivatives. This would only involve changing the
period one and period two information sets and adding Euler equations for the additional
assets. The basic form of fhe first—order conditions in more general models would remain
as in (2) and (4). While these more general models are not totally general, it will be clear
that the projection methods used to compute solutions of our simple model are of general

applicability.

3.1 Equilibrium Concept

We assume that there is a fixed number of shares available, and that the safe return is

fixed exogenously. Equilibrium consists of several functions expressing asset prices as a

r's
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function of all the information in the economy at the time of trading, and trading rules as
functions of the total information. In particular, the equilibrium Qconcept employed in this
paper is the standard concept of rational expectations equilibrium; the only unusual feature
is that agents use information about volume when making inferences about asset value.
Equilibrium occurs when investors’ beliefs about the relationships among trading volume,
private information, and asset returns are correct. More specifically, we employ the following
definition of equilibrium:

Definition 1: A rational expectations equilibrium is a collection of price functions
at times t = 1,2, denoted p;(y1,y2,Y3), asset demand functions for type i investors in period
1, 65,(p1,vi), and asset demand functions for type i investors in period 2, 6%,(p1,p2, V1, ¥:),
such that:

() given p1(y), 03;(p1(y), i) solves (2);

(%) gien py(y), p2(y), and Vi(y), 03:(p1(y), p2(y), Vi(y), ui) solves (4);

(i) 2 03:(p1(y), y:) = 206, for all y, and

(v) £03:(p1(y), P2(9), Viy), 35) = 20, for all y
where Vi(y) = 3 3 103:(p1(y), vi) — 6:| is period one trading volume.

Since the zutility function is concave, the second-order conditions corresponding to
the first-order conditions (2) and (4) are automatically satisfied as well. Note that this is a
partial equilibrium model since we take the price of bonds as given, and allow~ an arbitrary
net aggregate position in bonds. It would be trivial to make the bond price endogenous,
but would cloud the discussion of some issues since the bond price would then also convey
information. Since the bond price is an aggregate price and the risky asset being modelled
is intended to be equity in individual firms or other assets based on a small portion of the
economy, it would be unnatural to allow the bond price to respond solely to information
concerning the risky asset. If our risky asset were intended to represent an aggregate market
asset, we would then move to a more general equilibrium analysis. In this paper, we follow
the tradition of this literature and make the bond price exogenous.

We do not offer here any existence proof. We expect that one could use the approaches

12



of Allen (1985a,b), and Anderson and Sonnenschein (1982), to prove existence of equilib-
rium for the related equilibrium concepts they offer. In this paper, we instead approximate

equilibria numerically and discuss the quantitative results.

4 Numerical Methods for Computing Approximate Equi-
libria
4.1 Computing Conditional Expectations

The first-order conditions in (3) and (6) imply that our equilibrium concept involves a con-
ditional expectation. Numerical implementation of the conditional expectation conditions is
the most challenging aspect of this problem. We use Gaussian quadrature methods combined
with basic projection ideas to implicitly compute conditional expectations.
To solve this problem, we use the following definition of conditional expectation.
Definition 2: Assume that Y and X are random variables. The conditional expec-
tation function relation,

Z(X) = E[Y|X]

holds if and only if
B(Z(X) - Y)f(X)] = 0

for all continuous bounded functions, f(X), of X.

Intuitively, Definition 2 says that the prediction error of the conditional expectation,
E[Y | X], is uncorrelated with any continuous function of the conditioning information, X.
This definition replaces the conditional expectation with an infinite number of unconditional
expectation conditions. In practice, we approximate Z(X) by finitely parameterizing Z(X)
and imposing a finite number of the unconditional expectation conditions to identify the free
parameters. The details of this will be made explicit below.

We shall now use these ideas to compute asset market equilibrium in our model. Using

L'
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the definition of conditional expectation given above, the projection method, as described in
Judd (1992), solves for an approximate equilibrium by finitely parameterizing p;(y), p2(y),
61i(p1,y:), and 09;(p1, P2, ¥i, V1) and impbsing a finite number of the conditions implicit in
our definition of equilibrium.

More precisely, we approximate the first-period and second-period price laws with the

polynomial representations

p(ynynw) = D akeH;(y1) Hi(yz) He(ys) (7)
0<j+k+I<Np,
and
p(y1,y2,98) = Y bikeH;(y1) Hi(y2) He(ys) (8)

0<j+k-+I<Np,

where H;(-) denotes the degree i Hermite polynomial and N,, represents the total degree
of the polynomial approximation. Hermite polynomials are natural in this setting because
returns are normally distributed and Hermite polynomials are mutually orthogonal with
respect to the normal density with mean zero and variance of one half. See Judd (1992) for
a discussion of the advantages of orthogonal bases in projection methods.

Another important aspect of the approximations in (7) and (8) is the ~restric’ciori to
a complete polynomial representation. The set of complete polynomials of degree N over R™
is defined to be

Py = {XP--- Xim| Y::ie <N, >0, V{}.
=1

We see that the polynomials in (7) and (8) are weighted linear combinations of elements in

P, and Py,,. An alternative is the tensor product of degree N over R™:
Tv={Xp - Xm 0<i <N, V.

The use of complete polynomials result in little loss of accuracy as compared to the full tensor

*
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product basis but has the advantage of many fewer unknown parameters. For example, if
we let N, = 3 in our model we have 64 unknown coefficients in each of our price functions
if we use the tensor product basis but only 20 unknown coefficients if we use the complete
polynomials. (See Judd (1991) for a more detailed discussion.)
Similarly, we represent the first-period stock demand for a type ¢ investor, i = 1,2,3,
by
Bulpr(y): ) = D CHi(ma(y) Ha(w)- (9)

0<j+k<Ng,

and we represent the second-period stock demand for a type ¢ investor, ¢ = 1,2, 3, by

02:(pr(y), P2(v), 30, Valw)) = Yo GumHi (1) He(pa(y) Hi(y) Hn(Vily))  (10)
0<j+k+l+m< Ny,
We will also need to compute the period one volume function, V;(y). When we need to do
so, we will just use the definition in (5).
Our goal then is determine the unknown aju bjui, Cj, iy, coefficients. If we let

Np, = Ny, = N, = Np, = 3 the number of unknown coefficients is 175: twenty for each
of the period one and period two price functions, ten for each of the three first-period
policy functions, and thirty-five for each of the three second-period policy f;nctions. To
determine the unknown coefficients we impose projection conditions on the investors’ first-
order conditions and market clearing. The total number of conditions will equal the number
of unknown coefficients, hoping that they are sufficient to fix the unknown coefficients. Thisi
just one of many possible solution techniques. For example, we could impose more conditior
than unknowns and choose coefficient values to minimize some squared error criterion.
this paper, our approach is to attempt to, to use econometric terms, “exactly identify”
unknown coefficients by imposing an equal number of “orthogonality conditions.”

The first-order-condition for a type ¢ investor in period 1 is given by

*

E{U(C)Z —pR) | yi;} =0, i=1,23
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Ey{(z b2:(P1(y), P2(Y), i Vily)) — 1)Hj(y1)Hk(yz)H£(@/3)} = 0; J+tk+1< N, (16)

The alternative is to define ;3 = 1 — 6;; — 0y for t = 1,2. That approach has the
appeal of forcing market clearing in every state of the world and reduces the number of
unknowns. However, 3, the resulting trading rule for type 3 agents, will almost surely be a
full function of y, not measurable in (p;(y), y3), their information set. Therefore, since we are
focussing on the importance of information, we adopt the approach in (15) and (16). In this
formulation, the market will not perfectly clear in every period. While this is not desirable,
we must make a choice between market clearing and maintaining the measurability of agents’
strategies in their information. We choose to sacrifice market clearing, endeavoring to make
the amount of market nonclearing small, possibly motivated (but not here modelled) by
inventory holding by a market maker.

The system of projection conditions, (12), (14), (15), and (16), constitute a finite
nonlinear system of algebraic equations in the unknown coefficients. We have succeeded in
reducing an infinite dimensional functional problem to a finite-dimensional algebraic prob-
lem. There are many ways to implement these ideas, choosing alternative bases and fitting
criteria. In particular, we have not provided a proof of a solution to this nonlingar systemﬁ.ﬁ If
there is no solution to this system, we can still use a least—squares solution to the system to
compute a good approximation for the unknown coefficients. However, we examine just one
approach, the Galerkin method, in detail since the point of this exercise is to demonstrate

how to apply projection ideas to a familiar model.

4.2 Computational Details

Before proceeding, we should discuss some of the critical details of the numerical procedure.
We first note that the projection conditions are all multidimensional integrals. The greatest

computational effort lies in computing these integrals. Therefore, it is important to compute

&
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them accurately and efficiently. To this end we use product Gaussian quadrature methods; in
the appendix we present the precise details. The advantage of product Gaussian methods is
their well-known high level of accuracy when integrating smooth functions, such as those in
this model. Gaussian quadrature formulas are also good in terms of efficiency, but probably
not the best. Even with Gaussian quadrature, solving our model strains the most powerful
desktop PC’s today. Extending our approach to more assets and/or more periods with
product Gaussian quadrature would probably require supercomputer methods. However,
there are more advanced multidimensional quadrature which are much more efficient; future
work will focus on developing the application of these methods to rational expectations
models.

The second detail is the method used for solving the nonlinear system. We use
HYBRD?, a public domain FORTRAN program which implements the Powell hybrid method.
The advantage of this method is that it combines a quasi-Newton method for nonlinear equa-
tions with an approach for minimizing SSR. Therefore, if the system does not have a solution,
HYBRD will switch to a least—squares method and still produce an approximate solution.
If one really thought that the least-squares approach was best then it would be more appro-
priate to immediately use a least-squares method. The advantage of HYBRD is that if it is
presented a nonlinear system without a solution, it will not get hung up but instead produce
an answer of some value. If HYBRD feels that there is no solution, it will inform the user
of that fact. In all of our examples below, HYBRD concluded that it had found a solution
to the nonlinear system. We suspect that Powell hybrid method implementations in NAG,
IMSL, and other scientific programming libraries would perform as well if not better. We
have tried some other nonlinear equation programs but with less satisfactory results.

A very useful trick is to compute the solution to a low-order problem and use the
solution as an initial guess for a higher-order problem. For example, one might begin by
computing the solution to the model using quadratic price and policy functions and then use

these solutions as the initial guesses for the quadratic elements of the cubic price and policy

9We actually use a slightly modified version which avoids zero equality comparisons.

s
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functions. These initial guesses will be very accurate because the extra terms that are added

in the cubic approximation are, by construction, orthogonal to the quadratic terms.

4.3 A Check on the Method

We would like to have some way to check out this application of the projection method. For-
tunately, there are some numerically nontrivial cases where we know the solution. Suppose
that the investors have the same utility function and endowment. Then, if the information
were common knowledge, each type would hold the same portfolio independent of the infor-
mation. Since this fact is common knowledge, the uninformed investors will, in the period
one rational expectations equilibrium, trade to this point in all states of the world, no matter
what the distribution of private information (see Milgrom-Stokey for an elaboration of this
fact), and the price would be the full information equilibrium price. Numerical calculation
of the full information prices is a trivial calculation, involving only numerical integration
which in this case, because of the smooth functions involved, will be very accurate. In the
second period, there is no new information; therefore, there will be no change in price and
there will be no trade. While we may knbw these facts, the algorithm does not “know” these
facts and instead approaches the problem in the general way. Therefore, we can check our
algorithm on these cases.

We used the algorithin above to compute equilibrium for cases covered by the Milgrom-
Stokey theorem with a wide variety of utility function (relative risk aversion between one
and five) and returns. Table 1 displays a typical example of our general Gamma-Gaussian
model with common CARA tastes and normal returns. Each investor has constant absolute
risk aversion of 2.5 (which implies a relative risk aversion parameter of approximately 3 given
the level of consumption), and each investor begins with 1/3 shares (total endowment is 1),
and 1.0 units in cash. Investors differ only in the noisiness of their signal, VAR(e). The
columns labelled “Signal i” i=1,2,3, denote the value of y seen by type i investors measured
in terms of the standard deviation. Thus, if Signal 1 = —1 agent 1 observed a signal which

was one standard deviation below his mean signal. *
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The entries in Table 1 compare the true, full-information, rational expectations equi-
librium with the approximation computed by our methods. For example, we see that if the
pattern of information was (0,0,0) the approximated equilibrium price (partial-info price) in
both periods 1 and 2 is 0.97275 which is correct to within 5 significant digits of the true,
full-information price when we use cubic, complete polynomials. By comparing our approx-
imations with the full information calculations, we found that this method generated the
correct prices and holding strategies to within at least five significant digits as long as we
used degree 3 polynomials for the pricing, and demand functions. We also found that the
correct solution was found even if the initial guesses were poor, indicating the stability of
the method. v

These examples do not provide a proof of the validity of our method in general.

However, they do give us confidence to proceed to more interesting problems.

4.4 Calibration

We now turn to examples which use the novel features of our model. Our calculations will
use “sensible” values for the basic parameters. The average annual real return on equity is
roughly eight per cent and the average annual real return on bonds is roughly one per cent.
The standard deviation of stock returns is roughly 40% for individual stocks and 20% for
large stock indexes. Since we are discussing the importance of lagged informatioil on volume,
the length of a period should be short, such as a day or, at most, a week. We choose values
for i, 0%, o, and B consistent with these statistics. Finally, we assume that relative risk

aversion is between 0.5 and 5.

4.5 Accuracy Measures

An important issue to address when we use numerical methods is the quality of the resulting
approximation and how many polynomial terms do we need to get a good approximation.

One way to check an algorithm is to check it out on cases where one knows the solution. The

Y
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exercises conducted above for the Milgrom—Stokey cases showed that cubic approximations
did very well. Another check is to resolve the problem using another method and compare
the procedures’ answers. In our case, this could be done by using different basis functions
and different integration formulas. Hopefully the solutions are insensitive to these changes;
if not, then one must be concerned about any of the solutions.

A second approach is to take the approximation and compute a measure of how much
it violates the equilibrium conditions. In this problem, we can ask how much better can an
agent do if he used more information than implicit in the computed approximation. Note that
the equilibrium conditions has each agent choose decision rules which yield Euler equation
residuals which are orthogonal to a restricted set of basis functions. This is, essentially,
allowing him to do only a limited regression analysis of the data. We can compute the
wealth equivalent of the Euler equation residual when projected in directions not used in
computing the approximation. This is the consumption error, that is, the difference, in
consumption units between following the equilibrium rule versus following a rule which uses
more information in making inferences from the price. We operationalize this by taking the
equilibrium law and subjecting it to a more refined regression analysis and asking how much
an agent will gain if he is allowed to use the better inference rule. The results for a typical
case are shown in Table 2. We found that the Euler equation residual errors are very small,
approximately one in one hundred thousand parts of wealth, when projected in-directions not
used to approximate the equilibrium. Moreover, the Euler equation errors give us clues about
the optimal number of basis functions and quadrature nodes to use in the approximation.
We find that cubic approximation works extremely well, with little to be gained by moving
to quartic approximation. We also find that using twice as many quadrature nodes in each
dimension as the degree of approximation works very well. Thus, for cubic approximation
one should use 6 or 7 quadrature nodes for each dimension of integration.

The second approach is consistent with a costly information interpretation of equi-
librium. If these computational methods produce a policy function with small optimization
errors, then that approximate policy function is as compelling a description of behavior as

*®
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the equilibrium policy function since it is unclear why individuals would bear the nontrivial

cost of finding the “true” policy function if the gain is small.!

5 Results

In this section we report the results of a few simple examples of the types of analyses that
can be conducted in this framework. We conducted three sets of experiments for (a, 3) pairs
shown in the figures. In all of these examples we randomly generated 1000 signal triples
(y1,Y2,ys) using the true joint probability distribution to determine the equilibrium relation
between price movements and trading volume.

Figure 1 was produced by generating 1000 signal triples (y1,y2,ys) and plotting the
relation between equilibrium first-period trading volume and the sample variance for each
triple. The figure suggests that trading volume is positively correlated with the sample
variance of the private signals. Table 3 (I) verifies this by showing the results of a linear
least-squares regression of equilibrium trading volume on the sample signal variance. We
report the coefficient with the t-statistic in parentheses. The coefficient on the sample signal
variance is highly significant. Intuitively, trading volume increases when investors observe
disperse signals because they have different beliefs about the future value of the stock.
Of course, investors would not “agree to disagree” if there was only a speculative motive
for trade; however, investors also have risk-sharing motives for trade in this-model. As
we mentioned above, private information in this model is summarized by two statistics: one
corresponding to the mean and the variance of the private signal observations. Consequently,
the period 1 price alone does not reveal all private information because a single price cannot
disentangle the two statistics. Figure 1 demonstrates, however, that trading volume data
contains information about the variance of the private signals and, thus, the tradeoftf between

risk and expected return that is not contained in the equilibrium price.

10There is a strong similarity between this procedure and the approach of Anderson and Sonnenschein
(1982). They assume that agents run regressions and use them when making decisions. They prove existence
of equilibrium when agents are restricted in the regressors they use.
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Figure 2 shows the relation between trading volume and the period 1 price. Again,
we randomly generated 1000 signal triples (y1, ¥2,¥s) and plotted the period 1 price against
period one trading volume. We conducted three experiments corresponding to different
values of («, () - the parameters of the distribution from which the variance of the stock
payoff is drawn. Smaller values of 3 correspond to smaller variances of this distribution. The
first thing to note is the V-shape relationship between trading volume and the period 1 price.
We can also interpret this as the relationship between trading volume and price changes
if we shift the x-axis by the hypothetical price that would have prevailed in competitive
equilibrium prior to observing private information. Thus, large price movements tend to
occur in periods of high trading volume. This theoretical prediction is also made in Blume,
Easley, and O’Hara (1994), Harris and Raviv (1993), Kandel and Pearson (1996), among
others, and is consistent with many studies of the volume-volatility relation in equity and
futures markets.!! Furthermore, the V-shape pattern is less pronounced when there is less
uncertainty about the wariance of the stock payoff. This is not surprising since in the case
where there is no uncertainty about the variance of the stock payoff the model collapses
into the Grossman (1976) model in which the equilibrium price alone reveals all private
information and there is no speculative trading.

Another simple example of the type of analysis that can be conducted in our frame-
work is to examine the relation between sequences of prices and trading volume data ahd
subsequent movements in the stock price. In the first round of trading, investors condition
their asset demands on pri{rate information and equilibrium prices. Due to the return and
information structure in our model, investors do not learn all payoff-relevant information
by observing this data. Prior to the second round of trading, first-period trading volume is
announced and investors use this information to make better inferences about the payoff of
the stock. Thus, second-period prices change to reflect this.

In Figure 3 we compare the movement in the price of the stock in period 2 to period

1 trading volume. Stock prices will move up, on average, from period 1 to period 2 because

1Gee Karpoff (1987) for a survey of the empirical evidence. See also Gallant, Rossi, and Tauchen (1992).
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investors resolve more uncertainty after observing the period 1 trading volume and the period
2 price. There are several interesting things to observe. First, the volatility of prices in period
2 is greater when the period 1 trading volume is high. When period 1 trading volume is low,
prices tend to trade in a very narrow range in period 2 but when period 1 trading volume
is high, price movements can be much larger. This is consistent with the intraday evidence
reported in Admati and Pfleiderer (1988) and Brock and Kleidon (1992). Furthermore, the
figure suggests that there is a tendency for prices to rise after periods of high trading volume.

Table 3 (II) gives the results of a linear least-squares regression of price movements
from period one to period two on trading volume, period-one price, and an interaction
term of volume multiplied by period-one price. The data are those generating Figure 3.
The regression results demonstrate that high trading volume in period one is positively
correlated with subsequent price movements and that the coefficient on trading volume is
highly significant. The coefficient is not very significant economically: an increase in trading
volume of 1% of the outstanding shares leads to roughly one-tenth of one percent of an
increase in stock prices. Furthermore, the coefficient on the interaction term of trading
volume with period-one price is positive and very significant statistically. Thus, high trading
volume is a more positive signal when it occurs contemporaneously with a positive ﬁrice
change in period one than when it occurs contemporaneously with negativé price change
in period one. One note of caution is that the effect is driven in part by outliers in the
sample of signal triples. The approximate price and policy functions are less accurate in the
tails of the signal distributions, thus, some of this effect may be due to approximation error.
Future research will conduct these experiments using a larger number of quadrature nodes
to improve accuracy in the tails.

These simple examples give an indication of the potential of our model to explain some
of the relations between trading volume and price changes as well as the relation between
trading volume and the serial correlation of returns that have been documented in other
studies. By computing more examples, sharper intuition can be developed about the precise

*
nature of the economic value of the information contained in trading volume.
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6 Conclusions

This paper uses a general numerical approach to compute rational expectations equilibrium
in a multi-trading period model in which trading volume data has informational content.
The approach is very general - requiring only smooth, concave utility functions, and asset
return distributions and signals with smooth densities. We show a simple example of the
types of analyses that can be conducted in this framework by demonstrating the relationship
between trading volume and stock prices movements.

There are many interesting possibilities for future research. In particular, we could
extend the model to multiple rounds of trade. To do so we would have to extend the model to
introduce a recurring non-informational motive for trade to circumvent the no-trade theorems
of Milgrom and Stokey (1982) and Tirole (1982). One solution is to introduce rational
“noise” traders each period as in Judd and Bernardo (1994). These are fully rational traders
whose tolerance for risk is unknown to all other traders. This would introduce a risk-sharing
motive for trade each period and another source of noise which would prevent investors from

perfectly inferring all relevant information from price and volume data.
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7 Appendix

In this appendix we give the exact formulas used to implement the equilibrium conditions.
We approximate the conditional expectation condition in (3) with several integral equalities

of the form
0= E[U(C)) (Z — p1R)(p1, 3:).

where ¢(py, ;) is a continuous function and C; = 65,2 + [W; + py(6; — 015) + Pa(6hi — 02:)| R.

Specifically, we use the collection of projection conditions expressed in ~

/ / / / / / G (Y1, Y2, Y3, 2) f (31, Y2, Y3, 2 | m, w)g(m|w)é(w)dy:dyadysdz dm dw = 0
0 —00 —00 ~00 00 —00
where
Gii(y,2) = Ul(Ci(y, 2))(z — p(¥) Hi(p1(9)) Hi(w:), j+k < N
Ci(y, 2) = 0%z + [Wi + p1(y) (6 — 01) + Pa(y) (61: — 62:) R
01 = 6u(p(y), v:) -
O = Oau(p1(y), P2(y), %3, Vi(y))
fye,y3,2 |mow) = filyr | m,w) fa(ye | m,w) fs(ys | m, w) fa(z | m,w)
— s ¢ gl ey o 2 (om0
o2 = o240 i=1,23
o? = 1
g(m|w)é(w) = ﬁ e‘w(m"“)z/z.i%w“‘le'ﬁw —o0o<m< 00, 0<w< oo.

To approximate our multidimensional integral we adopt a product rule based on one-
dimensional quadrature rules. For our normal random variables Gauss-Hermite quadrature

is most natural, while Gauss-Laguerre quadrature is most natural for our gamma distributed

*
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random variable, w. In one dimension the N-point Gauss-Hermite quadrature rule is given
by )

[ fweas = Y utl (et
—% i=1

where w/’ and zf are the Gauss-Hermite weights and nodes, respectively. In one dimension

the N-point Gauss-Lagurre quadrature rule is given by

0o N
|7 f@eda = - wk f(ah)
0 i=1
where w} and 2} are the Gauss-Laguerre weights and nodes, respectively. We get our gamma
density, £(w), to conform to the Gauss-Laguerre weighting function, e~2, and to get our
normal densities to conform to the weighting function, e=**, we use the Change-of-Variables

Theorem. Let

w = %
Y = V20,p+m  i=1,23

Z = V2o,24+m
m = \/—%m+p.

By the C.0.V. Theorem we can re-write agent #’s first-order condition, removing

b

constants, as

oo

/

which is approximated by

8

[o o 2ENe <IENNe <IN o]
: a2 a2 02 g2 12 -1 —an!
/ / / / Gy, 2 e e e e e ™ wte™ dyidybdys d2’ dm' dw' =0
00 —00 —00 —00 —

8

M=

i1=11dp=1143=14,=14

I

N N

a ! / ! ! _
Z Z Wi1wi2wz'awizwz‘mwiwcjk(yulimiwayzmmiw, Y3igimiw? z’izimiw) =0
m=1iy=1

where
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?Ailimiw = \/é \/ﬁ + 0621 xﬁ + My,
yl2fi,2'i,miw = \/2_ \/ -w%: + 0'32 $g + My,
y.!iigimiw = V2 \/ -w}_w + 023 mg + My,
2 = ﬁ\/E e+ my .,
Myiy, = ﬁ\/wji—;ﬂ?fn +p

1 ,.L

tw

and

Tiyy Tigy Tigy Tiyy iy,

Wiy y Wigy Wig, Wi,y Wi,

are the Gauss-Hermite nodes and weights, respectively, and z;, and w;, are the Gauss-
Laguerre nodes and weights, respectively.

The first-order condition in period two for the choice of 6,; can be derived analogously.

28



References

(1] Admati, Anat, 1989, Information in Financial Markets, in Financial Markets and In-

complete Information, edited by S. Bhattacharya and G. Constantinides. Rowman and
Littlefield.

[2] Admati, Anat, 1991, The Informational Role of Prices: A Review Essay, Journal of
Monetary Economics 28, 347-361.

[3] Admati, Anat and Paul Pfleiderer, 1988, A Theory of Intraday Patterns: Volume and
Price Variability, Review of Financial Studies 1, 3-40.

[4] Allen, Beth, 1985a, The Existence of Fully Rational Expectations Approximate Equi-
libria with Noisy Price Observations, Journal of Economic Theory 37, 213-253.

[5] Allen, Beth, 1985b, The Existence of Rational Expectations Equilibria in a Large Econ-
omy with Noisy Price Observations, Journal of Mathematical Economics 14, 67-103.

[6] Anderson, Robert M. and Hugo Sonnenschein, 1982, On the Existence of Rational

Expectations Equilibrium, Journal of Economic Theory 26, 261-278.

[7] Blume, Lawrence, David Easley, and Maureen O’Hara, 1994, Market ’Statistics and
Technical Analysis: The Role of Volume, Journal of Finance 44, 153-181.

(8] Brock, William A., and Allan W. Kleidon, 1992, Periodic market closure and trad-
ing volume: A Model of Intraday Bids and Asks, Journal of Economic Dynamics and
Control 16, 451-489.

[9] Brock, William A., and Blake D. LeBaron, 1993, Using Structural Modeling in Building
Statistical Models of Volatility and Volume of Stock Market Returns, University of

Wisconsin, mimeo.

29



[10] Brown, David P. and Robert H. Jennings, 1989, On Technical Analysis, Review of
Financial Studies 2, 527-551.

[11] Campbell, J.S., S. Grossman, and J. Wang, 1993, Trading Volume and Serial Correla-
tions in Stock Returns, Quarterly Journal of Economics 108, 905-939.

[12] DeGroot, Morris H., 1970, Optimal Statistical Decisions, McGraw-Hill, NY.

(13] Edwards, Robert D., and John Magee, 1992, Technical Analysis of Stock Trends, 6th
Edition, John Magee Inc., Boston.

(14] Foster, F. Douglas, and S. Viswanathan, 1993, The Effect of Public Information and
Competition on Trading Volume and Price Volatility, Review of Financial Studies 6,
23-56.

(15] Foster, F. Douglas, and S. Viswanathan, 1995, Can Speculative Trading Explain the

Volume-Volatility Relation?, forthcoming Journal of Business and Economic Statistics.

[16] Gallant, A. Ronéld, Peter E. Rossi, and George Tauchen, 1992, Stock Prices and Vol-
ume, Review of Financial Studies 5, 199-242.

[17] Grossman, Sanford, 1976, On the Efficiency of Competitive Stock Markets Where

Agents Have Diverse Information, Journal of Finance 18, 81-101.

[18] Grossman, S. J. and J. E. Stiglitz, 1980, On the Impossibility of Informationally Efficient

markets, American Economic Review 70, 393-408.

(19] Grundy, Bruce D., and Maureen McNichols, 1989, Trade and Revelation of Information
through Prices and Direct Disclosure, Review of Financial Studies 2, 495-526.

[20] Harris, Milton, and Artur Raviv, 1993, Differences of Opinion Make a Horse Race,
Review of Financial Studies 6, 473-506.

[21] Judd, Kenneth L., 1992, Numerical Methods in Economics, unpublished manuscript.

&

30



[22] Judd, Kenneth L., and Antonio Bernardo, 1994, Asset Market Equilibrium with General
Tastes, Securities, and Informational Asymmetries, unpublished working paper.

[23] Kandel, Eugene, and Neil Pearson, 1996, Differential Interpretation of Public Signals
and Trade in Speculative Markets, forthcoming Journal of Political Economy.

[24] Karpoff, Jonathan M., 1987, The Relationship between Price Changes and Trading
Volume: A Survey, Journal of Financial and Quantitative Analysis 22, 109-125.

[25] Kyle, Albert S., 1985, Continuous Auctions and Insider Trading, Econometrica 53,
1315-1335.

[26] Pfleiderer, Paul, 1984, The Volume of Trade and the Variability of Prices: A Framework
for Analysis in Noisy Rational Expectations Equilibria, Graduate School of Business,
Stanford University.

[27] Pring, Martin J., 1991, Technical Analysis Explained, Third Edition, McGraw-Hill, New
York.

[28] Radner, Roy, 1979, Rational Expectations Equilibrium: Generic Existence and the
Information Revealed by Prices, Econometrica 47, 655-678.

[29] Tirole, Jean, 1982, On the Possibility of Speculation Under Rational Expectatio?ls,
Econometrica 50, 1163-1181.

[30] Verrecchia, Robert, 1995, Market Inferences from Demand and Volume, Department of
Accounting, The Wharton School.

[31] Wang, Jiang, 1994, A Model of Competitive Stock Trading Volume, Journal of Political
Economy 102, 127-168.

31



Table 1: Milgrom-Stokey Theorem

cubic approximation - 7 quadrature nodes

Agent 1
Agent 2
Agent 3

Signal 1

[

CARA

2.5
25
2.5

Signal 2

[~

[ I

Endowment
Shares Cash Var(e)
0.3333 1 0.1
0.3333 1 0.2
0.3333 1 0.3
Prices
Signal 3 Full-info Partial-info
-1 0.72430 0.72430
0 0.97275 0.97275
1 1.22119 1.22119
1 0.80993 0.80993
-2 0.96283 0.96283
0 1.19644 1.19644
0 1.12419 1.12419

2 1.09451 1.09451

Trade

0.00000
0.00000
0.00000

0.00000
0.00000

0.00000
0.00000
0.00000



Table 2: Projection Errors

quadratic approximation - 5 quadrature nodes

CARA projection errors (log;,)
4th order Sth order 6th order
0.5 -4.6347 -4.7875 -4.9445
1.5 -4.6005 -4.6853 -4.8178
2.5 -4.5879 -4.6499 -4.7335

cubic approximation - 7 quadrature nodes

CARA projection errors (log,,)
4th order Sth order 6th order
0.5 -4.8598 -4.9511 -5.0023
1.5 -4.7507 -4.8619 -4.9101

25 -4.6828 -4.7773 -4.8313



Table 3: Regression Results

(I) Regression of Trading Volume on Sample Signal Variance

Model Intercept Sample Variance
a=1  (=0.02 0.00117 0.00604
(3.06) (16.41)
a=0.5 p=0.01 0.00192 0.00711
4.27) 16.37)
a=0.25 p=0.005 0.00125 0.00414
4.79) (16.40)

(IT) Regression of (P2-P1) on Trading Volume, Period 1 Price, and an Interaction

Term
Model Intercept Volume Period-One VxP1
Price

o= -0.00053 0.0900 -0.00021 0.0507
p=0.02 (15.34) (18.44) (1.37) 4.31)
o=0.5 -0.00042 0.0848 -0.00035 0.0556
p=0.01 (13.00) (21.80) (1.82) (4.42)
o=0.25 -0.00015 0.06902 -0.0003 0.0663
B=0.005 (10.77) (23.58) (-2.32) (4.60)
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Figure 1: Sample Signal Variance and Trading Volume
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Figure 2: Period 1 Prices and Trading Volume
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Figure 3: Period 2 Price Movements and Trading Volume
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